
A posteriori error estimates

for non-linear parabolic equations

R. Verfürth

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

E-mail address: rv@num1.ruhr-uni-bochum.de

Date: December 2004

Summary: We consider space-time discretizations of non-linear parabolic equations. The temporal

discretizations in particular cover the implicit Euler scheme and the mid-point rule. For linear

equations they correspond to the well-known A-stable θ-schemes. The spatial discretizations consist
of standard conforming finite element spaces that can vary from one time-level to the other. The

spatial meshes may be locally refined, but must be isotropic. For these discretizations we derive a
residual a posteriori error estimator which yields upper and lower bounds on the error. The ratio

of upper and lower bounds does not depend on any mesh-size in space or time nor on any relation

between both. In particular there is no restriction on the relative size of the temporal and spatial
mesh-sizes.

Key words: a posteriori error estimates; non-linear parabolic equations; space-time finite elements

AMS Subject classification: 65N30, 65N15, 65J15

1. Introduction

We consider non-linear parabolic equations

∂u

∂t
− div a(x, u,∇u) + b(x, u,∇u) = 0 in Ω× (0, T ]

u = 0 on Γ× (0, T ]

u(·, 0) = u0 in Ω

(1.1)

in a bounded space-time cylinder with a convex two-dimensional polygonal cross-
section Ω ⊂ IR2 having a Lipschitz boundary Γ. The final time T is arbitrary, but kept
fixed in what follows. The coefficients a : Ω× IR× IR2 → IR2 and b : Ω× IR× IR2 → IR
must be continuously differentiable with Lipschitz-continuous derivatives. They have
to satisfy suitable growth conditions so that problem (1.1) admits an appropriate
variational formulation (cf. Sections 2 and 4 for details). Some sample problems
satisfying these conditions are given in Section 4.

We consider space-time discretizations of problem (1.1). The temporal discretiza-
tions in particular cover the implicit Euler scheme and the mid-point rule. For linear
problems they correspond to the well-known A-stable θ-schemes. The spatial discre-
tizations consist of standard conforming finite element spaces that can vary from
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one time-level to the other. The spatial meshes may be locally refined, but must be
isotropic.

For these discretizations we derive a residual a posteriori error estimator. It
consists of two contributions: a spatial error estimator and a temporal one.
The spatial contribution is a standard residual a posteriori error estimator for the
non-linear elliptic equation arising from the time-discretization of problem (1.1). It
consists of an element residual on a space-time cylinder K× [tn−1, tn] and of an edge
residual on the lateral boundary ∂K × [tn−1, tn].
The evaluation of the temporal error estimator requires at each time-level the solution
of a discrete Poisson problem. This term can be interpreted as an edge residual on
the bottom K ×{tn−1} measured in an appropriate dual norm. The additional work
of solving a supplementary discrete problem at each time-level is the price we have
to pay for making computable this dual norm. This extra work is comparable to the
one required by the now popular estimators that are based on the solution of suitable
discrete adjoint problems [3].
We prove that the error estimator yields upper and lower bounds for the error mea-
sured in a suitable Lr(0, T ;W 1,ρ

0 (Ω))-norm (cf. Section 2 for a definition of these
spaces and their norms). The ratio of the upper and lower bounds does not depend
on any mesh-size in space or time nor on any relation between these parameters.

The present results should be compared to our old results in [10]:
(1) Here, we consider standard time-discretizations which in particular cover the

implicit Euler scheme and the midpoint-rule. In [10], we used non-standard time-
discretizations which could be interpreted as implicit Runge-Kutta schemes and
which covered the Crank-Nicolson scheme as method of lowest order.

(2) Here, the ratio of upper and lower error bounds is independent of any mesh-size
in space and time and of any relation between both parameters. In [10], the ratio
of the upper and lower error bounds is proportional to 1 + h2τ−1 + h−2τ where
h and τ denote the local mesh-sizes in space and time respectively.

(3) The present analysis and the one in [10] both depart from an abstract non-linear
equation F (u) = 0 with a continuously differentiable mapping F : X → Y ∗

between appropriate function spaces (Y ∗ denoting the dual of Y ). Here,X carries
a stronger topology than Y (cf. Section 2), in [10] these rôles are reversed.

(4) In [10] we do not have to solve additional discrete problems in order to evaluate
the error estimator.

The article is organized as follows. In Section 2 we introduce the relevant function
spaces and their norms. Section 3 gives the finite element discretization. Departing
from the abstract error estimate of [9, Proposition 2.1] we prove in Section 4 that the
error is equivalent to a residual which is defined in a suitable dual space. This residual
is split into two contributions: a spatial residual and a temporal one. In Section 5
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we derive upper and lower bounds for the spatial residual. The temporal residual is
treated in Section 6. Combining these results we obtain in Section 7 a preliminary a
posteriori error estimator. It yields upper and lower bounds on the error which are
independent of the mesh-sizes in the sense described above. This preliminary error
estimator, however, is not suited for practical computations since it incorporates the
dual norm of a suitable residual. The residual itself is easy to evaluate, but the dual
norm is not directly accessible. To overcome this difficulty we present in Section
8 some W 1,q-stability results for the Laplacian both in analytic and discrete form.
These results require that the cross-section Ω is two-dimensional and convex. Based
on these results we present in Section 9 the error estimator in its final form. The
computation of the dual norm here is replaced by the evaluation of the solution of
an auxiliary discrete Poisson problem.

2. Function spaces

For any bounded open subset ω of Ω with Lipschitz boundary γ we denote by
W k,p(ω), k ∈ IN, 1 ≤ p ≤ ∞, Lp(ω) = W 0,p(ω), and Lp(γ) the usual Sobolev and
Lebesgue spaces equipped with the standard norms (cf. [1], [6, Vol. 3, Chap. IV ]):

‖u‖k,p;ω =

 ∑
|α|≤k

∫
ω

|Dαu(x)|pdx


1,p

, p <∞,

‖u‖k,∞;ω = max
|α|≤k

ess.sup
x∈ω

|Dαu(x)|

and

‖u‖p;γ =
{∫

γ

|u(x)|pds(x)
}1,p

, p <∞,

‖u‖∞;γ = ess.sup
x∈γ

|u(x)|.

Here, α ∈ IN2 is a multi-index, |α| = α1 + α2, and ds denotes the length element of
the curve γ.
Set

W 1,p
0 (Ω) =

{
u ∈W 1,p(Ω) : u = 0 on Γ

}
and denote its dual space by

W−1,p′(Ω) = W 1,p
0 (Ω)∗ for 1 < p <∞.

Here and in the sequel, p′ denotes the dual exponent of p defined by 1
p + 1

p′ = 1.
The duality pairing between W 1,p

0 (Ω) and W−1,p′(Ω) will always be denoted by 〈., .〉
where the relevant Lebesgue exponent p will be apparent from the context.
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Let V and W be two Banach spaces such that V is continuously embedded in
W . Given two real numbers a and b with a < b, we denote by Lp(a, b;V ), 1 ≤ p ≤ ∞,
the space of all measurable functions u defined on (a, b) with values in V such that
the mapping t → ‖u(·, t)‖V is in Lp((a, b)). Lp(a, b;V ) is a Banach space equipped
with the norm

‖u‖Lp(a,b;V ) =

{∫ b

a

‖u(·, t)‖p
V dt

}1/p

, p <∞,

‖u‖L∞(a,b;V ) = ess.sup
t∈(a,b)

‖u(·, t)‖V

(cf. [6, Vol. 5, Chap. XVIII, §1]). Slightly changing the notation of [6], we further
introduce the Banach space

W p(a, b;V,W ) =
{
u ∈ Lp(a, b;V ) :

∂u

∂t
∈ Lp(a, b;W )

}
equipped with the norm

‖u‖W p(a,b;V,W ) =

{∫ b

a

‖u(·, t)‖p
V dt+

∫ b

a

‖∂u
∂t

(·, t)‖p
W dt

}1/p

, p <∞

‖u‖W∞(a,b;V,W ) = ess.sup
t∈(a,b)

max
{
‖u(·, t)‖V , ‖∂u

∂t
(·, t)‖W

}
.

Here the partial derivative ∂u
∂t must be interpreted in the distributional sense [6,

loc.cit]. If p > 1, we know from [6, Vol. 5, Chap. XVIII, §1, Proposition 9] that for
any u ∈W p(a, b;V,W ) the traces u(·, a) and u(·, b) are defined as elements of W .

A function u is called a weak solution of problem (1.1) if there are parameters
r, p, ρ, π ∈ (1,∞) such that u ∈W r(0, T ;W 1,ρ

0 (Ω),W−1,π(Ω)),

u(·, 0) = u0 in W−1,π(Ω) (2.1)

and∫ T

0

〈∂u
∂t

(·, t), v(·, t)〉dt+
∫ T

0

∫
Ω

{a(x, u,∇u)∇v + b(x, u,∇u)v} dxdt = 0

∀v ∈ Lp′(0, T ;W 1,π′

0 (Ω))

(2.2)

(cf. [2]). Note that W 1,ρ
0 (Ω) is continuously embedded in W−1,π(Ω) for all ρ and π

since Ω ⊂ IR2.
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3. Finite element discretization

For the discretization we choose an integer N ≥ 1 and intermediate times 0 = t0 <

t1 < . . . < tN = T and set τn = tn − tn−1, 1 ≤ n ≤ N . With each intermediate time
tn, 0 ≤ n ≤ N , we associate a partition Th,n of Ω and a corresponding finite element
space Xh,n. These have to satisfy the following conditions:
(1) Affine equivalence: every element K ∈ Th,n is either a triangle or a parallelogram.
(2) Admissibility: any two elements are either disjoint or share a vertex or a complete

edge.
(3) Shape regularity: for any element K the ratio of its diameter hK to the diameter

ρK of the largest inscribed ball is bounded uniformly with respect to all partitions
Th,n and to N .

(4) Transition condition: for 1 ≤ n ≤ N there is an affinely equivalent, admissible,
and shape-regular partition T̃h,n such that it is a refinement of both Th,n and
Th,n−1 and such that

sup
1≤n≤N

sup
K∈T̃h,n

sup
K′∈Th,n;K⊂K′

hK′

hK
<∞.

(5) Each Xh,n consists of continuous functions which vanish on Γ and which are
piecewise polynomials, the degrees being bounded uniformly with respect to all
partitions Th,n and to N .

(6) Each Xh,n contains the space of continuous, piecewise linear finite elements cor-
responding to Th,n.

Triangular and quadrilateral elements may be mixed. Condition (2) excludes hanging
nodes. Condition (3) is a standard one and allows for locally refined meshes. However,
it excludes anisotropic elements. Condition (4) is due to the simultaneous presence
of finite element functions defined on different grids. Usually the partition Th,n is
obtained from Th,n−1 by a combination of refinement and of coarsening. In this case
Condition (4) only restricts the coarsening. It must not be too abrupt nor too strong.

We choose a parameter θ ∈ [ 12 , 1] and keep it fixed in what follows. Then the
space-time discretization of problem (1.1) consists in finding un

h ∈ Xh,n, 0 ≤ n ≤ N ,
such that

u0
h = π0u0 (3.1)

and, for n = 1, · · · , N, and all vh ∈ Xh,n∫
Ω

un
h − un−1

h

τn
vhdx+

∫
Ω

{
a(x, unθ

h ,∇unθ
h )∇vh + b(x, unθ

h ,∇unθ
h )vh

}
dx = 0 (3.2)

where
unθ

h = θun
h + (1− θ)un−1

h (3.3)
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and π0 denotes the L2-projection onto Xh,0.

With every solution (un
h)0≤n≤N of problems (3.1) and (3.2) we associate two

functions uhτ and ũhτ . The function uhτ is piecewise affine on the intervals [tn−1, tn],
1 ≤ n ≤ N , and equals un

h at time tn. The function ũhτ is piecewise constant on the
intervals (tn−1, tn], 1 ≤ n ≤ N , and equals unθ

h on (tn−1, tn]. Since the function t→
uhτ (., t) is continuous and piecewise affine with values in W 1,ρ

0 (Ω), it is differentiable
in the distributional sense [6, Vol. 5, Chap. XVIII, §1] and its weak derivative satisfies

∂uhτ

∂t
=
un

h − un−1
h

τn
on (tn−1, tn). (3.4)

4. The equivalence of error and residual

As usual for non-linear problems, our a posteriori error estimates are based on the
abstract error estimate of [9, Proposition 2.1]. For completeness we shortly recall this
result. Given two Banach spaces X and Y with norms ‖ · ‖X and ‖ · ‖Y we denote by
L(X,Y ) the space of continuous linear mappings of X into Y and equip it with its
standard norm

‖A‖L(X,Y ) = sup
x∈X\{0}

‖Ax‖Y

‖x‖X
.

ISOM(X,Y ) denotes the space of all invertible A ∈ L(X,Y ) with A−1 ∈ L(Y,X).
Given a continuously differentiable map F : X → Y ∗ of X into the dual Y ∗ of Y we
look for solutions of the non-linear equation

F (u) = 0. (4.1)

4.1 Lemma. [9, Proposition 2.1]. Let u ∈ X be a solution of problem (4.1). As-
sume that u is regular, i.e. DF (u) ∈ ISOM(X,Y ∗) and that DF is locally Lipschitz
continuous at u, i.e. there are constants γ > 0 and R0 > 0 such that

‖DF (v)−DF (w)‖L(X,Y ∗) ≤ γ‖v − w‖X

holds for all v, w ∈ X with ‖v − u‖X ≤ R0 and ‖w − u‖X ≤ R0. Set

R = min
{
R0 , γ

−1‖DF (u)−1‖−1
L(Y ∗,X) , 2γ−1‖DF (u)‖L(X,Y ∗)

}
.

Then the following error estimate holds for all v ∈ X with ‖v − u‖ ≤ R:

1
2
‖DF (u)‖−1

L(X,Y ∗)‖F (v)‖Y ∗

≤ ‖v − u‖X

≤ 2‖DF (u)−1‖L(Y ∗,X)‖F (v)‖Y ∗ .
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For abbreviation we define a function G : Lr(0, T ;W 1,ρ
0 (Ω)) → Lp(0, T ;W−1,π(Ω))

by

〈G(u), v〉 =
∫

Ω

{a(x, u,∇u)∇v + b(x, u,∇u)v} dt a.e. in (0, T ). (4.2)

Then the weak formulation (2.1), (2.2) of problem (1.1) fits into the framework of
Lemma 4.1 with

X = W r(0, T ;W 1,ρ
0 (Ω),W−1,π(Ω)),

Y = W 1,π′

0 (Ω)× Lp′(0, T ;W 1,π′

0 (Ω)),

〈F (u), (v1, v2)〉 =
(

〈u(·, 0)− u0, v1〉∫ T

0

{
〈∂u

∂t , v2〉+ 〈G(u), v2〉
}
dt

)
.

(4.3)

We therefore obtain:

4.2 Lemma. Let u and uhτ be solutions of problems (2.1), (2.2) and (3.1), (3.2).
Assume that u and the function F of equation (4.3) satisfy the conditions of Lemma
4.1 and that

‖u− uuτ‖W r(0,T ;W 1,ρ
0 (Ω),W−1,π(Ω)) ≤ R.

Then there are two constants c∗ and c∗ such that

c∗

{
‖u0 − u0

h‖−1,π + ‖∂uhτ

∂t
+G(uhτ )‖Lp(0,T ;W−1,π(Ω))

}
≤ ‖u− uhτ‖W r(0,T ;W 1,ρ

0 (Ω),W−1,π(Ω))

≤ c∗
{
‖u0 − u0

h‖−1,π + ‖∂uhτ

∂t
+G(uhτ )‖Lp(0,T ;W−1,π(Ω))

}
.

4.3 Remark. Assume that G is locally Lipschitz continuous at the solution u of
problems (2.1), (2.2), i.e., there are two constants γ > 0 and R0 > 0 such that

‖DG(v)−DG(w)‖L(Lr(0,T ;W 1,ρ
0 (Ω)),Lp(0,T ;W−1,π(Ω))) ≤ γ‖v − w‖Lr(0,T ;W 1,ρ

0 (Ω))

holds for all v, w ∈ Lr(0, T ;W 1,ρ
0 (Ω)) with ‖u − v‖Lr(0,T ;W 1,ρ

0 (Ω)) ≤ R0 and ‖u −
w‖Lr(0,T ;W 1,ρ

0 (Ω)) ≤ R0. Then the function F of equation (4.3) satisfies the Lipschitz
condition of Lemma 4.1 with the same constants γ and R0.

Some examples of problems following into the present category are given by:
(1) The heat equation with convection and non-linear diffusion coefficient:

a(x, u,∇u) = k(u)∇u,
b(x, u,∇u) = c · ∇u− f,

f ∈ L∞(Ω), c ∈ C(Ω, IR2), k ∈ C2(IR),

k(s) ≥ α > 0, |k(`)(s)| ≤ γ ∀s ∈ IR, ` ∈ {0, 1, 2},
ρ = π ∈ (2, 4), p > 2, r ≥ 2p.
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(2) The non-stationary equation of prescribed mean curvature:

a(x, u,∇u) = [1 + |∇u|2]−1/2∇u,
b(x, u,∇u) = −f ∈ L2(Ω),

ρ > 2, π =
ρ

2
, r ≥ 2ρ, p =

r

2
.

(3) The non-stationary α-Laplacian:

a(x, u,∇u) = |∇u|α−2∇u , α ≥ 2,

b(x, u,∇u) = −f ∈ Lα′(Ω),

ρ = α, π = α′, r > 6, p =
r

3
.

(4) The non-stationary subsonic flow of an irrational, ideal, compressible gas:

a(x, u,∇u) =
[
1− γ − 1

2
|∇u|2

]1/(γ−1)

∇u , γ > 1,

b(x, u,∇u) = −f ∈ Lπ(Ω),

ρ =
2γ
γ − 1

, π =
2γ
γ + 1

, r > 6, p =
r

3
.

Lemma 4.2 states that the error u−uhτ and the residual∂uhτ

∂t +G(uhτ ) are equivalent.
In the following sections we will derive computable upper and lower bounds on the
residual. To this end we split it into a spatial and a temporal contribution and set

〈Rh(uhτ ), v〉 = 〈∂uhτ

∂t
+G(ũhτ ), v〉 (4.4)

and

〈Rτ (uhτ ), v〉 = 〈G(ũhτ )−G(uhτ ), v〉. (4.5)

Obviously we have

∂uhτ

∂t
+G(uhτ ) = Rh(uhτ ) +Rτ (uhτ ). (4.6)

Since ∂uhτ

∂t = un
h−un−1

h

τn
(cf. (3.4)) and ũhτ = unθ

h on each interval (tn−1, tn], problem
(3.2) is equivalent to

〈Rh(uhτ ), vh〉 = 0 ∀vh ∈ Xhn, 1 ≤ n ≤ N. (4.7)
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5. Estimation of the spatial residual

For the estimation of the spatial residual Rh(uhτ ) we need some additional notations.
We denote by Ẽh,n, 1 ≤ n ≤ N , the set of all edges of T̃h,n. With each edge E ∈ Ẽh,n

we associate a unit vector nE orthogonal to E such that it points to the outward of Ω
if E is part of the boundary. For every edge E that is not contained in the boundary
we denote by [.]E the jump across E in direction nE . The quantity [.]E of course
depends on the orientation of nE , but quantities of the form [nE · .]E are independent
thereof. With each edge E that is not contained in the boundary, we associate the
set ωE which is the union of the two elements that share E. If E is a boundary-edge,
ωE simply is the unique element that has E as an edge.

For every n between 1 and N we denote by Nh,n the set of all element vertices
in Th,n that do not lie on the boundary. With every vertex x ∈ Nh,n we associate the
nodal bases function λx which is uniquely defined by the properties

λx|K ∈ R1(K) ∀K ∈ Th,n, λx(y) = 0 ∀y ∈ Nh,n\{x}, λx(x) = 1.

Here, as usual, Rk(K) denotes the set of all polynomials of total degree k, if K is a
triangle, and of maximal degree k, if K is a quadrilateral. The support of a nodal
bases function λx is denoted by ωx and consists of all elements in Th,n that share the
vertex x. Denote by πx the L2(ωx)-projection onto R1 defined by∫

ωx

πxvw =
∫

ωx

vw ∀ w ∈ R1.

Then the interpolation operator Ih,n of Clément [5] corresponding to Th,n is defined
by

Ih,nv =
∑

x∈Nh,n

λx(πxv)(x). (5.1)

Due to condition (6) of Section 3 Ih,n maps L1(Ω) into a subspace of Xh,n.

5.1 Lemma. [9, Lemma 3.1] The following error estimates hold for all 1 ≤ p ≤ ∞,
all v ∈W 1,p

0 (Ω), all 1 ≤ n ≤ N , all K ∈ Th,n , and all E ∈ Eh,n:

‖v − Ih,nv‖0,p;K ≤ c1hK‖v‖1,p;ω̃k
,

‖v − Ih,nv‖p;E ≤ c2h
1− 1

p

E ‖v‖
1,p;ω̃E

.

Here ω̃K and ω̃E consists of all elements in Th,n that share at least a vertex with K
or E, respectively. The constants c1 and c2 only depend on the ratios hK/ρK .

For every element K ∈ T̃h,n and every edge E ∈ Ẽh,n we denote by NK and NE

the set of its vertices and set

ψK = γK

∏
x∈NK

λx,

ψE = γE

∏
x∈NE

λx.
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The constants γk and γE are chosen such that ψK and ψE equal 1 at the barycentre
of K and E, respectively. The support of ψK is contained in K and ‖ψK‖0,∞;K = 1.
Similarly, the support of ψE is contained in ωE and ‖ψE‖0,∞;ωE

= ‖ψE‖∞;E = 1.

5.2 Lemma. [9, Lemma 3.3] The following estimates hold for all 1 ≤ p ≤ ∞, all
k ∈ IN, all 1 ≤ n ≤ N , all K ∈ T̃h,n, all v ∈ Rk(K), all E ∈ Ẽh,n, and all σ ∈ Rk(E):

sup
w∈Rk(K)

∫
K
vψKw

‖w‖0,p′;K
≥ c3‖v‖0,p;K ,

‖ψKv‖1,p;K ≤ c4h
−1
K ‖v‖0,p;K ,

sup
η∈Rk(E)

∫
E
σψEη

‖η‖p′;E
≥ c5‖σ‖p;E ,

‖ψEσE‖1,p;ωE
≤ c6h

−1+ 1
p

E ‖σ‖p;E ,

‖ψEσ‖0,p;ωE
≤ c7h

1/p
E ‖σ‖p;E .

Here, a polynomial σ defined on an edge is continued in the canonical way to a
polynomial defined on IR2. The constants c3, · · · , c7 only depend on the polynomial
degree k and on the ratios hK/ρK .

We choose an integer ` and denote for every n between 1 and N by ah,n(x, unθ
h ,

∇unθ
h ) and bh,n(x, unθ

h ,∇unθ
h ) the L2-projections of a(x, unθ

h ,∇unθ
h ) and b(x, unθ

h ,

∇unθ
h ) onto discontinuous vector-fields respectively functions which are piecewise

polynomials of degree ` on the elements of T̃h,n. With this notation we define el-
ement residuals RK ,K ∈ T̃h,n, 1 ≤ n ≤ N , by

RK =
un

h − un−1
h

τn
− div ah,n(x, unθ

h ,∇unθ
h ) + bh,n(x, unθ

h ,∇unθ
h ), (5.2)

edge residuals RE , E ∈ Ẽh,n, 1 ≤ n ≤ N , by

RE =
{

[nE · ah,n(x, unθ
h ,∇unθ

h )]E if E 6⊂ Γ,
0 if E ⊂ Γ,

(5.3)

elementwise data errors DK ,K ∈ T̃h,n, 1 ≤ n ≤ N, by

DK =a(x, unθ
h ,∇unθ

h )− ah,n(x, unθ
h ,∇unθ

h )

+ b(x, unθ
h ,∇unθ

h )− bh,n(x, unθ
h ,∇unθ

h ),
(5.4)

and edgewise data errors DE , E ∈ Ẽh,n, 1 ≤ n ≤ N , by

DE =
{

[nE · (a(x, unθ
h ,∇unθ

h )− ah,n(x, unθ
h ,∇unθ

h ))]E if E 6⊂ Γ,
0 if E ⊂ Γ.

(5.5)

The choice of the parameter ` is influenced by the polynomial degree of the finite
element spaces Xh,n and by the smoothness of the coefficients a, b. The simplest
choice of course is ` = 0.

With these preparations we are now ready to bound the spatial residual.

10



5.3 Lemma. For every n between 1 and N define a spatial error indicator ηn
h by

ηn
h =


∑

K∈T̃h,n

hπ
K‖RK‖π

0,π;K +
∑

E∈Ẽh,n

hE‖RE‖π
π;E


1/π

(5.6)

and a spatial data error indicator Θn
h by

Θn
h =


∑

K∈T̃h,n

hπ
K‖DK‖π

0,π;K +
∑

E∈Ẽh,n

hE‖DE‖π
π;E


1/π

. (5.7)

Then there are functions wn ∈ W 1,π′

0 (Ω), 1 ≤ n ≤ N , and constants c† and c† such
that on each interval (tn−1, tn], 1 ≤ n ≤ N , the following estimates hold:

‖Rh(uhτ )‖−1,π ≤ c†{ηn
h + Θn

h} (5.8)

and
(ηn

h)π ≤〈Rh(uhτ ), wn〉+ Θn
h‖wn‖1,π′ ,

‖wn‖1,π′ ≤c†(ηn
h)π−1.

(5.9)

The constants c† and c† depend on the ratios hK/ρK . The constant c† in addition
depends on the ratios hK′/hK in condition (4) of Section 3. The constant c† in
addition depends on the polynomial degree `.

Proof. Choose an integer n between 1 and N and keep it fixed in what follows.
Integration by parts on the elements of T̃h,n yields the following L2-representation of
the residual

〈Rh(uhτ ), v〉 =
∑

K∈T̃h,n

∫
K

RKv +
∑

E∈Ẽh,n

∫
E

REv

+
∑

K∈T̃h,n

∫
K

DKv +
∑

E∈Ẽh,n

∫
E

DEv.

(5.10)

Lemma 5.1 and Hölder’s inequality therefore imply for all v ∈W 1,π′

0 (Ω)

〈Rh(uhτ ), v − Ih,nv〉 ≤ c‖v‖1,π{ηn
h + Θn

h}. (5.11)

The constant c only depends on the constants c1 and c2 of Lemma 5.1 and the ratios
hK/ρK .
Since Ih,n maps L1(Ω) into a subspace of Xh,n, equations (4.7) and (5.11) prove the
upper bound (5.8).
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From Lemma 5.2 we conclude that for every element K ∈ T̃h,n and every edge
E ∈ Ẽh,n there are polynomials vK and σE such that

∫
K

RKψKvK = ‖RK‖π
0,π;K ,

‖vK‖0,π′;K ≤ c−1
3 ‖RK‖π−1

0,π;K ,∫
E

REψEσE = ‖RE‖π
π;E ,

‖σE‖π′;E ≤ c−1
5 ‖RE‖π−1

π;E .

Set

wn = γ1

∑
K∈T̃h,n

hπ
KψKvK + γ2

∑
E∈Ẽh,n

hEψEσE .

The constants γ1 and γ2 are arbitrary at present and will be determined below. The
subsequent arguments are based on the following observations:
• the supports of the ψK are mutually disjoint,
• the support of a ψK intersects the support of at most four different ψE ’s,
• the support of a ψE intersects the support of at most two ψK ’s,
• the support of a ψE intersects the support of almost two other ψE ’s.

Since (π − 1)π′ = π, Lemma 5.2 therefore yields

‖wn‖π′

1,π′ =
∑

K∈T̃h,n

‖wn‖π′

1,π′;K

≤ 5π′−1γπ′

1

∑
K∈T̃h,n

hππ′

K ‖ψKvK‖π′

1,π′;K

+ 5π′−1γπ′

2

∑
K∈T̃h,n

∑
E⊂∂K

hπ′

E ‖ψEσE‖π′

1,π′;K

≤ 5π′−1γπ′

1

∑
K∈T̃h,n

c−π′

3 cπ
′

4 h
(π−1)π′

K ‖RK‖π′(π−1)
0,π;K

+ 5π′−1γπ′

2

∑
K∈T̃h,n

∑
E⊂∂K

c−π′

5 cπ
′

6 h
π′+1−π′

E ‖RE‖π′(π−1)
π;E

≤ 5π′ max{γ1, γ2}π′ max{c−1
3 c4, c

−1
5 c6}π′(ηn

h)π

= 5π′ max{γ1, γ2}π′ max{c−1
3 c4, c

−1
5 c6}π′(ηn

h)(π−1)π′ .

This proves that

‖wn‖1,π′ ≤ 5 max{γ1, γ2}max{c−1
3 c4, c

−1
5 c6}(ηn

h)π−1. (5.12)
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Since hE ≤ hK for all edges E of any element K, Lemma 5.2 also implies that

∑
K∈T̃h,n

∫
K

RKwn +
∑

E∈Ẽh,n

∫
E

REwn

= γ1

∑
K∈T̃h,n

hπ
K

∫
K

RKψKvK

+ γ2

∑
E∈Ẽh,n

hE

∫
E

REψEσE

+ γ2

∑
K∈T̃h,n

∑
E⊂∂K

hE

∫
K

RKψEσE

≥ γ1

∑
K∈T̃h,n

hπ
K‖RK‖π

0,π;K

+ γ2

∑
E∈Ẽh,n

hE‖RE‖π
π;E

− γ2

∑
K∈T̃h,n

∑
E⊂∂K

c−1
5 c7hKh

1
π′
E ‖RK‖0,π;K‖RE‖π−1

π;E .

Using Young’s inequality ab ≤ 1
π aπ + 1

π′ b
π′ with a = ε−

1
π′ c−1

5 c7hK‖RK‖0,π;K and

b = ε
1

π′ h
1

π′
E ‖RE‖π−1

π;E and arbitrary ε > 0 and taking into account that π′(π− 1) = π,
this gives

∑
K∈T̃h,n

∫
K

RKwn +
∑

E∈Ẽh,n

∫
E

REwn

≥ γ1

∑
K∈T̃h,n

hπ
K‖RK‖π

0,π;K

+ γ2

∑
E∈Ẽh,n

hE‖RE‖π
π;E

− γ2

∑
K∈T̃h,n

∑
E∈∂K

{
1
π
ε−

π
π′ c−π

5 c−π
7 hπ

K‖RK‖π
0,π;K +

ε

π′
hE‖RE‖π

π;E

}

≥ (γ1 − 4
γ2

π
ε−

π
π′ c−π

5 cπ7 )
∑

K∈T̃h,n

hπ
K‖RK‖π

0,π;K

+ γ2(1− 2
ε

π′
)

∑
E∈Ẽh,n

hE‖RE‖π
π;E .
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This proves that

∑
K∈T̃h,n

∫
K

RKwn +
∑

E∈Ẽh,n

∫
E

REwn

≥min
{
γ1 − γ2

4
π
ε1−πc−π

5 cπ7 , γ2(1−
2ε
π′

)
}

(ηn
h)π.

(5.13)

From Lemma 5.2 we also obtain∑
K∈T̃h,n

∫
K

DKwn +
∑

E∈Ẽh,n

∫
E

DEwn

= γ1

∑
K∈T̃h,n

hπ
K

∫
K

DKψKvK + γ2

∑
E∈Ẽh,n

hE

∫
E

DEψEσE

+ γ2

∑
K∈T̃h,n

∑
E⊂∂K

hE

∫
K

DKψEσE

≤ γ1

∑
K∈T̃h,n

c−1
3 hπ

K‖DK‖0,π;K‖RK‖π−1
0,π;K

+ γ2

∑
E∈Ẽh,n

c−1
5 hE‖DE‖π;E‖RE‖π−1

π;E

+ γ2

∑
K∈T̃h,n

c−1
5 c7hKh

1
π′
E ‖DK‖0,π;K‖RE‖π−1

π;E .

Applying Hölder’s inequality and using once more the relation π′(π − 1) = π, this
proves ∑

K∈T̃h,n

∫
K

DKwn +
∑

E∈Ẽh,n

∫
E

DEwn

≤ max{γ1, γ2}max{c−1
3 , c−1

5 , c−1
5 c7}5Θn

h(ηn
h)π−1.

(5.14)

Now we choose (recall that 1 < π, π′ <∞)

ε =
1
2
, γ2 =

π′

π′ − 1
, γ1 = 1 + 4 · 2π−1c−π

5 cπ7 .

This gives

min
{
γ1 − γ2

4
π
ε1−πc−π

5 cπ7 , γ2(1−
2ε
π′

)
}

= 1. (5.15)

Equations (5.10), (5.12), (5.13), (5.14), and (5.15) prove estimate (5.9).
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6. Estimation of the temporal residual

Recall that the function uhτ is piecewise affine on the intervals [tn−1, tn] and equals un
h

at time tn and that the function ũhτ is piecewise constant on the intervals (tn−1, tn]
and equals unθ

h = θun
h + (1 − θ)un−1

h on (tn−1, tn]. The following lemma provides us
with sharp upper and lower bounds for the temporal residual.

6.1 Lemma. Define the residual rn
τ ∈W−1,π(Ω), 1 ≤ n ≤ N , by

〈rn
τ , v〉 =

∫
Ω

{
∇v · ap(x, u

nθ
h ,∇nθ

h ) · ∇(un
h − un−1

h )

+∇v · au(x, unθ
h ,∇unθ

h )(un
h − un−1

h )

+ vbp(x, unθ
h ,∇unθ

h ) · ∇(un
h − un−1

h )

+ vbu(x, unθ
h ,∇unθ

h )(un
h − un−1

h )
}
dx

∀v ∈W 1,π′

0 (Ω),

(6.1)

where the indices u and p denote the derivatives of the corresponding function with
respect to the second respectively third variable. Assume that the function G de-
fined in equation (4.2) satisfies the Lipschitz condition of Remark 4.3 and that ‖u−
uhτ‖Lr(0,T ;W 1,ρ

0 (Ω)) ≤ R0 and ‖u−ũhτ‖Lr(0,T ;W 1,ρ
0 (Ω)) ≤ R0. Then the following upper

and lower bounds for the temporal residual are valid:

‖Rτ (uhτ )‖Lp(0,T ;W−1,π(Ω))

≤

{
N∑

n=1

τn‖rn
τ ‖

p
−1,π

}1,p

+
γ

2

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r (6.2)

and {
N∑

n=1

τn‖rn
τ ‖

p
−1,τ

}1/p

≤ 2{p+ 1}1/p

{
‖Rτ (uhτ )‖Lp(0,T ;W−1,π(Ω))

+
γ

2

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r}
.

(6.3)

Proof. From the definition (4.5) of the temporal residual we immediately obtain

Rτ (uhτ ) = G(ũhτ )−G(uhτ )

=
∫ 1

0

DG(uhτ + s(ũhτ − uhτ )(ũhτ − uhτ )ds

= DG(ũhτ )(ũhτ − uhτ )

+
∫ 1

0

[DG(uhτ + s(ũhτ − uhτ ))−DG(ũhτ )](ũhτ − uhτ )ds

= R(1)
τ (uhτ ) +R(2)

τ (uhτ ).

(6.4)
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From the definition of the functions uhτ and ũhτ we conclude that

ũhτ − uhτ = (θ − t− tn−1

τn
)(un

h − un−1
h ) on (tn−1, tn]. (6.5)

A straight forward calculation yields for all q ∈ (1,∞) and all n between 1 and N∫ tn

tn−1

|θ − t− tn−1

τn
|qdt = τn

∫ 1

0

|θ − z|qdz = τn
1

q + 1
{θq+1 + (1− θ)q+1}. (6.6)

Equations (6.5) and (6.6) in particular imply

‖uhτ − ũhτ‖Lr(0,T ;W 1,ρ
0 (Ω)) ≤

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}1/r

.

This estimate and the Lipschitz continuity of DG yield an upper bound for the term
R

(2)
τ in equation (6.4):

‖R(2)
τ (uhτ )‖Lp(0,T ;W−1,π(Ω)) ≤

1
2
γ‖uhτ − ũhτ‖2

Lr(0,T ;W 1,ρ
0 (Ω))

≤ 1
2
γ

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r

.

(6.7)

Since this is the second term on the right-hand sides of estimates (6.2) and (6.3), it re-
mains to prove that ‖R(1)

τ (uhτ )‖Lp(0,T ;W−1,π(Ω)) is bounded from above and from be-
low by the corresponding multiples of {

∑N
n=1 τn‖rn

τ ‖
p
−1,π}1/p. Equations (4.2), (6.1),

and (6.5) yield

R(1)
τ (uhτ ) = (θ − t− tn−1

τn
)rn

τ on (tn−1, tn]. (6.8)

Combining this with equation (6.6) and observing that

2−q ≤ θq+1 + (1− θ)q+1 ≤ 1

for all q ∈ (1,∞) and all θ ∈ [ 12 , 1], we obtain the estimate

{
1

p+ 1
2−p

}1/p
{

N∑
n=1

τn‖rn
τ ‖

p
−1,π

}1/p

≤ ‖R(1)
τ (uhτ )‖Lp(0,T ;W−1,π(Ω))

≤

{
N∑

n=1

τn‖rn
τ ‖

p
−1,π

}1/p

.

This completes the proof of estimates (6.2) and (6.3).
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7. A preliminary a posteriori error estimate

The following lemma gives a posteriori error bounds which are reliable and efficient
in the sense described in the Introduction. However, they are not suited for practical
computations since they incorporate Sobolev norms of a negative order. In Section 9
we will bound these terms by computable quantities.

7.1 Lemma. Assume that the functions F,G, u, uhτ , and ũhτ satisfy the conditions
of Lemma 4.2, Remark 4.3, and Lemma 6.1. Then the error between the solution u

of problems (2.1), (2.2) and the solution uhτ of problems (3.1), (3.2) is bounded from
above by

‖u− uhτ ‖W r(0,T ;W 1,ρ
0 (Ω),W−1,π(Ω))

≤ c]

{
‖u0 − π0u0‖−1,π +

{
N∑

n=1

τn[(ηn
h)p + ‖rn

τ ‖
p
−1,π]

}1/p

+

{
N∑

n=1

τn(Θn
h)p

}1/p

+

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r} (7.1)

and from below by{
N∑

n=1

τn [(ηn
h)p + ‖rn

τ ‖
p
−1,π]

}1/p

≤ c]

{
‖u− uhτ‖W r(0,T ;W 1,ρ

0 (Ω),W−1,π(Ω))

+

{
N∑

n=1

τn(Θn
h)p

}1/p

+

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r}
.

(7.2)

The quantities ηn
h , Θn

h and rn
τ are defined in equations (5.6), (5.7) and (6.1) respec-

tively.
Proof. The upper bound (7.1) immediately follows from the decomposition (4.6) of
the residual and Lemmas 4.2, 5.3 and 6.1.
In view of Lemma 4.2, the lower bound (7.2) is established once we have proved that{

N∑
n=1

τn [(ηn
h)p + ‖rn

τ ‖
p
−1,π]

}1/p

≤ c]

{
‖∂uhτ

∂t
+G(uhτ )‖Lp(0,T ;W−1,π(Ω))

+

{
N∑

n=1

τn(Θn
h)p

}1/p

+

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r}
.

(7.3)
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We start with the rn
τ -term on the left-hand side of estimate (7.3). From the decom-

position (4.6) and Lemmas 5.3 and 6.1 we obtain

{
N∑

n=1

τn‖rn
τ ‖

p
−1,π

}1/p

≤ 2{p+ 1}1/p

{
‖Rτ (uhτ )‖Lp(0,T ;W−1,π(Ω))

+
γ

2

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r}

≤ 2{p+ 1}1/p

{
‖∂uhτ

∂t
+G(uhτ )‖Lp(0,T ;W−1,π(Ω))

+ c†

{
N∑

n=1

τn[(ηn
h)p + (Θn

h)p]

}1/ρ

+
γ

2

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r}
.

(7.4)

To bound the ηn
h -term on the left-hand side of estimate (7.3) we set

w =
N∑

n=1

(α+ 1)(
t− tn−1

τn
)α(ηn

h)p−πwnχ(tn−1,tn ](t),

where the functions wn are as in Lemma 5.3 and χ(tn−1,tn] denotes the characteristic
function of the interval (tn−1, tn]. The parameter α ≥ 0 is arbitrary at present and
will be fixed later. Since 0 ≤ ( t−tn−1

τn
)α ≤ 1 on [tn−1, tn] and since (p− 1)p′ = p, we

obtain from the second line of estimate (5.9) that

‖w‖
Lp′ (0,T ;W 1,π′

0 (Ω))

≤ c†(α+ 1)

{
N∑

n=1

τn(ηn
h)(π−1)p′(ηn

h)(p−π)p′

}1/p′

= c†(α+ 1)

{
N∑

n=1

τn(ηn
h)p

} p−1
p

.

(7.5)

Since ∫ tn

tn−1

(α+ 1)(
t− tn−1

τn
)αdt = τn,
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the first line of estimate (5.9) implies that
N∑

n=1

τn(ηn
h)p

≤
∫ T

0

〈Rh(uhτ ), w〉+
N∑

n=1

τnΘn
hc†(η

n
h)π−1(ηn

h)p−π

≤
∫ T

0

〈Rh(uhτ ), w〉+ c†

{
N∑

n=1

τn(Θn
h)p

}1/p {
N∑

n=1

τn(ηn
h)p

} p−1
p

.

(7.6)

Equations (4.6) and (6.4) yield∫ T

0

〈Rh(uhτ ), w〉 =
∫ τ

0

〈∂uhτ

∂t
+G(uhτ ), w〉

−
∫ T

0

〈R(1)
τ (uhτ ), w〉 −

∫ T

0

〈R(2)
τ (uhτ ), w〉.

(7.7)

Estimate (7.5) gives∫ T

0

〈∂uhτ

∂t
+G(uhτ ), w〉

≤‖∂uhτ

∂t
+G(uhτ )‖Lp(0,T ;W−1,π(Ω))c†(α+ 1)

{
N∑

n=1

τn(ηn
h)p

} p−1
p

.

(7.8)

Estimates (6.7) and (7.5) imply∫ T

0

〈R(2)
τ (uhτ ), w〉

≤γ
2

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r

c†(α+ 1)

{
N∑

n=1

τn(ηn
h)p

} p−1
p

.

(7.9)

Equation (6.8) and the second line of estimate (5.9) finally yield∫ T

0

〈R(1)
τ (uhτ ), w〉

=
N∑

n=1

〈rn
τ , wn〉(ηn

h)p−π(α+ 1)
∫ tn

tn−1

(θ − t− tn−1

τn
)(
t− tn−1

τn
)αdt

=
N∑

n=1

〈rn
τ , wn〉(ηn

h)p−π(θ − α+ 1
α+ 2

)τn

≤c†|θ −
α+ 1
α+ 2

|
N∑

n=1

τn‖rn
τ ‖−1,π(ηn

h)p−1

≤c†|θ −
α+ 1
α+ 2

|

{
N∑

n=1

τn‖rn
τ ‖

p
−1,π

}1/p {
N∑

n=1

τn(ηn
h)p

} p−1
p

.

(7.10)
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Equation (7.7) and estimates (7.6), (7.8), (7.9), and (7.10) give

{
N∑

n=1

τn(ηn
h)p

}1/p

≤c†(α+ 1)‖∂uhτ

∂t
+G(uhτ )‖Lp(0,T ;W−1,π(Ω))

+ c†(α+ 1)
γ

2

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r

+ c†

{
N∑

n=1

τn(Θn
h)p

}1/p

+ c†|θ −
α+ 1
α+ 2

|

{
N∑

n=1

τn‖rn
τ ‖

p
−1,π

}1/p

.

Inserting estimate (7.4) in this inequality we finally arrive at

{
N∑

n=1

τn(ηn
h)p

}1/p

≤c†[(α+ 1) + |θ − α+ 1
α+ 2

|2{p+ 1}1/p]‖∂uhτ

∂t
+G(uhτ )‖Lp(0,T ;W−1,π(Ω))

+ c†[1 + |θ − α+ 1
α+ 2

|c†2{p+ 1}1/p]

{
N∑

n=1

τn(Θn
h)p

}1/p

+
γ

2
c†[(α+ 1) + |θ − α+ 1

α+ 2
|2{p+ 1}1/p]

{
N∑

n=1

τn‖un
h · un−1

h ‖r
1,ρ

}2/r

+ c†c
†|θ − α+ 1

α+ 2
|2{p+ 1}1/p

{
N∑

n=1

τn(ηn
h)p

}1/p

.

(7.11)

Now we choose the parameter α such that the ηn
h -term on the right-hand side of

estimate (7.11) is balanced by the term on the left-hand side. For the mid-point rule,
i.e. θ = 1

2 , this is obvious: We simply choose α = 0 and the ηn
h -term of the right-hand

side of (7.11) vanishes. In the case 1
2 < θ ≤ 1 we choose

α =
2K(2θ − 1)

2K(1− θ) + 1
with K = c†2{p+ 1}1/p.

This choice ensures that

c†c
†|θ − α+ 1

α+ 2
|2{p+ 1}1/p ≤ 1

2
and α ≤ 2K.
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Hence, estimate (7.11) takes the form

{
N∑

n=1

τn(ηn
h)p

}1/p

≤c

{
‖∂uhτ

∂t
+G(uhτ )‖Lp(0,T ;W−1,π(Ω))

+

{
N∑

n=1

τn(Θn
h)p

}1/p

+

{∑
n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r}1/p

(7.12)

with a constant c that only depends on p, c† and c†. Estimates (7.4) and (7.12) prove
inequality (7.3) and thus complete the proof of the lower bound (7.2).

8. W 1,q-stability results for the Laplacian

The results of the next section are based on the W 1,q-stability of the Laplacian both
in its analytical and discrete form. We start with the analytical case. The following
result is well-known for domains with smooth C1-boundary (cf. [8]). For polygonal
domains, however, we are not aware of a proof. Recall that for q ∈ [1,∞] the dual
Lebesgue exponent is denoted by q′ ∈ [1,∞] and is defined by 1

q + 1
q′ = 1.

8.1 Lemma. For every convex, bounded, polygonal domain Ω ⊂ IR2 and every
q ∈ [1,∞] there is a constant αq > 0 such that

inf
v∈W 1,q

0 (Ω)

sup
w∈W 1,q′

0 (Ω)

∫
Ω
∇v · ∇w

‖∇v‖0,q‖∇w‖0,q′
≥ αq. (8.1)

The constant αq only depends on q and on the maximum interior angle at the vertices
of Ω.
Proof. Inequality (8.1) is proved in [8] for domains Ω ⊂ IRn, n ≥ 2, with smooth
C1-boundary. The proof is based on the following three auxiliary results:

1. Inequality (8.1) holds for IRn.
2. Inequality (8.1) holds for the half-space H+ = {x ∈ IRn : x1 > 0}.
3. Inequality (8.1) holds for domains Hω = {x ∈ IRn : x1 > ω(x2, . . . , xn)} with

functions ω ∈ C1(IRn−1) satisfying ω(0) = 0 and ‖∇ω‖L∞(IRn−1) � 1.
The third result is the only point where the smoothness of the boundary comes
into play. The smoothness condition on ω can be relaxed to the condition that ω
should be Lipschitz continuous and that its Lipschitz constant is sufficiently small.
This, however, does not help us since it would require that the interior angles at the
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vertices of Ω should be sufficiently close to π. Instead we must prove that inequality
(8.1) holds for domains Hc = {x ∈ IR2 : |x2| ≤ cx1} with c > 0.
To verify this, choose a parameter c > 0 and keep it fixed. Then introduce polar
coordinates to transform Hc to the strip {(r, ϕ) : r > 0, |ϕ| ≤ α} where α = arctan c.
Next apply the scaling r → 2α

π r, ϕ → 2α
π ϕ to transform to the strip {(s, ψ) : s >

0, |ϕ| ≤ π
2 }. Then transform back to cartesian coordinates. The combination of these

transformations transforms Hc to the half space H+. Now, we already know that
inequality (8.1) holds for H+. Hence it also holds in polar-coordinates. Since the
left-hand side of (8.1) is invariant under scalings, inequality (8.1) holds in polar
coordinates on the strip {(r, ϕ) : r > 0, |ϕ| ≤ α} and thus on Hc.
Once we know that we may replace Hω by Hc, the rest of the proof of the lemma
proceeds as in [8].

8.2 Remark. When Ω is not convex but has a re-entrant corner with angle ω > π,
Lemma 8.1 can at best hold for Lebesgue exponents q ∈ [1, 2ω

ω−π ). This is due to the
fact that the singular solution r

π
ω sin(π

ωϕ) of the Laplacian is in W 1,q(Ω) only for this
realm of Lebesgue exponents.
In the proof of Lemma 8.1 the convexity is reflected by the fact that the transforma-
tion from polar to cartesian coordinates is globally invertible in the vicinity of convex
corners. For non-convex corners it is only locally invertible.

Now we come to the discrete case.

8.3 Lemma. Consider a convex, bounded, polygonal domain Ω ⊂ IR2 and an arbi-
trary affine equivalent, admissible and shape regular partition T of Ω. Denote by

S1(T ) = {v ∈ C(Ω) : v|K ∈ R1(K) ∀K ∈ T , v = 0 on T } (8.2)

the space of continuous piecewise linear finite element functions corresponding to T .
Then for every q ∈ [1,∞] there is a constant βq > 0 such that

inf
vT ∈S1(T )

sup
wT ∈S1(T )

∫
Ω
∇vT∇wT

‖∇vT ‖0,q‖∇wT ‖0,q′
≥ βq. (8.3)

The constant βq only depends on q, on the maximum interior angle at the vertices of
Ω, and on the shape parameter supK∈T hK/ρK of T .
Proof. We denote by RT : W 1,1

0 (Ω) → S1(T ) the Ritz projection which is defined by∫
Ω

∇(RT v)∇wT =
∫

Ω

∇v∇wT ∀v ∈W 1,1
0 (Ω), wT ∈ S1(T ).

Consider first the case q ∈ [1, 2]. Then we have q′ ≥ 2. From [7] and [4, Chap. 7] we
know that RT is stable in the W 1,q′ -norm, i.e., there is a constant cq′ > 0 such that

‖∇(RT w)‖0,q′ ≤ cq′‖∇w‖0,q′ ∀w ∈W 1,q′

0 (Ω).
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The constant cq′ only depends on q′, on the maximum interior angle at a vertex of
Ω, and on the shape parameter of T .
Consider an arbitrary function vT ∈ S1(T ) and a number δ ∈ (0, 1). From Lemma
8.1 we know that there is a function wδ ∈W 1,q′

0 (Ω) with ‖∇wδ‖0,q′ = 1 and∫
Ω

∇vT∇wδ = δαq‖∇vT ‖0,q.

Together with the stability of the Ritz projection this implies

sup
wT ∈S1(T )

∫
Ω
∇vT∇wT

‖∇vT ‖0,q‖∇wT ‖0,q′
≥

∫
Ω
∇vT∇(RT wδ)

‖∇vT ‖0,q‖∇(RT wδ)‖0,q′

≥ 1
cq′

∫
Ω
∇vT∇(RT wδ)

‖∇vT ‖0,q‖∇wδ‖0,q′

=
1
cq′

∫
Ω
∇vT∇wδ

‖∇vT ‖0,q‖∇wδ‖0,q′

≥δαq

cq′
.

Since δ and vT were arbitrary this proves inequality (8.3) with βq = αq

cq′
.

One easily checks that (8.3) implies the stability of RT in the W 1,q-norm with cq =
1
βq

= cq′

αq
.

Now consider the case q > 2. This implies 1 < q′ < 2. Since we already have estab-
lished the stability of RT in the W 1,q′ -norm with cq′ = 1

βq′
= cq

αq′
, we can proceed as

in the case q ≥ 2 and obtain inequality (8.3) with βq = αq

cq′
= αqαq′

cq
.

9. The final a posteriori error estimate

In this section we make computable the error estimator of Lemma 7.1 by replacing
the negative Sobolev norms of the rn

τ -terms by computable quantities. This will be
done with the help of suitable auxiliary discrete Poisson equations.
As in Section 5 we choose an integer ` and denote for every n between 1 and N by

ap;h,n(x, unθ
h ,∇unθ

h ), au;h,n(x, unθ
h ,∇unθ

h ), bp;h,n(x, unθ
h ,∇uhθ

h ), bu;h,n(x, unθ
h ,∇unθ

h )

the L2-projections of

ap(x, u
nθ
h ,∇unθ

h ), au(x, unθ
h ,∇unθ

h ), bp(x, unθ
h ,∇unθ

h ), bu(x, unθ
h ,∇unθ

h )

on discontinuous tensors, vector-fields and functions respectively which are piecewise
polynomials of degree ` on the elements of T̃h,n. For abbreviation we set for every
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element K ∈ T̃h,n, every edge E ∈ Ẽh,n and every n between 1 and N

R̃K =− div[ap;h,n(x, unθ
h ,∇unθ

h ) · ∇(un
h − un−1

h )]

− div[au;h,n(x, unθ
h ,∇unθ

h )(un
h − un−1

h )]

+ bp;h,n(x, unθ
h ,∇unθ

h ) · ∇(un
h − un−1

h )

+ bu;h,n(x, unθ
h ,∇unθ

h )(un
h − un−1

h ),

R̃E =ap;h,n(x, unθ
h ,∇unθ

h ) · ∇(un
h − un−1

h )

+ au;h,n(x, unθ
h ,∇unθ

h )(un
h − un−1

h ),

D̃K =div[(ap(x, u
nθ
h ,∇unθ

h )− ap;h,n(x, unθ
h ,∇unθ

h )) · ∇(un
h − un−1

h )]

− div[(au(x, unθ
h ,∇unθ

h )− au;h,n(x, unθ
h ,∇unθ

h ))(un
h − un−1

h )]

+ (bp(x, unθ
h ,∇unθ

h )− bp;h,n(x, unθ
h ,∇unθ

h )) · ∇(un
h − un−1

h )

+ (bu(x, unθ
h ,∇unθ

h )− bu;h,n(x, unθ
h ,∇unθ

h ))(un
h − un−1

h ),

D̃E =(ap(x, u
nθ
h ,∇unθ

h )− ap;h,n(x, unθ
h ,∇unθ

h )) · ∇(un
h − un−1

h )

+ (au(x, unθ
h ,∇unθ

h )− au;h,n(x, unθ
h ,∇unθ

h ))(un
h − un−1

h ).

Of course, the right-hand sides of the above equations must always be interpreted as
the restriction of corresponding functions to the relevant element or edge.
Recall the definitions (6.1) of the residuals rn

τ and (8.2) of the spaces S1(T ).

9.1 Lemma. For every integer n between 1 and N denote by ũn
h ∈ S1(T̃h,n) the

unique solution of the discrete Poisson equation∫
Ω

∇ũn
h∇vh = 〈rn

τ , vh〉 ∀vh ∈ S1(T̃h,n). (9.1)

Define the error indicator η̃n
h by

η̃n
h =

{ ∑
K∈T̃h,n

hπ
K‖R̃K + ∆ũn

h‖π
0,π;K

+
∑

E∈Ẽh,n

hE‖[nE · (∇ũn
h − R̃E)]E‖π

π;E

}1/π (9.2)

and the data error Θ̃n
h by

Θ̃n
h =


∑

K∈T̃h,n

hπ
K‖D̃K‖π

0,π;K +
∑

E∈Ẽh,n

hE‖D̃E‖π
π;E


1/π

. (9.3)

24



Then there are two constants c̃† and c̃†, which only depend on the polynomial degree
` and on the ratios hK/ρK , such that

‖rn
τ ‖−1,π ≤ c̃†{η̃n

h + ‖∇ũn
h‖0,π + Θ̃n

h},
η̃n

h + ‖∇ũn
h‖0,π ≤ c̃†{‖rn

τ ‖−1,π + Θ̃n
h}.

(9.4)

Proof. We choose an integer n between 1 and N and keep it fixed.
Lemma 8.1 implies that the Poisson equation∫

Ω

∇Ũn∇v = 〈rn
τ , v〉 ∀v ∈W 1,π′

0 (Ω)

admits a unique solution Ũn ∈W 1,π
0 (Ω) and that

‖∇Ũn‖0,π ≤
1
απ

‖rn
τ ‖−1,π.

The definition of the negative Sobolev norms on the other hand yields

‖rn
τ ‖−1,π ≤ ‖∇Ũn‖0,π.

Lemma 8.3 similarly gives

‖∇ũn
h‖0,π ≤

1
βπ
‖rn

τ ‖−1,π.

The triangle inequality therefore implies

1
3

min{απ, βπ}{‖∇ũn
h‖0,π + ‖∇(Ũn − ũn

h)‖0,π}

≤ ‖rn
τ ‖−1,π

≤ ‖∇ũn
h‖0,π + ‖∇(Ũn − ũn

h)‖0,π.

(9.5)

Using standard arguments (cf. e.g. [9]) we infer from Lemmas 5.1 and 5.2 that

‖∇(Ũn − ũn
h)‖0,π ≤ c{η̃n

h + Θ̃n
h},

η̃n
h ≤ C{‖∇(Ũn − ũn

h)‖0,π + Θ̃n
h}

(9.6)

with constants c and C which only depend on the polynomial degree ` and the ratios
hK/ρK . Combining estimates (9.5) and (9.6) we arrive at the desired estimate (9.4)
of ‖rn

τ ‖−1,π.

A standard duality argument for the L2-projection onto finite element spaces
yields

‖u0 − π0u0‖−1,π ≤ c

 ∑
K∈Th,0

hπ
K‖u0 − π0u0‖π

0,π;K


1/π

.

Combining this estimate and Lemmas 7.1 and 9.1 proves our final result:
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9.2 Theorem. If the conditions of Lemma 7.1 are satisfied the error between the
solution u of problems (2.1), (2.2) and the solution uhτ of problems (3.1), (3.2) is
bounded from above by

‖u− uhτ‖W r(0,T ;W 1,ρ
0 (Ω),W−1,π(Ω))

≤c̃]
{{

N∑
n=1

τn[(ηn
h)p + (η̃n

h)p + ‖∇ũn
h‖

p
0,π]

}1/p

+

{
N∑

n=1

τn[(Θn
h)p + (Θ̃n

h)p]

}1/p

+

 ∑
K∈Tn,0

hπ
K‖u0 − π0u0‖π

0,π;K


1/π

+

{
N∑

n=1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r}

(9.7)

and from below by {
N∑

n=1

τn[(ηn
h)p + (η̃n

h)p + ‖∇ũn
h‖

p
0,π]

}1/p

≤c̃]

{
‖u− uhτ‖W r(0,T ;W 1,ρ

0 (Ω))

+

{
N∑

n=1

τn[(Θn
h)p + (Θ̃n

h)p]

}1/p

+

{
N∑

n+1

τn‖un
h − un−1

h ‖r
1,ρ

}2/r}
.

(9.8)

The quantities ηn
h ,Θ

n
h, η̃

n
h , Θ̃

n
h, and ũn

h are defined in equations (5.6), (5.7), (9.2),
(9.3), and (9.1) respectively.

9.3 Remark. The left-hand side of estimate (9.8) is our error indicator. Its first
term controls the error of the space-discretization and can be used for adapting
the spatial mesh. The second and third terms on the left-hand side of (9.8) control
the error of the time-discretization and can be used to adapt the temporal mesh.
The last terms on the right-hand sides of estimates (9.7) and (9.8) are not present
for linear differential equations. They control the linearization error that is implicit
in the discretization. Since they are computable, they can be used to control this
linearization error. These contributions are of high-order in the sense that up to a
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different Lp-norm, they are similar to the square of the error indicator. The second
and third term on the right-hand side of estimate (9.7) and the second term on the
right-hand side of estimate (9.8) are data errors. In contrast to linear problems they
not only involve given data but the discrete solution as well.

9.4 Remark. Estimate (9.8) is based on the lower bound of Lemma 4.2. This in
turn follows from the lower bound in the abstract error estimate of Lemma 4.1. The
latter only involves the Fréchet derivative DF (u). Applied to differential equations
this corresponds to a linearized differential operator. Since such operators have a
local effect, the lower bounds can be localized. Therefore, as for linear differential
equations (cf. [12]), estimate (9.8) has an analogue that is local with respect to time.
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