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ABSTRACT
Network technologies are being developed to increase not only
performance of data communication but also for provision of de-
terministic guarantees. Such designs foster the development of
distributed real-time applications. When networks must provide
time-sensitive communication, a commonly found design feature is
First-In First-Out (FIFO) – a natural design formultiplexing different
data flows into queues and for scheduling queued data. Alongside
technological advancements, there is the development of formal
tools to reason about timing behavior. Network Calculus is such a
methodology. It has been widely adopted already and its modeling
capabilities were extended to features found in modern standards
as, e.g., in IEEE Time-Sensitive Networking. However, the basic
challenge to compute a deterministic bound on a flow’s worst-case
end-to-end delay in FIFO networks still imposes challenges. Differ-
ent analyses exist but often offer limited scalability. In this paper,
we present an analysis with a readily tunable tradeoff between
quality of the delay bound and the computational effort it imposes.
We combine a greedy algorithm with an iterative directed search
whose termination criterion can be adapted, e.g., subject to the an-
alyzed network size. Our approach provides bounds of competitive
quality at smaller computational cost than current alternatives for
the analysis of feedforward FIFO networks.
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• Networks→ Network performance evaluation; Network per-
formance analysis; Network performance modeling; • Computing
methodologies→ Symbolic and algebraic algorithms; Sym-
bolic calculus algorithms; Optimization algorithms.
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1 INTRODUCTION
Motivation. Providing hard guarantees in communication systems
becomes increasingly important as evident from the industrial
demands leading to the development of standards like Avionics
Full-Duplex Switched Ethernet (AFDX), IEEE Time-Sensitive Net-
working (TSN), IETF Deterministic Networking (DetNet) or Time-
Triggered Ethernet (TTEthernet). A prominent such guarantee of
interest is bounded latency, i.e., provision of a deterministic bound
on the achievable end-to-endWorst-Case Delay (WCD) of a specific
data flow. Any upper bound on the WCD is valid for that purpose,
however, to avoid unnecessary overprovisioning of resources, the
aim of any network analysis is to either derive the WCD itself or
an accurate upper bound on it. An analysis is said to be tight if it
computes the WCD. This usually comes at a considerable, if not
forbidding, analysis complexity – often even boiling down to pro-
hibitive computational complexity and analysis runtime. E.g., the
tight analysis provided in [9] is an NP-hard Mixed-Integer Linear
Program (MILP) formulation. Therefore, it may be preferable to
relax the result accuracy in favor of significant runtime improve-
ments to achieve a more suitable overall tradeoff between these
two factors. A performance evaluation methodology that has the
potential for such tuning is the Network Calculus (NC). NC has
been applied to the above standards, e.g., AFDX [11], TSN [27] and
TTEthernet [26]. These standards usually employ First-In First-Out
(FIFO) multiplexing and forwarding in their queues. In this paper,
we therefore aim to improve the accuracy that can be achieved with
the runtime required for analyzing FIFO feedforward networks. To
that end, we provide two new analyses based on the Least Upper
Delay Bound (LUDB) for Feedforward Networks (LUDB-FF) [22].

Contribution. LUDB-FF creates a set of interdependent free parame-
ters 𝜃𝑖 ∈ R+ that need to be set for the derivation of the delay bound.
Our first proposal for doing so, Lower 𝜃 -Bound for Feedforward
Analysis (LB-FF), can be described as greedy in nature since it sets
the 𝜃𝑖 directly without considering the interdependence of these
parameters. While being fast, this naturally decreases delay bound
accuracy. Our second analysis, Directed 𝜃 -Search for Feedforward
Analysis (DS-FF), aims at exploring the interdependence of 𝜃𝑖 and
thus closing the gap between LB-FF and LUDB-FF. As its name
suggests, it employs a directed search on top of an initial setting for
the 𝜃𝑖 – the setting derived with LB-FF. The accuracy of the delay
bounds as well as the runtime of DS-FF can be easily tuned by the
directed search’s termination criterion 𝜖 . We will explore the trade-
off between accuracy and runtime for different DS-FF𝜖 in numerical
evaluations. In short, we make the following contributions:

• We dissect the LUDB-FF to enable creation of a framework for
multiple approaches setting free FIFO analysis parameters 𝜃𝑖 .

https://doi.org/10.1145/3534879.3534894
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• We provide two new instantiations: LB-FF and DS-FF. While
LUDB-FF optimizes the𝜃𝑖 parameters, we aim at tunable, accurate
NC analyses. LB-FF is greedy and DS-FF is search-based.
• We show in numerical evaluations that the accuracy of delay
bounds is almost always better than the ones obtained from a
classical server-by-server analysis and very competitive with
LUDB-FF, even for rather large termination criteria 𝜖 .
• We further show that our runtimes for favorable 𝜖 settings is at
least one order of magnitude below LUDB-FF and that DS-FF𝜖
scales better than the tight analysis from the literature.

The remainder of this paper is organized as follows: Section 2
presents the relevant NC basics and Section 3 dissects related anal-
yses, in particular LUDB-FF, to generalize from them. Section 4
presents our contribution, the greedy LB-FF analysis and the search-
based DS-FF analysis. Section 5 provides extensive benchmarks of
the aforementioned analyses. Finally, Section 6 concludes the paper.

2 NETWORK CALCULUS BACKGROUND AND
SYSTEM MODEL

Network Calculus Background. A thorough and accessible intro-
duction on (min,plus)-algebraic NC performance modeling can be
found in [6, 8].

Definition 1 (Cumulative Data Functions). Suppose function
𝐴 describes the cumulative input data arrival of a flow crossing a
server S. Then 𝐴′ describes its cumulative output after S. These
functions are in the set F0 := {𝑓 : R∞ → R+∞ |𝑓 (0) = 0 ∀𝑠 ≤ 𝑡 :
𝑓 (𝑡) ≥ 𝑓 (𝑠)} with R∞ = R∪ {∞} and R+∞ = R+ ∪ {∞}, respectively.

Definition 2 (Arrival Curve). Let 𝐴 be the cumulative input
function of a flow 𝑓 at server S. Then we call 𝛼 ∈ F0 an arrival curve
of 𝑓 at S if

∀ 0 ≤ 𝑑 ≤ 𝑡 : 𝐴(𝑡) −𝐴(𝑡 − 𝑑) ≤ 𝛼 (𝑑).

Definition 3 (Service Curve). Suppose𝐴 is an input to a server
S and 𝐴′ is the respective output function. Then we say that 𝛽 ∈ F0
is a service curve for S if

∀𝑡 ≥ 0 : 𝐴′ (𝑡) ≥ inf
0≤𝑠≤𝑡

{𝐴(𝑡 − 𝑠) + 𝛽 (𝑠)} =: 𝐴 ⊗ 𝛽 (𝑡).

Definition 4 (NC Operations). The (min,plus)-algebraic aggre-
gation, convolution and deconvolution of two functions 𝑔, ℎ ∈ F0 are
defined as

aggregation: (𝑔 + ℎ) (𝑑) = 𝑔 (𝑑) + ℎ (𝑑), (1)
convolution: (𝑔 ⊗ ℎ) (𝑑) = inf

0≤𝑢≤𝑑
{𝑔(𝑑 − 𝑢) + ℎ(𝑢)}, (2)

deconvolution: (𝑔 ⊘ ℎ) (𝑑) = sup
𝑢≥0
{𝑔(𝑑 + 𝑢) − ℎ(𝑢)}. (3)

Theorem 1 (Performance Bounds). Consider a server S that
offers a service curve 𝛽 . Assume flow 𝑓 has arrival curve 𝛼 . Then we
obtain the following bounds:

Output Bound: 𝛼 ′ (𝑡) = 𝛼 ⊘ 𝛽 (𝑡) := sup
𝑢≥0
{𝛼 (𝑡 + 𝑢) − 𝛽 (𝑢)}

Delay Bound: ℎ𝐷𝑒𝑣 (𝛼, 𝛽) = inf{𝑑 ≥ 0 : (𝛼 ⊘ 𝛽) (−𝑑) ≤ 0}
where 𝛼 ′ is a bound on𝐴′, the output from server S (see Definition 3),
and the horizontal deviation ℎ𝐷𝑒𝑣 between arrival curve and service
curve bounds the delay experienced by 𝑓 at S.

Theorem 2 (Convolution of Service Curves). Consider two
servers in tandemS1 andS2 with service curves 𝛽1 and 𝛽2 respectively
for flow 𝑓 . Then, 𝛽1⊗𝛽2 is a service curve for 𝑓 for the system (S1,S2).

Theorem 3 (FIFO left-over Service). Let server S offer service
curve 𝛽 . Assume flows 𝑓1 and 𝑓2 with arrival curves 𝛼1 and 𝛼2 cross
S. Assuming FIFO multiplexing, the left-over service for 𝑓1 is

𝛽 l.o.
𝑓1
(𝑡) = [𝛽 (𝑡) − 𝛼2 (𝑡 − 𝜃 )]↑ · 1{𝑡>𝜃 }

with [𝑔(𝑥)]↑ = sup0≤𝑧≤𝑥 𝑔(𝑧), the indicator function 1{condition}
that is 0 if the condition is not met and 1 otherwise, and 𝜃 ∈ R+ is the
free FIFO parameter. As abbreviation for [𝛽 (𝑡) −𝛼2 (𝑡 −𝜃 )]↑ · 1{𝑡>𝜃 }
we use 𝛽 ⊖𝜃 𝛼2.
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Figure 1: Arrival and service curve (for the aggregate) both
colored on the left as well as the FIFO left-over curves with
different setting of 𝜃 (dotted, dashed, dash-dotted line). Note
that the curve with latency𝑇 + 𝜎

𝑅
and rate 𝑅 is solely a helper

curve to indicate the discontinuity of the dashed line. It is
not a service curve itself.

Figure 1 depicts the influence of the choice of 𝜃 from Theorem 3
on the left-over service curve. Assume the crossflow has token-
bucket arrival curve 𝛾𝜌,𝜎 (𝑡) = {𝜎 + 𝜌𝑡} · 1{𝑡>0} and the service
curve being a rate latency 𝛽𝑅,𝑇 (𝑡) = 𝑅 · [𝑡 −𝑇 ]↑. Setting 𝜃 = 𝑇 + 𝜎

𝑅
,

the left-over service curve is a rate latency curve with latency 𝜃 and
rate 𝑅 − 𝜌 (dash-dotted line). It is easy to see that any 𝜃 lower than
𝑇 + 𝜎

𝑅
yields a worse curve for delay bounding (dotted line). Any

setting of 𝜃 ≥ 𝑇 + 𝜎
𝑅
(dashed line) yields a latency of 𝜃 , however

the curve continues with 𝑦 = 𝑅 · (𝜃 − (𝑇 + 𝜎
𝑅
)). Hence, the curves

for 𝜃 ≥ 𝑇 + 𝜎
𝑅
are not directly comparable and it remains a highly

complex task how to set this local value w.r.t. global delay bounds.
Another useful curve shape in NC is the so-called burst-delay

function 𝛿𝑇 (𝑡) that is 0 for 𝑡 ≤ 𝑇 and ∞ otherwise. 𝛿0 (𝑡) is the
neutral element w.r.t. operator ⊗.

System Model. Our approach is applicable to FIFO feedforward net-
works, i.e., the network can be depicted as a graph where nodes
represent servers which are connected by links of increasing num-
bers. The latter makes sure that we have a cycle-free network, i.e.,
that the feedforward property holds. Each server 𝑖 works off incom-
ing data of different flows in a FIFO fashion and is constrained by
a rate-latency service curve 𝛽𝑅𝑖 ,𝑇𝑖 . Each flow 𝑓 has a known path
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in the network and the data it inputs at its ingress server is con-
strained by a token-bucket arrival curve 𝛾𝜌𝑓 ,𝜎𝑓

. The token-bucket
and rate-latency modeling is required due to a restriction of the
LUDB methodology.

3 DISSECTING THE RELATEDWORK
Our contribution in Section 4 is based on a lineage of NC achieve-
ments. Some of the related previous work on feedforward networks
were presented as monolithic, i.e., multiple features were “pack-
aged” into a single analysis. This view prevents further innovation.
Therefore, we contribute a related work study that breaks up the
monolithic analysis known as LUDB by dissecting it.

Total Flow Analysis (TFA). For completeness of the related work
overview, consider the classic TFA that simply aggregates all flows,
i.e., the analyzed flow of interest (foi) and its crossflows, for com-
putation of delay and backlog bound at a server. Therefore, TFA is
not faced with the challenge to set any 𝜃 as it does not make use
of Theorem 3. While this derives one valid bound for each of the
aggregated flows, it is not the WCD of any flow (in presence of
crosstraffic). The inaccuracy grows when per-server delay bounds
on the foi’s path are summed up to a bound on its end-to-end delay.

3.1 Creating and setting the free parameter/s 𝜃
At the basis of more recent (min,plus)-algebraic NC FIFO analy-
ses is Theorem 3. As already shown in Section 2, visualized by
Figure 1, setting 𝜃 is a non-trivial task, even for curves restricted
to rate-latency and token-bucket shapes. When networks grow in
complexity in terms of servers and flows, a multitude of |𝐹𝑥 | interde-
pendent 𝜃 -parameters, forming the vector Θ = (𝜃1, . . . , 𝜃 |𝐹𝑥 | ), will
have to be set. The actual size of Θ and how its free 𝜃 parameters
interdepend is an intermediate result of the analysis applied to it.

3.1.1 Separate Flow Analysis under First-In First-Out (FIFO) assump-
tions (SFA-FIFO). The SFA-FIFO is a server-by-server analysis like
TFA. Unlike TFA, it separates the foi from its crossflows by applica-
tion of Theorem 3. I.e., SFA-FIFO creates at least one 𝜃 per server on
a tandem, possibly more in case of complex interference patterns
as to how flow paths overlap. Hence, for SFA-FIFO the number
of FIFO parameters to set is at least equal to |𝐹𝑥 |. As a server-by-
server analysis, the 𝜃𝑖 can be set in isolation as presented above,
in order to compute a locally optimal delay or output bound. For
a minimum delay bound, 𝜃 has to be chosen as 𝜃 = 𝑇 + 𝜎+𝜎foi

𝑅
. Re-

garding the output bound, [6], Corollary 6.2.2 (Burstiness Increase
due to FIFO, General Case) discusses the single server case and
shows that 𝜃 = 𝑇 + 𝜎

𝑅
results in the minimum output burstiness

for token-bucket constrained arrivals and rate-latency service. For
bounding the output of arrivals constained by (combinations of)
token-bucket(s) crossing a single constant rate server (𝛽𝑅,0), [12]
even provides a tight output bound that may improve the one above
without applying Theorem 3 at all. For this setting, [10] proves an
output bound equal to applying Theorem 3 and setting 𝜃 = 𝑇 + 𝜎

𝑅
.

However, the server-by-server proceeding of the analysis is in-
herently untight, as was first shown for SFA with Arbitrary Multi-
plexing (ARB MUX) [24], i.e., the SFA analysis whose result holds
for any multiplexing behavior. The property increasing bound ac-
curacy was named Pay Multiplexing Only Once (PMOO).

3.1.2 Least Upper Delay Bound (LUDB) [2]. [13, 14] propose a left-
over service curve computation for entire tandems, i.e., end-to-end,
however the resulting delay bound was shown to not be the WCD
[20]. The improvement is achieved by applying the “convolution
before subtraction” scheme, i.e., neighboring servers with the same
crossflow interference are first convolved using Definition 4 before
the left-over service curve is computed with Theorem 3. This is pos-
sible for nested interference on tandems (short “nested tandems”).

Figure 2: Nested tandem.

Definition 5 (Nested Interference [3]). A tandem has nested
interference iff for every pair of flows either both flows do not have
common servers or the path of one flow is completely included in the
path of the other. More formally, if we denote the crossed servers of
a tandem by 1, . . . , 𝑁 then it is said to be nested iff there are no two
flows 𝑓1, 𝑓2 with Source(𝑓1) < Source(𝑓2) ≤ Dest(𝑓2) < Dest(𝑓1)
where the ordering relation S1 < S2 (S1 ≤ S2) on a tandem of
servers denotes that server S1 is a predecessor of S2 (or equal to it).
Source and Dest are the given flow’s source and destination server,
respectively.

For example, the network depicted in Figure 2 is a nested tandem
as all crossflows are included in foi and 𝑓2 is included in 𝑓3.

The resulting order of (min,plus)-operations can be visualized
in the according nesting tree, see Figure 3. A nesting tree [3] is a
convenient data structure that captures the hierarchies of nested
flows. Leaves of the tree correspond to the servers on a nested
tandem. The remaining nodes represent flows and the need to
derive a left-over service curve for that flow on its path. A flow-
node representing 𝑓2 is a child of flow-node representing 𝑓3 iff
the path of 𝑓2 is fully contained in the path of 𝑓3 and there is no
other flow whose path is fully contained in 𝑓3 and 𝑓2. A leaf-node
representing server S is a child of flow-node representing 𝑓1 iff 𝑓1
crosses S and there are no other flows crossing S whose paths are
fully contained in the path of 𝑓1.

Figure 3: Nesting tree of nested tandem Figure 2. The folded
out left-over service curve for the foi is of the form
(𝛽1 ⊖𝜃1 𝛼1) ⊗ ((𝛽2 ⊗ (𝛽3 ⊖𝜃2 𝛼2)) ⊖𝜃3 𝛼3).
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Table 1: Nomenclature on DNC and nesting tree analysis.

𝛼S
𝑓

Input arrival curve of 𝑓 at S

𝛽
l.o.,𝑝
𝑓

Left-over service curve for 𝑓 on path 𝑝

𝐹, 𝐹𝑥 Set of flows, set of crossflows
foi, 𝐹foi foi, set of flows of interest
𝑆 ({𝑓 , 𝐹 }) Set of servers flow 𝑓 crosses,

𝑆 (𝐹 ) = ⋃
𝑓 ∈𝐹

𝑆 (𝑓 )

Children(𝑖) Child flows/servers of flow 𝑖

in the nesting tree
Θ = (𝜃1, . . . , 𝜃 |𝐹𝑥 | ) Vector of 𝜃𝑖 values for each crossflow 𝑖

in the nesting tree
We may omit indices if they are clear from the context.

This sequential procedure of operations implements the PMOO
property on the involved servers and for the involved flows.

The Least Upper Delay Bound (LUDB) analysis derives this tree
to create Θ as well as the interdependencies between 𝜃𝑖 . I.e., LUDB
is not a monolithic analysis, it rather consists of multiple steps
towards derivation of delay bounds.

3.2 Dissecting LUDB-FF [22]
On a high level, LUDB-FF, the extension of LUDB for feedforward
networks (details are in [22]) proceeds as follows:
Step 1 Take the foi’s path as first tandem to analyze.
Step 2 Check for non-nested interference patterns, cut into nested

tandems if necessary (is always possible).
Step 3 Compute the bounds on crossflow arrivals to the nested

tandems by starting Step 1 with them as 𝐹foi.
Step 4 For each nested tandem, compute the nesting tree that en-

codes the “convolution before subtraction” scheme accord-
ing to the nesting of flows. This creates the interdependent
Θ(𝑖), their interdependency is defined by the nesting (see
Figure 3 for an example).

Step 5 Start the LUDB analysis for the nesting tree. The LUDB
produces a Piecewise Linear Programm (PLP).

Step 6 For each linear decomposition of the PLP, one LP will be
formulated and solved. The one with the minimal objective
value (representing the delay bound) is the LUDB.

Previous work on LUDB was focused on analyzing tandems,
i.e., Step 3 was not detailed nor optimized. All the steps have been
implemented in the NetworkCalculus.org Deterministic Network
Calculator (NCorg DNC) [5] according to [22] that provides ad-
vanced code for Step 3, resulting in LUDB-FF. An important aspect
of LUDB-FF is that it maximizes aggregation of flows. This reduces
|𝐹𝑥 | which, in turn, leads to less LPs to solve that will also have a
smaller number of constraints due to aggregation. Nonetheless, this
step can result in up to O(|𝐹𝑥 |!) LPs which have to be solved. Note,
that the authors of [3] give hints on how to reduce this number by
computing the left-over curves bottom up in the nesting tree while
already checking for infeasible constraints – such combinations
can be safely skipped.

LUDB is restricted to token-bucket arrival curves and rate-latency
service curves due to the conversion of Θ to the LP formulations in

Step 6. Unfortunately, there is no obvious way to generalize this step
to more complex curve shapes and LUDB-FF inherits the restriction.

Another advantage of the maximized aggregation is that it min-
imizes the potential sources of inaccuracies when setting the 𝜃s.
Results of the solver employed in Step 6 may not be optimal after
all. This was exemplified for the closed-source IBM ILOG CPLEX
Optimizer (CPLEX) in [23] and for open-source LpSolve in [15].
LUDB-FF makes use of CPLEX that is generally faster and more
reliable than LpSolve. Yet, inaccuracies may build up with every 𝜃 .

This last observation raises the central question of our work:
Given this set of steps and the potential, unavoidable and uncontrol-
lable inaccuracy in Step 6, can we achieve a better tradeoff between
delay bound accuracy and computational effort by replacing it with a
controllably inaccurate way to set Θ = (𝜃1, . . . , 𝜃 |𝐹𝑥 | )?

To that end, we have measured the share of CPLEX execution
time w.r.t. the overall LUDB-FF analysis runtime in the networks
presented in Section 5.1. Figure 4 shows the results. With only few
exceptions, the share is above 95% of the overall analysis computa-
tion runtime, with the only significant drop still remaining above
80%.

In this paper, we contribute a search-based analysis with a con-
trollable termination criterion to provide a significant reduction
of analysis runtimes while not compromising much on the bound
accuracy.
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Figure 4: The share of overall computation times for solving
the LPs generated within the LUDB-FF analysis.

3.3 Holistic Network Optimization [7, 9]
A tight analysis computing a flow’s WCD in FIFO feedforward
networks was recently proposed in [9]. It does not use (min,plus)
algebra, instead it transforms the entire feedforward network as
modeled by NC into a MILP formulation, with the objective set to
computing the foi WCD. We call this analysis Feedforward Mixed-
Integer Linear Programming Analysis (FF-MILPA). It does not fol-
low the above steps and notably, it is therefore not taking Step 4
where the free 𝜃 parameters are created in LUDB-FF. However,
this comes at a high price: the MILP grows exponentially with the
number of servers as it has to consider all flows dependencies –
dependencies we consider in Step 5 above but for the entire network.
In practice, solving the FF-MILPA is only feasible for relatively small
networks – which comes at no surprise as solving the LUDB-FF’s
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LPs is already very demanding (see Figure 4). Still, an LP heuristic
was proposed for FF-MILPA, we call it Feedforward Linear Program-
ming Analysis (FF-LPA). This heuristic computes an upper bound
on the actual WCD, by a single LP. FF-LPA remains exponential in
size, yet, we will include results we could compute in our numerical
evaluation.

For a further improved tradeoff between accuracy and computa-
tional cost, the very recent work in [7] takes two steps: a) removing
some LP constraints and b) adding new that were computed with
(min,plus)-algebraic server-by-server analyses.

4 FINDING FIFO PARAMETERS (𝜃1, . . . , 𝜃 |𝐹𝑥 |)
We have seen that Step 6 in the LUDB-FF procedure is a major
contributor to the computational cost. Naturally, we want to tackle
Step 5 and Step 6 to improve upon this aspect. In order to devise an
appropriate alternative, we first have a closer look at the challenge
of finding good values for Θ = (𝜃1, . . . , 𝜃 |𝐹𝑥 | ) introduced in Step 4.

Figure 5 depicts the influence of the setting of (𝜃1, 𝜃2) on an foi’s
delay bound w.r.t. the depicted network. We can observe that the
problem space has a convex structure which is in favor of local
optimization techniques such as directed search, the following main
new analysis of our paper (DS-FF).

Remember that the nesting tree allows to easily identify the
order in which to proceed the LUDB-FF analysis by going upwards
in the tree and computing the left-over service for a flow-node
based on the left-over service of its child-nodes and then storing it
in the respective node. For example, Figure 3 depicts the nesting
tree of the network Figure 2. Note that the approach creates a
parameter 𝜃 per application of the FIFO left-over service curve
computation Theorem 3. Hence, for a tandem with |𝐹𝑥 | crossflows
with pairwise distinct paths, we have |𝐹𝑥 | many FIFO parameters
to set. Crossflows with equal paths are aggregated. The values of
these variables affect the computed performance bound, delay or
output. We are searching for the “best” setting of these parameters
w.r.t. the foi delay bound in a feedforward network. This (directed)
search will improve upon a greedy algorithm’s (initial) solution.

Table 2: Overview on the LB-FF and DS-FF nomenclature.

𝜃 𝑓 (𝛽 l.o.𝑓
, 𝛼 𝑓 ) Lower bound on 𝜃 w.r.t.

service curve 𝛽 l.o.
𝑓

and arrival curve 𝛼 𝑓
ΘLB-FF = (𝜃LB-FF1 , . . . , 𝜃LB-FF|𝐹𝑥 | ), i.e., the vector of 𝜃𝑖 values

derived by the LB-FF analysis
𝜃𝑖 (ΘLB-FF) Upper bound on 𝜃𝑖 w.r.t. the Exploratory Phase

of DS-FF if all the crossflows 𝐹𝑥 ∋ 𝑗 ≠ 𝑖 are
set to 𝜃LB-FF

𝑗

𝜖 Termination criterion of the DS-FF analysis
𝑠𝑝𝑖 Step size of flow 𝑓𝑖 in the DS-FF analysis
𝑐 Parameter for the initial step size of all flows

in the DS-FF analysis
𝜉 Factor by which all step sizes get decreased

if the Exploratory Phase of DS-FF analysis
does not find a better delay bound

We may omit indices if they are clear from the context.

Algorithm 1 LB-FF computation on a nested tandem

Input 𝑖 (Flow)-node of nesting tree
Output 𝛽 l.o. left-over service curve for flow 𝑖

1: procedure compute-LB-LeftOverService(𝑖)
2: 𝛽 l.o. ← 𝛿0
3: ∀𝑐 ∈ Children(𝑖)\𝐹𝑥 :
4: 𝛽 l.o. ← 𝛽 l.o. ⊗ 𝛽𝑐
5: ∀𝑐 ∈ Children(𝑖) ∩ 𝐹𝑥 :
6: 𝛽 l.o.𝑐 ← compute-LB-LeftOverService(𝑐)
7: 𝜃𝑐 ← 𝜃 (𝛽 l.o.𝑐 , 𝛼𝑐 )
8: 𝛽 l.o. (𝑡) ← 𝛽 l.o. (𝑡) ⊗ ([𝛽 l.o.𝑐 (𝑡) − 𝛼𝑐 (𝑡 − 𝜃𝑐 )]↑ · 1{𝑡>𝜃𝑐 } )
9: return 𝛽 l.o.

4.1 Lower 𝜃-Bound for Feedforward Analysis
Before presenting the greedy algorithm LB-FF we define a lower
bound on the FIFO parameter 𝜃 (Theorem 3) which our proposed
analyses heavily built upon.

Definition 6 (Lower bound on 𝜃 ). Given an arrival curve 𝛼 𝑓 :=
𝛾𝜌,𝜎 and left-over service curve 𝛽 l.o.

𝑓
, we define𝜃 𝑓 (𝛽 l.o.𝑓

, 𝛼 𝑓 ) := inf{𝑡 ≥
0 : 𝛽 l.o.

𝑓
(𝑡) ≥ 𝜎}. Note that 𝜃 𝑓 (𝛽 l.o.𝑓

, 𝛼 𝑓 ) = ℎ𝐷𝑒𝑣 (𝛼 𝑓 , 𝛽 l.o.𝑓
).

An explanation why a lower value for 𝜃 is not beneficial can be
found at the end of Section 2. Note that the setting of 𝜃 is equal to
the approach of [13] – but only in case of nested tandems. Last, note
that the resulting left-over service curve is a rate-latency curve (see
Figure 1).

Next, we present LB-FF that is based on locally choosing a 𝜃𝑖 that
matches Definition 6. More precisely, Algorithm 1 iteratively applies
Definition 6 whenever a 𝜃𝑖 has to be chosen in the nesting tree
which is traversed bottom-up. As an example take the network in
Figure 2 and its nesting tree Figure 3 depicting the interdependency
between the 𝜃𝑖 ’s. Applying Definition 6 throughout the nesting
tree, we get Θ = (𝜃1, 𝜃2, 𝜃3),

𝜃1 = 𝑇1 +
𝜎1
𝑅1

(4) 𝜃2 = 𝑇3 +
𝜎2
𝑅3

(5)

𝜃3 = 𝑇2 + 𝜃2 +
𝜎3

min{𝑅2, 𝑅3 − 𝜌2}
= 𝑇2 +𝑇3 +

𝜎2
𝑅3
+ 𝜎3
min{𝑅2, 𝑅3 − 𝜌2}

(6)

which results in the following left-over service curve for the foi:

𝛽 l.o.foi = 𝛽min{𝑅1−𝜌1,𝑅2−𝜌3,𝑅3−𝜌2−𝜌3 },

𝑇1+𝑇2+𝑇3+ 𝜎1𝑅1 +
𝜎2
𝑅3
+ 𝜎3
min{𝑅2,𝑅3−𝜌2}

(7)

Although this greedy setting is not alwaysminimizing delay bounds,
computed bounds are valid such that LB-FF can be used as a stan-
dalone analysis. The benefit compared to LUDB-FF is the reduced
runtime since the Θ is not optimized, at the cost of higher but still
reasonable delay bounds (see our evaluation in Section 5). For im-
proved delay bounds, we use the LB-FF-derived Θ setting as the
starting point of our directed search.
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foi

f1f2

1 2 3

Figure 5: A tandem with two crossflows for illustration of the problem’s shape (left) and its nesting tree visualizing the left-over
service curve’s computation with its interdependency between the two free parameters, Θ = (𝜃1, 𝜃2) (middle). For each choice of
Θ = (𝜃1, 𝜃2), the delay bound ℎ𝐷𝑒𝑣 (𝛼foi, 𝛽l.o.foi ) gives one grid point in the plot (right).

4.2 Directed 𝜃-Search for Feedforward Analysis
The directed search, also known as Hooke and Jeeves, is a well-
known and understood local search method. Unfortunately, it may
find its solution in the nearest local minimum [21] instead of the
flobal minimum. Proving that the problem to set the (𝜃1, . . . , 𝜃 |𝐹𝑥 | )
for any nesting tree is indeed convex, is out of scope of our work.
Our later numerical observation does, however, show that our ap-
proach to start from an LB-FF-derived setting results in a resilient
DS-FF analysis.

The basic idea of our search scheme is: given an initial combi-
nation of the variables, search steps will 1) move each variable,
one at a time, according to a variable-specific step size and 2) save
the best result, to 3) combine the moves of all the variables. The
search continues in the “combined” direction until no significant
progress is made anymore. Then, the step size of each variable gets
decreased. Termination is triggered when at least one variable’s
step size becomes smaller than a pre-defined threshold 𝜖 ∈ R+. In
the following we show our adaptation of this local search in the
context of the NC FIFO analysis, abbreviated as DS-FF.

Algorithm 2 depicts how to obtain the left-over service curve
for the foi: given a setting for the FIFO parameter per crossflow
on a tandem by going through the nesting tree and computing
the left-over service curves. In essence, it works very similar to
Algorithm 1 but with a flexible parameter combination in contrast
to the fixed setting for 𝜃 based on Definition 6.

The actual search is presented in Algorithm 3. First, a base com-
bination of 𝜃s and its respective delay bound has to be found and
provided. We use here the combination derived by LB-FF denoted
by ΘLB-FF := (𝜃LB-FF1 , . . . , 𝜃LB-FF|𝐹𝑥 | ). Moreover, the (initial) step sizes
denoted by 𝑠𝑝𝑖 (for crossflow 𝑓𝑖 ) have to be chosen. To incorporate
the nesting hierarchy of crossflows for reasonable starting step
sizes, we choose the following setting:

𝑠𝑝𝑖 =
𝜃𝑖 (ΘLB-FF) − 𝜃LB-FF

𝑖

𝑐 − 1 (8)

with 𝑐 ∈ N+≥2. For 𝜃𝑖 (Θ
LB-FF) we differentiate between two nesting

scenarios:

Algorithm 2 Left-over service computation on a nested tandem
given a parameter combination

Input 𝑖,Θ (Flow)-node of nesting tree, parameter combination
Output 𝛽 l.o. left-over service curve for flow 𝑖

1: procedure computeLeftOverService(𝑖,Θ)
2: 𝛽 l.o. ← 𝛿0
3: ∀𝑐 ∈ Children(𝑖)\𝐹𝑥 :
4: 𝛽 l.o. ← 𝛽 l.o. ⊗ 𝛽𝑐
5: ∀𝑐 ∈ Children(𝑖) ∩ 𝐹𝑥 :
6: 𝛽 l.o.𝑐 ← computeLeftOverService(𝑐,Θ)
7: 𝜃𝑐 ← Θ(𝑐)
8: 𝛽 l.o. (𝑡) ← 𝛽 l.o. (𝑡) ⊗ ([𝛽 l.o.𝑐 (𝑡) − 𝛼𝑐 (𝑡 − 𝜃𝑐 )]↑ · 1{𝑡>𝜃𝑐 } )
9: return 𝛽 l.o.

i) 𝑓𝑖 ∈ Children(foi)

𝜃𝑖 (ΘLB-FF) := 𝑑LB-FF −
∑︁

𝑘∈𝑆 (foi)\𝑆 (Children(foi) )
𝑇𝑘

−
∑︁

𝑓𝑖≠𝑓𝑘 ∈Children(foi)
𝜃LB-FF
𝑘

ii) 𝑓𝑖 ∉ Children(foi). Let 𝑓𝑝 ∈ 𝐹𝑥 s.t. 𝑓𝑖 ∈ Children(𝑓𝑝 ), then

𝜃𝑖 (ΘLB-FF) := 𝜃𝑝 (ΘLB-FF) −
∑︁

𝑘∈𝑆 (𝑓𝑝 )\𝑆 (Children(𝑓𝑝 ) )
𝑇𝑘

−
∑︁

𝑓𝑖≠𝑓𝑘 ∈Children(𝑓𝑝 )
𝜃LB-FF
𝑘

For example w.r.t. the network in Figure 2 we get

𝜃1 (ΘLB-FF) = 𝑑LB-FF − 𝜃LB-FF3
𝜃3 (ΘLB-FF) = 𝑑LB-FF − 𝜃LB-FF1

𝜃2 (ΘLB-FF) = 𝜃3 (ΘLB-FF) −𝑇2

Consider the combination ΘLB-FF and fix one crossflow 𝑓𝑖 , then
(𝜃LB-FF1 , . . . , 𝜃LB-FF

𝑖−1 , 𝜃𝑖 (ΘLB-FF), 𝜃LB-FF
𝑖+1 , . . . , 𝜃LB-FF|𝐹𝑥 | ) will result in a

worse delay bound. For the example above use Θ = (𝜃1 (ΘLB-FF),
𝜃LB-FF2 , 𝜃LB-FF3 ). Then one can show with Theorem 3 and Theo-
rem 2 that the left-over service curve for the foi has a latency
that is at least 𝜃1 (ΘLB-FF) + 𝜃LB-FF3 = 𝑑LB-FF − 𝜃LB-FF3 + 𝜃LB-FF3 =
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Algorithm 3 DS search algorithm on a nested tandem

Input Θ, 𝑑 parameter combination, delay bound (foi)
Output 𝛽 l.o. left-over service curve for foi
1: procedure DS(Θ, 𝑑)
2: 𝑑old ← 𝑑

3: Θold ← Θ
4: Θbest ← Θ
5: while min

𝑖=1,.., |𝐹𝑥 |
{𝑠𝑝𝑖 } ≥ 𝜖 do

6: (𝑑new,Θnew) ← FindBestNearby(Θold, 𝑑old)
7: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

8: while 𝑑new < 𝑑old do
9: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑡𝑟𝑢𝑒

10: Θbest ← Θnew

11: Θpot ← Θnew + (Θnew − Θold)
12: 𝑑old ← 𝑑new

13: Θold ← Θnew

14: 𝛽 l.o. ←computeLeftOverService(foi,Θpot)
15: 𝑑pot ← ℎ𝐷𝑒𝑣 (𝛼foi, 𝛽 l.o.)
16: if 𝑑pot < 𝑑new then
17: 𝑑new ← 𝑑pot

18: Θnew ← Θpot

19: if !𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 then
20: ∀𝑖 ∈ {1, . . . , |𝐹𝑥 |} : 𝑠𝑝𝑖 ← 𝑠𝑝𝑖 · 𝜉
21: 𝛽 l.o. ←computeLeftOverService(foi,Θbest)
22: return 𝛽 l.o.

𝑑LB-FF which is a Θ combination we can safely skip since it will
deliver a delay bound that won’t improve upon 𝑑LB-FF. Similarly,
one can show that neither Θ = (𝜃LB-FF1 , 𝜃2 (ΘLB-FF), 𝜃LB-FF3 ) nor
Θ = (𝜃LB-FF1 , 𝜃LB-FF2 , 𝜃3 (ΘLB-FF)) will result in an improved bound
upon 𝑑LB-FF. Hence, we start with the respective fraction.

The actual directed search consists of two phases: the Exploratory
Phase (Algorithm 4) and the Pattern Move Phase (Algorithm 3, lines
8 to 18). During the Exploratory Phase, it checks for each crossflow
𝑓𝑖 in isolation if a lower or higher setting of the variable 𝜃𝑖 w.r.t.
the current combination and step size yields a better delay bound.
If this is the case, the search continues into that direction in the
subsequent Pattern Move Phase. This second phase can be sped
up by using the Armijo line search [21], i.e., instead of testing for
Θstart +Δ,Θstart + 2 · Δ,Θstart + 3 · Δ, . . . with Δ = Θnew −Θold (see
line 11), it tests for Θstart + 20 · Δ,Θstart + 21 · Δ,Θstart + 22 · Δ, . . . .
We use Armijo line search in DS-FF. In the other case, i.e., if a better
delay bound is not found during the Exploratory Phase, then all
step sizes are decreased by 0 < 𝜉 < 1 (with 𝜉 ∈ R+). The search
terminates if the smallest step size (over all crossflows) becomes
smaller than a pre-defined threshold 𝜖 > 0 (with 𝜖 ∈ R+). This is
where we can tune the effort of the directed search: a smaller 𝜖
potentially yields a more accurate delay bound but will do so by
more search steps and thus larger computational costs.

Moreover, before trying a combination, i.e., before calling com-
puteLeftOverService(foi,Θ), it can be checked if any 𝜃 ∈ Θ vio-
lates the constraints 𝜃 ≥ 0 (has to hold, see Theorem 3) and 𝜃 < 𝑑

with 𝑑 being the lowest delay bound so far found by the search. It
can be shown that violating the latter bound automatically yields a

Algorithm 4 Exploratory Phase of the DS algorithm

Input Θ, 𝑑 parameter combination, delay bound (foi)
Output (𝑑,Θ) lowest delay bound in current environment,

respective parameter combination
1: procedure FindBestNearby(Θ, 𝑑)
2: Θnew ← Θ
3: 𝑑new ← 𝑑

4: for 𝑖 = 1 to |𝐹𝑥 | do
5: Θlow ← (𝜃new1 , . . . , 𝜃new

𝑖−1 , 𝜃
new
𝑖
− 𝑠𝑝𝑖 , 𝜃new𝑖+1 , . . . , 𝜃new|𝐹𝑥 | )

6: 𝛽 l.o. ←computeLeftOverService(foi,Θlow)
7: 𝑑 low ← ℎ𝐷𝑒𝑣 (𝛼foi, 𝛽 l.o.)
8: Θhigh ← (𝜃new1 , . . . , 𝜃new

𝑖−1 , 𝜃
new
𝑖
+ 𝑠𝑝𝑖 , 𝜃new𝑖+1 , . . . , 𝜃new|𝐹𝑥 | )

9: 𝛽 l.o. ←computeLeftOverService(foi,Θhigh)
10: 𝑑high ← ℎ𝐷𝑒𝑣 (𝛼foi, 𝛽 l.o.)
11: 𝑑min ← min{𝑑new, 𝑑 low, 𝑑high}
12: Update 𝑑new,Θnew according to 𝑑min

13: return (𝑑new,Θnew)

worse delay bound than 𝑑 . Additionally, to save computation cost
during computeLeftOverService, DS-FF works with one current
nesting tree in order to reuse the left-over service curves of flows
that are currently not influenced by a change of a certain parameter
setting of some crossflow. For brevity, we omit the details here.

Note that DS-FF shares the “-FF” suffix with LUDB-FF as it is
embedded into the same feedforward analysis presented in [22].
Regarding the effort of the presented algorithms, this means that
for a nested tandem both analyses will work with the same number
of 𝜃 ’s, i.e., |𝐹𝑥 |, which is minimal. For simplicity, consider a single
server with an foi and two crossflows. There are two alternatives
to compute the left-over service curve (1) consecutive application
of Theorem 3, removing the impact of crossflows in an arbitrary
order and (2) aggregate the crossflows first (Definition 4) and then
remove the impact of the crossflow aggregate. In theory, the left-
over service curve of either alternative results in the same bounds.
In practice, however, the consecutive application of Theorem 3
will introduce more free 𝜃 parameters, will increase the size of
Θ without any benefit. The effort of all analyses will grow with
the size of Θ, for DS-FF see the simultaneously considered free 𝜃
parameters in Algorithm 3. For more details about the aggregation
of crossflows in a feedforward analysis, we refer the reader to [22].

Example 1 (Execution of DS-FF Algorithms 3 and 4). As an
example we unroll the DS-FF algorithm for the network Figure 2.
That is, we compute ΘLB-FF (see end of Section 4.1). We use 𝑐 = 5
(as in our evaluation) to compute 𝑠𝑝𝑖 according to Equation (8)
for 𝑖 ∈ {1, 2, 3}. The call to DS(ΘLB-FF, 𝑑LB-FF) (Algorithm 3) then
proceeds as follows:
Exploratory Phase (Algorithm 4), 𝑖 = 1
• Compute delay bound 𝑑 low for

Θlow = (𝜃LB-FF1 − 𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 )
• Compute delay bound 𝑑high for

Θhigh = (𝜃LB-FF1 + 𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 )
• Assume 𝑑high < 𝑑new = 𝑑LB-FF < 𝑑 low

• Update 𝑑new = 𝑑high,Θnew = Θhigh
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Exploratory Phase (Algorithm 4), 𝑖 = 2
• Compute delay bound 𝑑 low for

Θlow = (𝜃LB-FF1 + 𝑠𝑝1, 𝜃LB-FF2 − 𝑠𝑝2, 𝜃LB-FF3 )
• Compute delay bound 𝑑high for

Θhigh = (𝜃LB-FF1 + 𝑠𝑝1, 𝜃LB-FF2 + 𝑠𝑝2, 𝜃LB-FF3 )
• Assume 𝑑new < 𝑑high < 𝑑 low (→ no update)

Exploratory Phase (Algorithm 4), 𝑖 = 3
• Compute delay bound 𝑑 low for

Θlow = (𝜃LB-FF1 + 𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 − 𝑠𝑝3)
• Compute delay bound 𝑑high for

Θhigh = (𝜃LB-FF1 + 𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 + 𝑠𝑝3)
• Assume 𝑑high < 𝑑new < 𝑑 low

• Update 𝑑new = 𝑑high,Θnew = Θhigh

Pattern Move Phase (Algorithm 3, lines 8 to 18)
• Θold = (𝜃LB-FF1 , 𝜃LB-FF2 , 𝜃LB-FF3 )
• Θnew = (𝜃LB-FF1 + 𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 + 𝑠𝑝3)
• Compute delay bound 𝑑pot for

Θpot = (𝜃LB-FF1 + 2 · 𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 + 2 · 𝑠𝑝3)
• Assume 𝑑pot < 𝑑new

• Update 𝑑new = 𝑑pot,Θnew = Θpot

• Compute delay bound 𝑑pot for
Θpot = (𝜃LB-FF1 + 3 · 𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 + 3 · 𝑠𝑝3)

– in case of Armijo line search
Θpot = (𝜃LB-FF1 +4 ·𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 +4 ·𝑠𝑝3)

• Assume 𝑑pot ≥ 𝑑new

Exploratory Phase (Algorithm 4), 𝑖 = 1, 2, 3
• Assume that the considered Θ combinations don’t improve
the delay bound

Decrease all stepsizes: 𝑠𝑝𝑖 = 𝑠𝑝𝑖 · 0.5 (𝜉 = 0.5 as in our evaluation)
Assume 𝑠𝑝1 < 𝜖 , then the DS algorithm terminates with the best
found service curve, i.e., the one computed with the Θ setting
(𝜃LB-FF1 + 2 · 𝑠𝑝1, 𝜃LB-FF2 , 𝜃LB-FF3 + 2 · 𝑠𝑝3)

A Note on Generalizability. As mentioned in Section 3.2, LUDB is
restricted to token-bucket arrival curves and rate-latency service
curves due to the conversion ofΘ to LP formulations. As we replace
this step in our search approaches, we can, in principle, general-
ize our analysis to more complex curve shapes such as stair-case
functions. This might, however, impact the shape of the problem.
E.g., its convexity might be lost due to local minima that hinder
the progress of DS-FF. In that case, it is also possible to add some
random additional move between LB-FF and DS-FF. Our improved
runtimes allow for multiple (re-)starts of DS-FF with different seeds
for the intermediate random step to reduce the impact of local
minima. The same approach was recently used in [17].

5 NUMERICAL EVALUATION
5.1 Network Generation for Evaluations
For numerical evaluation, we generate random feedforward net-
works following the Erdős-Rényi model. The process is as fol-
lows: First, we create a random undirected Erdős-Rényi graph,
G = 𝐺 (𝑛, 𝑝) with 𝑛 being the number of nodes, and 𝑝 the probabil-
ity that a random pair of nodes {𝑥,𝑦}, 𝑥 ≠ 𝑦 has an undirected edge
between them. We pick 𝑛 uniformly at random between 10 and 25

and set the probability 𝑝 = 0.1. Then we find the biggest compo-
nent in G, i.e., the component with the most number of nodes. If
there is more than one, we pick a random one among them. All
other components will be deleted from G. This will result in a (pos-
sibly reduced) connected undirected graph G{𝑐 } = (𝑉 {𝑐 } , 𝐸 {𝑐 } ).
For conversion to a feedforward NC network, we first run the full
turn prohibition algorithm [25] on G{𝑐 } which returns the set of
prohibited turns. Turns are pairs of edges {𝑎, 𝑏}, {𝑥,𝑦} ∈ 𝐸 {𝑐 } such
that 𝑏 equals 𝑥 . Next, we create another representation of G{𝑐 }
denoted by G{𝑐,𝑑,𝑓 } . As NC analyzes the behavior of (sequences
of) queueing locations, we encode them in G{𝑐,𝑑,𝑓 } . I.e., a node
in G{𝑐,𝑑,𝑓 } is created from the pair consisting of a node and its
outgoing edge, both from G{𝑐 } . The not prohibited turns of G{𝑐 }
will be the (directed) edges in G{𝑐,𝑑,𝑓 } . Hence, G{𝑐,𝑑,𝑓 } will then be
a directed graph (𝑑) which is free of cycles, i.e., satisfies the feedfor-
ward property (𝑓 ). Next, we add flows to G{𝑐,𝑑,𝑓 } in order to make
it the NC network to analyze. We consider all possible paths from
G{𝑐,𝑑,𝑓 } and pick randomly |Paths| · density many distinct paths
for density = 30%. For each selected path we create one flow.

Finally, as vertices in G{𝑐,𝑑,𝑓 } represent servers, we set service
curves for all elements in 𝑉 {𝑐,𝑑,𝑓 } , and arrival curves for all flows.
We strive for the ability to define the utilization at servers since
we want to study the effect of the FIFO property throughout dif-
ferent NC analyses that consider this property to different extents.
For the arrival curves, we set token-bucket constraints 𝛾𝜌,𝜎 with
burstiness 𝜎 = 1 and rate 𝜌 = 1. Service curves are created as
rate-latency curves 𝛽𝑅,𝑇 with latency 𝑇 = 0 and a rate 𝑅 according
to a uniformly at random selected utilization between 50% and 99%,
independently at each server. We selected latency 𝑇 = 0 since the
analyses we contribute in this paper make use of Definition 6, i.e.,
they consider the latency in the same way and we are not interested
in improvements relative to some 𝑇 > 0.

Overall, our dataset consists of 31 randomly created feedforward
networks with a total of 4479 flows. Table 3 gives an overview
over the most important properties of the created networks. The
full dataset is available online1. The distribution of network sizes,
measured in amount of flows, is included in the x-axes of Figures 4,
8 and 9.

Table 3: Statistics on the created dataset.

Property Min Max Median Mean
# of servers 6 72 36 35.29
# of flows 4 448 103 144.48

Path length of flows 1 11 4 4.10

5.2 Evaluation Setup
All considered analyses have been implemented in the NCorg DNC2:
LUDB-FF was released with v2.7.0 and our implementations of LB-
FF as well as DS-FF are part of v2.8.0. An implementation of FF-LPA
is publicly available separately3. For LUDB-FF and FF-LPA we make

1https://github.com/alexscheffler/dataset-rtns2022
2dnc.networkcalculus.org→ https://github.com/NetCal/DNC
3https://github.com/bocattelan/DiscoDNC-FIFO-Optimization-Extension v1.0.
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Figure 7: Comparison delay bounds w.r.t. LUDB-FF, average deviations and Cumulative Distribution Function.

use of the IBM CPLEX v20.1 solver that is generally faster than
the open-source LpSolve. The runtimes were measured on a server
with AMD Ryzen Threadripper PRO 3955WX CPU clocked at (max)
4.30 GHz, running Ubuntu 20.04.2 and OpenJDK 16 .

The NCorg DNC implementation of SFA-FIFO sets each server-
local 𝜃 to minimize the output bound (see example given in Sec-
tion 3.1.1). Note that all of these analyses make explicit use of the
FIFO multiplexing assumption. We already showed in [22] that
analyses which work for more general multiplexing strategies such
as the state-of-the-art analysis TMA which was designed for ARB
MUX, can be far off compared to LUDB-FF when it comes to delay
bounds, especially for high utilizations. Concerning DS-FF𝜖 , we
opted for 𝜖 ranging from 10−1 to 10−9 since our evaluation shows
that further decreasing 𝜖 only marginally reduces the delay bounds
and comes at the price of a much higher runtime, potentially even
higher than our main competitor LUDB-FF. Regarding the com-
putation of the initial step sizes of DS-FF𝜖 we selected 𝑐 = 5 (see
Equation (8) for the definition of step size) and for the parameter
𝜉 that determines by which factor the step sizes get decreased if
the Exploratory Phase is not able to find a better bound is set to
𝜉 = 0.5.

5.3 Comparison of Delay Bounds
First, we compare the bounds on flow delays derived by the different
analyses. As a metric, we define the relative delay bound of an
analysis A w.r.t. to some analysis B:

𝑑𝑒𝑙𝑎𝑦A,B =
𝑑𝑒𝑙𝑎𝑦analysis A−𝑑𝑒𝑙𝑎𝑦analysis B

𝑑𝑒𝑙𝑎𝑦analysis B

5.3.1 A comparison to SFA-FIFO. We start by a small comparison
of delay bounds against SFA-FIFO as analysis B. [22] already pre-
sented that in some corner cases, “modern” analyses that follow
the “convolution before subtraction” scheme (see Section 3.1.2) can
be inferior to SFA-FIFO.

I.e., the main analyses in this paper, analysis A ∈ {LUDB-FF, LB-
FF, DS-FF𝜖 }, may be beaten by SFA-FIFO. Figure 6 shows a sample
comparison for LUDB-FF, LB-FF and DS-FF10−1 .

These competing bounds are better than SFA-FIFO for almost
all flows our networks. This comes at no surprise as the “modern”
analyses aim at capturing the beneficial PMOO effect when the
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Figure 6: Relative Delay Bounds w.r.t. SFA-FIFO.

analyzed foi and its crossflows share multiple servers in sequence.
Still, LUDB-FF yields better delay bounds than SFA-FIFO for 99.84%
of the flows. The less precise LB-FF is better than SFA-FIFO for
95.71% of the flows. Delay bounds derived by any DS-FF variant
always are in between those of LB-FF and LUDB-FF, converging
to the latter with decreasing termination criterion 𝜖 . Interestingly,
even for the largest 𝜖 = 10−1 in our evaluation, we can see that the
delay bounds tend to be actually closer to LUDB-FF than to LB-FF –
namely, in 99.20% cases DS-FF10−1 beats SFA-FIFO.

In terms of the relative delay bound defined above, LUDB-FF can
be up to 2.07% worse than SFA-FIFO and LB-FF even up to 21.51%.
The search-based approach with the coarsest granularity, DS-FF10−1 ,
can be up to 7.14% worse than SFA-FIFO. On the other hand, we
can observe that LUDB-FF can deliver delay bounds which are up
to 66.43% better than SFA-FIFO. DS-FF10−1 (LB-FF) can similarly be
better than SFA-FIFO by up to 65.36% (65.07%).

It is possible to achieve delay bounds that are always as good
as all the above ones, while still applying the “convolution before
subtraction” scheme: decompose the tandem under analysis into
subtandems first, ranging from a single end-to-end one (as LUDB-FF,
LB-FF, DS-FF do) to individual server decomposition (as SFA-FIFO
does). Similar work has been done in the branch of NC without
considering the FIFO property [4]. An exhaustive enumeration of
subtandem decompositions is expensive such that the use Machine
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Learning predictions [16] is beneficial. However, preventing any
decompositions, even those inside LUDB-FF, LB-FF or DS-FF, was
recently shown to improve delay bounds considerably [18, 19] and
we strive for a combination with this approach in future work.

5.3.2 Comparing our new Analysis to LUDB-FF. Having confirmed
that SFA-FIFO is not competitive, we shift our attention to a com-
parison to LUDB-FF.

This first evaluation confirms our working hypothesis: It is gen-
erally more promising to compute delay bounds with an analysis
trying to achieve PMOO. For this very reason, we have investigated
LUDB-FF and aimed at a faster analysis alternative that can still de-
rive competitive bounds. To better present how far off our new anal-
yses LB-FF and DS-FF are from LUDB-FF, we continue with relative
bounds to the latter, i.e, 𝑑𝑒𝑙𝑎𝑦LB-FF,LUDB-FF and 𝑑𝑒𝑙𝑎𝑦DS-FF,LUDB-FF.
Figure 7 presents our observations for different sets of contenders.
First of all, we can validate that LB-FF and DS-FF never deliver
better bounds than LUDB-FF. Moreover, we can see that LB-FF
can deliver bounds which are up 40.21% off w.r.t. LUDB-FF while
DS-FF10−1 is already able to half this potential gap (20.29%). When
further lowering the termination criterion 𝜖 to 10−3, i.e., DS-FF10−3 ,
we can see that we are already getting quite close to LUDB-FF –
in fact, further lowering the 𝜖 only marginally improves the delay
bounds. The average relative delay of LB-FF is at 7.77%, the one of
DS-FF10−1 is 3.6% and for DS-FF𝜖 ≤ 10−4 not much gain is achieved
below 0.6% while converging to 0.45%.

5.3.3 A Note on Reproducibility. During repetitions of our evalua-
tions, we noted that DS-FF delay bounds were not entirely repro-
ducible although all employed methods behave deterministically.
We could pinpoint the cause to the following: The NCorg DNC
makes extensive use of sets and double precision floating point
numbers internally. Thus, the order of operations may differ be-
tween runs and we observed that the unavoidable rounding errors
differ, too. For small termination criteria in our DS-FF, these round-
ing errors could be decisive for termination. As a result of a contin-
ued search, the delay bounds computed with DS-FF in consecutive
repetitions could differ notably. At times even more than a multiple
of the small machine epsilon for double precision floating point
numbers. Even though FF-LPA and LUDB-FF suffer from similar

problems due to the employed solver (see Section 3.1.2), we were
able to reproduce their results between runs.

5.4 Comparison of Computation Runtimes
The second metric of interest for any NC analysis is the time it
takes to execute it, abbreviated with runtime. In our evaluation, we
focus on the runtime to analyze an entire network of a certain size,
i.e., the sum of all the runtimes for bounding an individual flow’s
end-to-end delay. Figure 8 depicts the runtime of each network size
in our dataset for each of the competing analyses. Note that the
methods LUDB-FF, DS-FF and LB-FF follow exactly the same steps
to apply their respective tandem analysis to a feedforward network
(see Section 3.2 for details). That means, these analyses aggregate
the same flows and compute arrival bounds at the same locations
in a feedforward network when they backtrack crossflows to their
sources. These three analyses therefore only differ in the respective
left-over service curve that, in turn, depends on their derived 𝜃

settings. In contrast, SFA-FIFO computes a left-over service curve
at each server in the network, making it less complex regarding
aggregation of crossflows.

First of all, we can observe (in this aggregate network runtime
view) that LUDB-FF takes the longest to compute all delay bounds.
Moreover, but not surprisingly, we have a clear ordering of runtimes
between DS-FF with different termination criteria 𝜖 . Recall that the
search terminates when at least one of the step sizes is lower than 𝜖 ,
so potentially more 𝜃 combinations will be tested with a decreasing
𝜖 . Furthermore, since DS-FF uses the 𝜃 setting provided by LB-FF as
starting point of its search, the latter’s runtimewill be a lower bound
on DS-FF analyses. LUDB-FF takes more time to solve than LB-FF
since LB-FF uses one specific 𝜃 -setting while LUDB-FF first has to
find the best one by solving several LPs. The comparison of LUDB-
FF and DS-FF can actually go in both directions, i.e., theoretically if
we set the termination criterion 𝜖 of the search very low, LUDB-FF
can be solved in less time than DS-FF. Figure 8 already indicates
that for the network with 279 flows DS-FF10−9 already gets close to
LUDB-FF by being only about 53% faster.

At this point, it is worthwhile to briefly refine our definition of
runtime to the per-flow computation times: Doing so, we observed
that only for the two lowest 𝜖 some of the runtimes were lower with
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LUDB-FF. More precisely, DS-FF10−7 was slower only for one flow
and w.r.t. DS-FF10−9 this number increased to 30 – although the
latter still only represents about 0.67% of the flows in our dataset.

We have seen previously that DS-FF10−3 provides delay bounds
which are close to LUDB-FF – losing at most 8.56% in delay bound
accuracy – while further decreasing 𝜖 only results in marginal
bound improvements. Regarding the runtime of the analyses, we
can now report that the median relative runtime runtimeLUDB-FF

runtimeother
of

DS-FF10−3 w.r.t. LUDB-FF is about 120. I.e., DS-FF10−3 is about two
orders of magnitude faster to compute bounds of almost the same
accuracy.

When it comes to the runtimes of SFA-FIFO and LB-FF, we can
observe from Figure 8 that the average runtime of LB-FF is twice as
high than SFA-FIFO. First note that both analyses set their respec-
tive 𝜃s in the same static way (instead of trying different values like
DS-FF) – however, they differ in the amount of 𝜃s to set. The trend
that LB-FF takes longer than SFA-FIFO is especially predominant in
larger networks where LB-FF follows the more complex procedure
to dynamically derive subtandems, cut locations and crossflows
aggregates, all based on how they interleave on the tandem under
analysis while SFA-FIFO statically follows the principle to remove
crosstraffic arrival at each server. In smaller networks (not shown),
however, SFA-FIFO can be slower than LB-FF since the latter does
not necessarily experience long non-nested tandems during the
analysis (if at all) and thus has to compute less arrival bounds.
Note that DS-FF and LUDB-FF yield worse runtimes than SFA-FIFO
throughout all networks – the “additional” search or optimization
negates the benefit of potentially computing less arrival bounds (in
small networks) than SFA-FIFO.

5.5 Comparison to FF-LPA
Since the perfect optimization approach, namely FF-LPA and FF-
MILPA, has scalability issues as it has to deal with an exponential
number of variables and constraints, it was only possible to compute
results for a subset of our set of networks: we were able to analyze
21 of our 31 networks in reasonable time. Figure 8 depicts the total
runtime to analyze specific networks of our subset. We can observe
that DS-FF10−3 is faster than FF-LPA for almost all networks. On
the other hand, FF-LPA can be faster than LUDB-FF for smaller
networks while the tables turn for larger network sizes. In particular,
for the biggest network in our subset, FF-LPA needs more than 176
times as long as LUDB-FF does and for the next bigger network
FF-LPA gets unpredictably “stuck” for one of the first flows we
analyzed and still does not deliver a result after letting it run longer
than LUDB-FF needed to analyze all of our networks.

Concerning delay bounds it must be noted that FF-LPA deliv-
ered delay bounds that were either the same or often times lower
compared to LUDB-FF. To show the biggest extent to which this is
true, we depict in Figure 9 the largest delay bound per network size.
Although FF-LPA does not always compute the WCD as FF-MILPA
does, this can be explained as follows: the algebraic feedforward
analysis LUDB-FF always has to (recursively) bound crossflows at
interfering servers which leads to more pessimistic delay bounds
for the foi. However, the results of [18, 19] are promising in the
sense that they may be able to close the gap we show here. All in
all, FF-LPA is not suitable for the analysis of large-scale networks
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which is the aim of this paper since it suffers from the fact that
for a certain network size it becomes unpredictable when FF-LPA
will return a bound due to the exponentially-sized optimization
problem.

6 CONCLUSION
In this paper we have presented novel First-In First-Out (FIFO)-
aware analysis techniques for computing delay bounds in feedfor-
ward networks. Lower 𝜃 -Bound for Feedforward Analysis (LB-FF)
is the technique that sets all FIFO parameters to a certain value
in a static way, while Directed 𝜃 -Search for Feedforward Analysis
(DS-FF) does so after considering different settings whose termi-
nation criterion can be set in a flexible way. Although the delay
bounds of LB-FF and DS-FF are less accurate than the existing Least
Upper Delay Bound (LUDB) for Feedforward Networks (LUDB-FF)
and the optimization-based method Feedforward Linear Program-
ming Analysis (FF-LPA), we provide a significant improvement in
computation runtimes. The search-based method DS-FF10−3 , DS-FF
with termination criterion 10−3 as the minimum change of FIFO
parameters 𝜃𝑖 in a search step, is on average 120 times faster than
LUDB-FF while delivering delay bounds that are worse by only
0.57% on average and maximally 8.56%. Moreover, LUDB-FF only
works with specific types of arrival and service curves, namely
token-bucket and rate-latency curves while our proposed methods
can be applied to network models with more curves, e.g., stair-
case functions commonly used for modeling periodic, packetized
arrivals.

Last, also other work on improving the DNC method as well as
applying it may easily benefit from a tailored directed search as we
present it. E.g., the aforementioned work on the Flow Prolongation
(FP) feature in DNC could be solvedwith a search instead of a Neural
Network [18, 19]. [1] employs a Genetic Algorithm for priority
assignment of the connections in an Ethernet-based avionics system
(ARINC 664) standard, DNC serves as the fitness function.
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ERRATA
Erratum 1: 2022-12-24
Fixed unit in Figure 8, left side, to report seconds instead of minutes
so the times sum up to the right side’s total runtimes per network
size.
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