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1. Introduction

Non-overlapping domain decomposition methods are well-established and efficient al-
gorithms for the solution of the large algebraic systems arising from finite element of
finite difference discretizations of elliptic partial differential equations. They are well
adapted to modern parallel computer architectures since they split the original prob-
lem into independent problems on the subdomains, which can be solved completely
in parallel, and a lower dimensional problem on the interface of the subdomains. The
latter usually is solved by some preconditioned conjugate gradient algorithm (cf e.g.
[1, 2, 3, 7]). The evaluation of the operator associated with the interface problem and
of the preconditioner typically involves some kind of ”harmonic” extension of data
given on the interface to the whole domain. This extension amounts in the solution
- separate on each subdomain - of a problem similar to the original one. Thus the
main task of the algorithm consists in solving independent problems on the subdo-
mains. This is usually done only approximately. The approximate solution of these
subproblems of course corresponds to a perturbation of the original algorithm and
influences its convergence speed. It is the aim of this paper to estimate the effects of
this perturbation.

We achieve our goal by interpreting the domain decomposition method as a
multiplicative subspace correction algorithm in the framework of Xu [8]. The domain
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decomposition method with an exact solution of the problems on the subdomains
then corresponds to an orthogonal splitting of the function space, which is associated
with the underlying variational problem, into a subspace, which consists of functions
vanishing on the interface, and its complement the elements of which are completely
determined by their values on the interface. The inexact solution of the subprob-
lems only affects the second component of this splitting. The orthogonality is thus
destroyed. The angle between the new subspaces, however, can be controlled by the
error which is admitted in the solution of the subproblems. Moreover, the functions
in the second component of the resulting splitting are still completely determined by
their values on the interface. The splitting of the function space introduces a decom-
position of the differential operator. One component corresponds to the subspace of
functions vanishing on the interface, the other one to the complementary subspace.
Thus the first component is not affected by an inexact solution of the subproblems.
The second one on the other hand is canonically associated with a Poincaré-Steklov
operator acting on a suitable trace space on the interface. This operator is affected by
an inexact solution of the subproblems. Its perturbation can completely be controlled
by the error which is commited in the solution of the subproblems. Therefore, any
good preconditioner for the problem corresponding to the ideal splitting will still be
a reasonable preconditioner for the perturbed one. Moreover, its condition number
can be controlled by the accuracy invested into the solution of the subproblems.

In order to clarify our point of view we consider in section 2 the Poisson equation
as a simple model problem and interprete the corresponding non-overlapping domain
decomposition as an alternating projection method. In order to be independent of
a particular discretization and to highlight the essential points, we do this within
the infinite dimensional variational setting. In section 3 we shortly review the mul-
tiplicative subspace correction method of Xu [8]. Its convergence behaviour can be
completely described by four quantities. Two of them are related to the angle between
the subspaces and are therefore directly influenced by a perturbation of the splitting.
The other two are related to the preconditioning of the operators and are therefore
only indirectly influenced by a perturbation of the splitting. In section 4, which is
the central part of this paper, we give an abstract perturbation result which is in-
spired by the example of section 2 and which gives control of the relevant quantities
of section 3. In section 5 we apply the abstract results to two concrete examples: the
finite element discretization of the Poisson equation and certain mixed finite element
discretizations of the Stokes equations. The first example immediately carries over to
all those scalar linear elliptic equations of second order which are the Euler-Lagrange
equations of a convex quadratic functional on an affine subspace of H1(Ω).
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2. Non-Overlapping Domain Decomposition Methods

In order to motivate the point of view of the following analysis, consider the simple
model problem

−∆u = f inΩ

u = 0 on Γ.
(2.1)

Here, Ω ⊂ IRd, d ≥ 2, is an open, bounded, and connected domain with Lipschitz
boundary Γ. Problem (2.1) is interpreted in the usual weak sense.

Split Ω into N ≥ 2 pairwise disjoint open, bounded, and connected subdomains
Ωi, 1 ≤ i ≤ N , each having a Lipschitz boundary such that

Ω̄ =
⋃

1≤i≤N

Ω̄i.

Set
ω :=

⋃
1≤i≤N

Ωi , Σ := Ω\ω.

Σ is the interface of the subdomains. To simplify the exposition, we consider in this
section only the analytical problem and postpone its finite element discretization to
the following sections. Consequently we will work with H1(Ω)-functions. Since these
do not admit well-defined point values, we will assume that Σ is the disjoint union
of smooth hyperplanes (see Fig. 1). In the following sections, which deal with finite
element spaces, we may allow for the general situation where Σ may have cross-points
(see Fig. 2).

Fig. 1: Decomposition into 4 subdomains without cross-points

Fig. 2: Decomposition into 4 subdomains with cross-points

4



Let n be a unit normal to Σ. For a given function v having suitable regularity
properties denote by J(v) the jump of v across Σ in the direction n.

It is well-known (cf. e.g. [4; §I.4]) that u is a weak solution of (2.1) if and only if
its trace ϕ on Σ solves

Tϕ = g. (2.2)

Here, g is given by
g := −J(∂nuω)

and uω is the unique weak solution of

−∆uω = f inω

uω = 0 on ∂ω.
(2.3)

Note, that (2.3) consists of N independent Poisson equations with homogeneous
Dirichlet boundary conditions on the subdomains Ωi, 1 ≤ i ≤ N . The Poincaré-
Steklov operator T is given by

Tϕ := J(∂n(Eϕ))

where Eϕ denotes the harmonic extension of ϕ. Eϕ is the unique weak solution of

−∆(Eϕ) = 0 inω

Eϕ = 0 on Γ

Eϕ = ϕ onΣ.

(2.4)

Note, that (2.4) consists of N independent Poisson equations in the subdomains Ωi,
1 ≤ i ≤ N , with non-homogeneous Dirichlet boundary conditions on the interface Σ.

A non-overlapping domain decomposition method for (2.1) now consists of the
following steps:
(1) Solve (2.3) and compute g.
(2) Solve (2.2).
(3) Compute Eϕ by solving (2.4).
(4) Set u := uω + Eϕ .

In pratice this algorithm is of course performed on the discrete level, i.e. prob-
lems (2.1)–(2.4) must be replaced by corresponding finite element or finite difference
approximations. Having in mind this discrete realization, the main difficulty of the
above algorithm lies in the solution of (the discrete counterparts of) problems (2.2)–
(2.4). In practice this will be done only approximately, often using an iterative solver.
In order to better unterstand the influence of the errors which are introduced by the
approximate solution of (2.2)–(2.4), we will interprete the above algorithm as an
alternating projection method.
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To this end, set

V := H1
0 (Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)d, v = 0onΓ}

and
V1 := H1

0 (ω) := {v ∈ V : v = 0onΣ}.

Note that
V1 =

⊕
1≤i≤N

H1
0 (Ωi)

where the decomposition is orthogonal with respect to the standard H1-scalar prod-
uct. Let V2 be the orthogonal complement of V1 in V with respect to the H1-scalar
product. Obviously, step (1) above is equivalent to projecting the solution u of (2.1)
onto V1.

We claim that steps (2) and (3) are equivalent to projecting u onto V2. To see
this, note that thanks to our conditions on Σ the trace operator is an isomorphism
of V onto W := H

1/2
00 (Σ). Here, H1/2

00 (Σ) is the interpolation space halfway between
H1

0 (Σ) and L2(Σ) and consists of all functions in H1/2(Σ) which have an appropriate
decay close to ∂Σ [5; p. 66]. Let ϕ be the solution of (2.2) and consider an arbitrary
ψ ∈ H1/2

00 (Σ). We then have∫
Ω

∇(Eϕ)∇(Eψ) =
N∑

i=1

∫
Ωi

∇(Eϕ)∇(Eψ)

=
N∑

i=1

{−
∫

Ωi

∆(Eϕ)Eψ +
∫

∂Ωi

∂n(Eϕ)Eψ}

=
∫

Σ

J(∂nEϕ)ψ

=
∫

Σ

(Tϕ)ψ

and ∫
Ω

∇u∇(Eψ) =
∫

Ω

fEψ

=
N∑

i=1

∫
Ωi

(−∆uω)Eψ

=
N∑

i=1

{−
∫

Ωi

uω∆(Eψ)−
∫

∂Ωi

∂nuωEψ +
∫

∂Ωi

uω∂n(Eψ)}

=
∫

Σ

J(∂nuω)ψ

=
∫

Σ

gψ.
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This proves the claimed equivalence. (The above calculation - as it stands - makes
sense only for sufficiently smooth functions. All steps, however, can correctly be
interpreted in the sense of traces and duality pairings.)

The interpretation of the non-overlapping domain decomposition algorithm as
an alternating projection method clearly shows the effects of an approximate solution
of problems (2.2)–(2.4). An approximate solution of (2.4) corresponds to a perturba-
tion of E and thus of T and of V2. In particular this perturbation will destroy the
orthogonality of V1 and V2. However, if the perturbation of E is sufficiently small,
the perturbed space V2 will be nearly orthogonal to V1. Moreover, any good pre-
conditioner for T will still be a reasonable preconditioner for the perturbation of T .
An approximate solution of (2.3), on the other hand, does not influence the decom-
position of V and may be viewed as a preconditioning of the differential operator
restricted to V1.

3. Multiplicative Subspace Correction Methods

Let V be a finite dimensional Hilbert-space with scalar product (.,.). In practice,
(.,.) will correspond to the L2-scalar product or an equivalent one which may e.g. be
obtained by mass-lumping. On V we consider a symmetric, positive definite operator
A. A introduces the energy norm

‖u‖1 := (Au, u)1/2 ∀u ∈ V.

Given f ∈ V we want to solve the problem

Au = f. (3.1)

Let V1, V2 be two subspaces of V such that V = V1 +V2, i.e., to each v ∈ V there
exists at least one pair (v1, v2) ∈ V1×V2 such that v = v1+v2. Denote by Qi : V → Vi,
i = 1, 2, the projection of V onto Vi with respect to (., .). Ai : Vi → Vi, i = 1, 2, is the
restriction of A on Vi defined by

(Aiu, v) := (Au, v) ∀u, v ∈ Vi, i = 1, 2.

Note, that A1, A2 are symmetric, positive definite operators on V1 and V2. Finally,
denote by Ri : Vi → Vi, i = 1, 2, symmetric, positive definite operators which approx-
imate A−1

i . The multiplicative subspace correction algorithm is then given by:
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3.1 Algorithm. Given u0 ∈ V . For n = 0, 1, ... and i = 1, 2 compute

un+i/2 := un+(i−1)/2 +RiQi(f −Aun+(i−1)/2).

3.2 Remark. Usually Algorithm 3.1 is formulated with more than two subspaces.
For our purposes, however, the above formulation is more practical. In the application
to non-overlapping domain decomposition methods, the space V1 further splits into
orthogonal subspaces. This splitting of V1, however, is not affected by the perturbation
argument which will only influence the space V2.

The convergence analysis of Algorithm 3.1 involves four quantities λ, Λ, K0, and
K1 which we will now explain. Set

λ := min
i=1,2

λmin(RiAi) and Λ := max
i=1,2

λmax(RiAi). (3.2)

Without less of generality we may assume that R1, R2 are scaled such that

0 < λ ≤ Λ < 2

holds. Note, that Ri = A−1
i , i = 1, 2, if and only if λ = Λ = 1.

Since the mapping

(v1, v2) ∈ V1 × V2 −→ v1 + v2 ∈ V

is surjective, the open mapping theorem implies that there is a constant K0 with the
following property: for each u ∈ V there exist vi ∈ Vi, i = 1, 2, such that

u = v1 + v2 and {
2∑

i=1

‖vi‖21}1/2 ≤ K0‖u‖1. (3.3)

The Cauchy-Schwarz inequality on the other hand implies that there is a constant
K1 such that

∑
1≤i,j≤2

(Avi, wj) ≤ K1{
2∑

i=1

‖vi‖21}1/2{
2∑

j=1

‖wj‖21}1/2 (3.4)

holds for all vi, wi ∈ Vi, i = 1, 2. A trivial estimate of course is K1 ≤ 2.
Note that K0 = K1 = 1 if V1 and V2 are A-orthogonal.

The following convergence result is proven in [7; Thm. 4.4].
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3.3 Theorem. Let u be the solution of (3.1). The iterates of Algorithm 3.1 satisfy

‖u− un+1‖21 ≤
[
1− (

2
Λ
− 1)(

λ

ΛK0K1
)2

]
‖u− un‖21 ∀n ≥ 0. (3.5)

3.4 Remark. Xu [7; Thm. 4.4] gives a stronger estimate for the convergence rate
of Algorithm 3.1 than the one of Theorem 3.3. Estimate (3.5), however, is better
suited for our purposes, since it clearly separates the effects of the splitting, which
are expressed by K0 and K1, and of the preconditioning by R1 and R2, which are
measured by λ and Λ.

4. An Abstract Setting

We retain the notations of the previous section. Now, we will consider particular
splittings V = V1 +V2. To this end let W be another finite dimensional Hilbert-space
with scalar product < ., . >. We assume that V and W are coupled by a continuous
and surjective trace operator γ : V →W . Within the framework of the introductory
example V and W correspond to finite dimensional approximations of H1

0 (Ω) and
H

1/2
00 (Σ). γ is the standard trace operator which associates with a function defined

on Ω its restriction to Σ.

Set
U1 := ker(γ) = {v ∈ V : γ(v) = 0}

and
U2 := U⊥A

1 = {v ∈ V : (Av,w) = 0 ∀w ∈ U1}.

Denote by E : W → V the maximal right inverse of γ which is defined by

Eϕ = argmin
v∈γ−1(ϕ)

‖v‖21 ∀ϕ ∈W.

Another characterization of Eϕ, ϕ ∈W , is given by

γ(Eϕ) = ϕ and (A(Eϕ), v) = 0 ∀v ∈ U1. (4.1)

Within the framework of the introductory example E corresponds to the harmonic
extension of functions on Σ.

The characterization (4.1) implies

U2 = E(W ).
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Thus, we have K0 = K1 = 1 when using the splitting Vi = Ui, i = 1, 2.

In practice, the action Eϕ is evaluated only approximately. We take this into
account, by considering an approximation Eε : W → V of E which satisfies for all
ϕ ∈W

‖Eϕ− Eεϕ‖1 ≤ ε‖Eϕ‖1 and γ(Eεϕ) = ϕ. (4.2)

Here, 0 < ε < 1
3 is arbitrary but fixed. In practice, Eεϕ will often be the result of an

iterative process applied to the linear system (4.1) with starting value 0 (see section
5). Now, we set

V1 := U1 , V2 := Eε(W ). (4.3)

The following theorem shows the influence of the replacement of E(W ) by Eε(W ) on
the constants K0 and K1.

4.1 Theorem. The splitting (4.3) fulfills equations (3.3) and (3.4) with

K0 ≤
√

1− ε

1− 2ε

and

K1 ≤
1

1− ε
.

Proof. We first note that inequality (4.2) implies for all ϕ ∈W

|‖Eϕ‖1 − ‖Eεϕ‖1| ≤ ε‖Eϕ‖1

and thus

(1− ε)‖Eϕ‖1 ≤ ‖Eεϕ‖1 ≤ (1 + ε)‖Eϕ‖1 ∀ϕ ∈W. (4.4)

Next, consider arbitrary functions v1 ∈ V1 and v2 = Eεϕ ∈ V2. Inequality (4.4) and
the A-orthogonality of V1 and E(W ) imply

(Av1, v2) = (Av1, Eεϕ− Eϕ)

≤ ‖v1‖1‖Eεϕ− Eϕ‖1
≤ ε‖v1‖1‖Eϕ‖1
≤ ε

1− ε
‖v1‖1‖v2‖1 .

(4.5)

In order to prove (3.3), consider an arbitrary v ∈ V . Set

ϕ := γ(v) , v2 := Eεϕ ∈ V2 , v1 := v − v2 ∈ V1.
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Inequality (4.5) then yields

‖v‖21 = ‖v1‖21 + ‖v2‖21 + 2(Av1, v2)

≥ ‖v1‖21 + ‖v2‖21 −
2ε

1− ε
‖v1‖1‖v2‖1

≥ [1− ε

1− ε
][‖v1‖21 + ‖v2‖21].

This proves the first part of the assertion.
In order to prove (3.4) consider vi, wi ∈ Vi, i = 1, 2, with

‖v1‖21 + ‖v2‖21 = ‖w1‖21 + ‖w2‖21 = 1.

Inequality (4.5) then yields∑
1≤i,j≤2

(Avi, wj) ≤‖v1‖21‖w1‖1 +
ε

1− ε
‖v1‖1‖w2‖1

+
ε

1− ε
‖v2‖1‖w1‖1 + ‖v2‖1‖w2‖1

≤1
2
[‖v1‖21 + ‖w1‖21 + ‖v2‖21 + ‖w2‖21]

+
1
2

ε

1− ε
[‖v1‖21 + ‖w2‖21 + ‖v2‖21 + ‖w1‖21]

=1 +
ε

1− ε

=
1

1− ε
.

Together with an homogeneity argument, this proves the second assertion.

Next, we investigate the influence of the replacement of E(W ) by Eε(W ) on the
restriction A2 of A onto the corresponding subspaces. To this end we note that there
are two isomorphisms i and iε which associate with any linear operator S of W into
W a linear operator i(S) of E(W ) into E(W ) and a linear operator iε(S) of Eε(W )
into Eε(W ). These isomorphisms are defined by

(i(S)Eϕ,Eψ) =< Sϕ,ψ >

= (iε(S)Eεϕ,Eεψ) ∀ϕ,ψ ∈W,S ∈ L(W,W ).
(4.6)

Put
T := i−1(A|E(W )) , Tε := i−1

ε (A|Eε(W )).

For later use we note that the identities

< Tϕ,ψ >= (AEϕ,Eψ) , < Tεϕ,ψ >= (AEεϕ,Eεψ) (4.7)
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hold for all ϕ,ψ ∈W . In particular, T and Tε are symmetric and positive definite.
The identity (4.6) shows that a linear operator R : E(W ) → E(W ) is a good precon-
ditioner for A|E(W ) if and only if i−1(R) : W → W is a good preconditioner for T .
Moreover, the operator Rε := iε ◦ i−1(R), which is induced by R, then is a good pre-
conditioner for A|Eε(W ) provided the condition number of T−1Tε is close to 1. Thus
the question of how the replacement of E(W ) by Eε(W ) influences the restriction of
A onto the corresponding subspaces is reduced to the investigation of the spectrum
of Tε relative to T .

4.2 Theorem. The estimate

|< Tϕ− Tεϕ,ϕ >

< Tϕ,ϕ >
| ≤ ε(2 + ε) (4.8)

holds for all ϕ ∈W . In particular the condition number of T−1Tε is not greater than
(1 + 3ε)/(1− 3ε).
Proof. Consider an arbitrary ϕ ∈W . Equation (4.7) implies

‖Eϕ‖21 = (AEϕ,Eϕ) =< Tϕ,ϕ > . (4.9)

Together with inequalities (4.2) and (4.5) and equations (4.7) and (4.9) this yields

| < Tϕ− Tεϕ,ϕ > | = |(AEϕ,Eϕ)− (AEεϕ,Eεϕ)|
= |(A(Eϕ− Eεϕ), Eϕ) + (AEεϕ, (Eϕ− Eεϕ))|
≤ [‖Eϕ‖1 + ‖Eεϕ‖1]‖Eϕ− Eεϕ‖1
≤ (2 + ε)ε‖Eϕ‖21
= (2 + ε)ε < Tϕ,ϕ > .

This proves estimate (4.8).
Inequality (4.8) implies that the spectrum of T−1Tε is contained in

[1− ε(2 + ε), 1 + ε(2 + ε)] ⊂ [1− 3ε, 1 + 3ε].

This establishes the bound on the condition number.

5. Applications

In this section we apply the abstract results of the previous section to finite element
approximations of some partial differential equations. To this end, let T be a partition
of Ω into d-simplices or d-cubes which satisfies the usual admissibility conditions for
finite element partitions. We assume that T is consistent with the domain decompo-
sition of Ω, i.e., the interface Σ is the union of element boundaries. Equivalently, T
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induces on each subdomain an admissible finite element partition into d-simplices or
d-cubes. Note, that this assumption in particular implies that Σ is polyhedral. Denote
by S the partition of Σ into (d− 1)-simplices or (d− 1)-cubes which is induced by T .

The Poisson equation

As a first example, we consider problem (2.1). Let V ⊂ H1
0 (Ω) be a Lagrangian finite

element space corresponding to T . The scalar product (.,.) is the L2-scalar product
or an equivalent one. The operator A is defined by

(Au, v) =
∫

Ω

∇u∇v ∀u, v ∈ V.

The trace operator γ associates with each function in V its restriction to Σ. The space
W = γ(V ) then is the finite element space corresponding to S induced by V . Note,
that this construction of γ and W relies on the consistency of T with the domain
decomposition of Ω. For the scalar product < ., . > we choose the scalar product of
L2(Σ) or an equivalent one.

Let M := dimV . Denote by v1, ..., vM ∈ V a nodal basis of V and by x1, ..., xM ∈
Ω the corresponding nodes, i.e.

V = span{vi : 1 ≤ i ≤M} and vi(xj) = δij ∀1 ≤ i, j ≤M.

Without loss of generality, we may asssume that the nodes are numbered such that

xi ∈ ω, 1 ≤ i ≤M1, xi ∈ Σ, M1 < i ≤M.

We then have
V1 = ker(γ) = span{vi : 1 ≤ i ≤M1}

and
W = span{vi|Σ : M1 < i ≤M}.

For practical use, note that V1 splits into N subspaces V1,j , 1 ≤ j ≤ N , which are
given by

V1,j := span{vi : 1 ≤ i ≤M1, xi ∈ Ωj} , 1 ≤ j ≤ N,

and which are pairwise orthogonal both with respect to the scalar products (.,.) and
(A., .).

For the construction of Eε we observe that problem (4.1) is a linear system of
M1 equations with M1 unknowns. More precisely, consider an arbitrary

ϕ =
∑

M1<i≤M

αivi|Σ ∈W.
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Then
Eϕ =

∑
1≤i≤M

αivi

and the coefficients α1, ..., αM1 are uniquely defined by∑
1≤i≤M1

αi(Avi, vj) = −
∑

M1<i≤M

αi(Avi, vj) ∀1 ≤ j ≤M1. (5.1)

Now, we apply some stationary iterative process, such as e.g. a conjugate gradient or
a multi-grid algorithm, to problem (5.1) with starting value α0

1 = ... = α0
M1

= 0. We
end this process after k iterations and obtain an approximation αk

1 , ..., α
k
M1

to the
solution α1, ..., αM1 of problem (5.1). Then Eεϕ is defined by

Eεϕ :=
∑

1≤i≤M1

αk
i vi +

∑
M1<i≤M

αivi. (5.2)

Condition (4.2) is satisfied with ε = κk where κ is the convergence rate of the iterative
process.

Note, that the stiffness matrix of problem (5.1) is an N × N block diagonal
matrix with blocks of size dimV1,j = ]{xi ∈ Ωj}, 1 ≤ j ≤ N . Correspondingly, the
iterative process used for the approximate solution of problem (5.1) splits into N

independent subprocesses which can be performed in parallel.

Denote by A the stiffness matrix of A corresponding to the basis v1, ..., vM , i.e.

Ai,j := (Avi, vj) =
∫

Ω

∇vi∇vj ∀1 ≤ i, j ≤M.

The splitting V = V1 ⊕ span{vi : M1 < i ≤ M} then induces a block decomposition
of A:

A =
(
A11 A12

AT
12 A22

)
.

The Schur complement A22 − AT
12A−1

11 A12 is the stiffness matrix of the operator T
corresponding to the basis vM1+1|Σ, ..., vM |Σ of W . Referring to this block decompo-
sition, the operators E and Eε may be represented as(

−A−1
11 A12

I 0

)
and

(
−R11 A12

I 0

)
.

Here, R11 is the approximation of A−1
11 which is induced by the iterative process

described above. The operator Tε is then represented by the approximate Schur com-
plement A22 −AT

12R11A12. This gives another interpretation of Theorem 4.2 and of
the isomorphisms i and iε. For practical computations, however, these Schur comple-
ments and the matrix R11 will never be computed explicity.
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In order to better understand how the operator iε × i−1 transforms a precon-
ditioner for T into a preconditioner for Tε, we consider a particular example. As
in section 2 we assume that Σ does not contain any cross-points (see Fig. 1). For
1 ≤ j ≤ N we define

Nj := {i : 1 ≤ i ≤M,xi ∈ Ωj\Γ},
V 1,j := span{vi|Ωj

: i ∈ Nj}.

Given an arbitrary ϕ ∈ W denote by uj =
∑

i∈Nj
βi,jvi|Ωj

∈ V 1,j , 1 ≤ j ≤ N , the
unique solutions of the followingN independent discrete Dirichlet-Neumann problems

(Auj , vk|Ωj
) =

∫
∂Ωj\Γ

ϕvk ∀k ∈ Nj , 1 ≤ j ≤ N. (5.3)

Let Sϕ be the average of the traces of the u’s on Σ. Sϕ is given by

Sϕ =
∑

M1<i≤M

σivi|Σ

with
σi :=

1
2

∑
1≤j≤N,i∈Nj

βi,j ,M1 < i ≤M.

From standard trace theorems and results on elliptic regularity it follows that S is a
good preconditioner for T (cf. [1]).

Now, iε × i−1(S) is defined as follows. Apply to each of the N subproblems of
(5.3) k iterations with starting value 0 of the same iterative process used for the
definition of Eε. This yields approximations βk

i,j , i ∈ Nj , 1 ≤ j ≤ N , for the solution
βi,j of (5.3). Set

σk
i :=

1
2

∑
1≤j≤N,i∈Nj

βk
i,j ,M1 < i ≤M.

Then iε × i−1(S) is given by

iε × i−1(S)ϕ =
∑

M1<i≤M

σk
i vi|Σ.

5.1 Remark. The previous analysis holds for all symmetric positive definite op-
erators on a subspace of H1(Ω). Thus it immediately carries over to finite element
discretizations of all those scalar linear elliptic equations of second order which are
the Euler-Lagrange equations of a convex quadratic functional on an affine subspace
of H1(Ω).

The Stokes equations
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As our second example, we consider particular mixed finite element approximations
of the Stokes equations

−∆u+∇p = f inΩ

div u = 0 inΩ

u = 0 on Γ.

Let T be as before. The velocity u and the pressure p are then approximated by
functions in Lagrangian finite element spaces X and Y corresponding to T . We
assume that X and Y satisfy the following conditions:
(1) The discrete pressures are discontinuous and Y ⊂ L2(Ω).
(2) X ⊂ H(div,Ω) and for each T ∈ T the restrictions to T of the functions in X

are contained in H1(T ).
(3) X and Y satisfy the LBB-condition (cf. [4; Equ. VI.2.13]).
Assumption (2) allows the use of non-conforming finite elements. Examples of finite
element spaces satisfying the above conditions are given by:
(a) the P2/P0-element consisting of continuous, piecewise quadratic velocities and

piecewise constant pressures,
(b) the Pk/P (k − 1)-element, k ≥ 4, consisting of velocities, which are continuous

and piecewise polynomials of degree k, and of pressures, which are discontinuous
and piecewise polynomials of degree k − 1,

(c) the Crouzeix-Raviart element consisting of piecewise linear velocities, which are
continuous at the midpoints of the triangles’ edges, and of piecewise constant
pressures.

Note, that the Taylor-Hood element and the mini-element, which both use continuous
pressure-approximations, do not satisfy condition (1) above.

As before, (.,.) denotes the L2-scalar product or an equivalent one. V is the space
of all discrete-solenoidal functions:

V := {u ∈ X :
∫

Ω

pdiv u = 0 ∀p ∈ Y }.

Note that in the examples (b) and (c) the functions in V are exactly solenoidal. The
operator A is defined by

(Au, v) :=
∑
T∈T

∫
T

∇u∇v.

This definition makes sense thanks to condition (2) above. The trace operator γ, the
space W , and the operators E,Eε, T , and Tε are defined as before.

Problems (5.1) and (5.3) are now discrete Stokes problems. For their pratical
solution it is important that they still split into N independent discrete Stokes prob-
lems on the subdomains Ωj , 1 ≤ j ≤ N . This is so since condition (1) above implies
that

p ∈ Y ⇒ pχΩj
∈ Y ∀1 ≤ j ≤ N
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and therefore

u ∈ V1 ⇒ uχΩj
∈ V1 ∀1 ≤ j ≤ N. (5.4)

Here, χΩj denotes the characteristic function of Ωj . Thanks to (5.4) V1 splits into N
subspaces

V1,j := {uχΩj
: u ∈ V1} , 1 ≤ j ≤ N,

which are pairwise orthogonal both with respect to the scalar products (.,.) and (A.,.).
For pratical use note that - thanks to condition (1) above - V1,j can equivalently be
characterized by

V1,j = {u ∈ X :
∫

Ω

pdiv u = 0 ∀p ∈ Y , u = 0 onΩ\Ωj}

= {u|Ωj
: u ∈ X,u = 0 on ∂Ωj ,

∫
Ωj

pdiv u = 0 ∀p ∈ Y }.

The following example shows that this characterization and the property (5.4)
are violated when using continuous pressure approximations. Consider a rectangle
Ω with sides of length 2 which is cut into two unit squares Ω1 and Ω2 as depicted
in Fig. 3. As discretization choose the Taylor-Hood element which consists of con-
tinuous piecewise quadratic velocities and continuous piecewise linear pressures. The
velocities are uniquely determined by their values at the vertices and the midpoints
of the edges. Let u be the velocity which corresponds to a unit vortex around the
midpoint of Σ. In the midpoints of edges, which are marked in Fig. 3, it is a unit
vector tangent to the corresponding edge. In all other midpoints of edges and in all
vertices u vanishes. A straightforward calculation yields that u ∈ V and u = 0 on Σ
but that uχΩj

/∈ V1,j , j = 1, 2.

Fig. 3: Taylor-Hood discretization of the Stokes equations; the
velocity equals a unit tangent vector at the marked midpoints of
edges and vanishes at all other midpoints of edges and at all vertices

Acknowledgement: We thank the unknown referee who indicated a serious gap in
the original version of section 5.
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