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Goal
Adaptive Finite Element Methods for
Non—Stationary Convection-Diffusion > Present space-time adaptive finite element methods for
Problems non-stationary convection-diffusion equations based on

stable discretizations and a posteriori error estimates.

» A posteriori error estimates should yield upper and lower
bounds for the energy norm of the error that are uniform
Ruhr-Universitit Bochum Wlth 1'respect to all possible relative sizes of convection to

www.ruhr-uni-bochum.de/numl diffusion.

R. Verfurth

) » Use a common framework for various stabilization methods.
Tiibingen / July 20th, 2017
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g 1 L variational Problem

Outline Differential Equation

Owu—ceAu+a-Vu+pu=f inQx (0,7]
Variational Problem w=0 onT x(0,T]

. L uw=1uy in§
Discretization

v

0<e<1,8>0,acR? |a] =1, f piecewise polynomial.

b IPEEermor, [BTasen Aokl gl > Results hold for general f, variable coefficients, and mixed

boundary conditions. Then ¢ is a lower bound for the

Space-Time Adaptivity smallest eigenvalue of the diffusion and 3 is a lower bound
for b — %diva with b denoting the reaction.
Concluding Remarks » General right-hand sides f and variable coefficients give

rise to additional oscillation terms.
» All estimates should be uniform w.r.t. e.
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Variational Problem Norms

1
. , o , > Energy norm [[vll| = {& |[Vo|* + 8 o]} *
Find u € L*(0,T; H}(Q)) with d,u € L2(0,T; H~1(2)) such

that u = ug in L? and for all t € (0,7) and all v € H}(Q2) » Dual norm  [||¢[|, =  sup (¢, 0)
veri@\goy VIl

(Opu , v) —i—/ {eVu-Vv+a-Vuv + puv} = / fo » Error norm ,
Q Q
~—~— — . 2 . 2
—— —— lullxupy = e55 sup [ DI + [ o a
b ) 3
+ [ o +a- Va2 ae
a
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Meshes and Spaces Discrete Problem

Find u%‘—” € X, 0 <n < Nz, such that u% = moug and,
forn=1,...,Nz and all vy, € X,, with
» 7 ={(th—1,tn] : 1 <n < Nz} partition of [0, T]. U™ = 0vu + (1 - g)vug_;ll
> T =1ln — th1.
> 7., 0 <n < Nz, affine equivalent, admissible, shape regular <u% B un’rn__ll

B no . né)q 5 _
partitions of ). ’UTn) + B(U™,vr,) + Sn(U™, vr,) = (£, vry,)

Tn,
» Transition condition: There is a common refinement ’7;1 of
7;L, amdl %fl suc/h that fue = cfugee for all KCe 7, and all » The stabilization term .5, is supposed to be linear in its
L0 T il T second argument and affine in its first argument, it may
» X,, C H}(Q) finite element space corresponding to 7. depend on 7, and on f.

» Solution u7 is continuous piece-wise affine and equals w7
at t,,.
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Stabilizations Basic Steps
» Streamline diffusion method
Sn(u,v) =3 g Ok [ {Ou —eAu+a-Vu+ fu— fla- Vo » Error and residual are equivalent.
with Uk |a| < chg » The residual splits into a spatial and a temporal residual.
> Continuous interior penalty method » The norm of the sum of these is equivalent to the sum of
Sn(u,v) = 2123 Vg fE Je(a-Vu)Jg(a- Vo) their norms.
ith < . . . .
vl b < @l » Derive a reliable, efficient and robust error indicator for the
» Local projection scheme temporal residual.
Sn(u,0) = > I fM Ky (a-Vu) sy (a- Vo) » Derive a reliable, efficient and robust error indicator for the

with 9y |a| < chpr and T — K projection onto S“~1(M) spatial residual

Subgrid scale approach
Sn(u,v) =3 Ok [ra- VIL(u) a- VIL,(v)
with Jx |a| < chg and II,, projection onto Y,, C X,

» All stabilizations yield the same spatial error indicator.
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Equivalence of Error and Residual Proof of the Equivalence
> uz is continuous piece-wise affine and equals u7- at tp.
> Residual: » Relation of residual and error:
(R(uz), v) = (£, v) — (Ouz, v) — B(uz,v) (R(uz) , v) = (Ore, v) + B(e,v)
» Lower error-bound: » Lower error-bound: Definition of primal and dual norm
plus Cauchy-Schwarz inequality.
1B 22, i) < V2l = uzll 1) U bound: Paraboli timate with
> — : =]
> Upiser emxar bomdk pper error-bound: Parabolic energy estimate with v = e

as test-function.

[

2 2 2
s =zl o,y < {4110 = Tt +6 1R B0ttt }
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Decomposition of the Residual Motivation of the Lower Bound
> Recall U™ = 6Vl + (1 - 60)Vui
» Temporal residual: » Strengthened Cauchy-Schwarz inequality for v = ¢ and
__ b—t.
(R (uz), v) = B{U™ — uz,v) W= p=a:
» Spatial residual: J 1 V3
; vw = ge(b—a) = == (vl o) Wl @)
<Rh(UI) ) ’U> = <€a ’U> - <atuI7 U> - B(Un 7U) Ha
> :
> Splitting: Ruz) = Re(uz) + Ri(uz) o r
. 2 -1y . 2 3 2 2
» Estimate for L2(t,_1,tn; H )1norms. o+ wlf?, b > (1 _ 7) {“v“(a,b) T Hw”(a,b)}
1 2 2) 2
= { IR @D + 1 Ba2) P }* < |Rr(uz) + Ri(uz) |
< B (uz)|| + [ Ba(uz)
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Proof of the Lower Bound Estimation of the Temporal Residual
» Rp(uz) is piece-wise constant. > R, (uz) = (9 t— tn 1) o with
» R, (ug) is piece-wise affine: R (uz) = (9 H—”1> with
vz 5 e a (0", v) = B, — i, v).
(p", v) = Buy, —ur. 11,11) » Upper bound:
» Choose v,w € H}(£2) such that eIl wp, —ui L 4 Ha'V(uT — 11)
2
ol = 1Br(uz)lls»  (Ru(uz), v) = [[Ra(u)llly, » Follows from definition of p™ and |||-||],.
2
1wl = lllo™ Ml (" w) = llp"[lly- > Lower bound:
1
> Insert 3 (t_:_zfl v+ ir;nltw as test-function in 3 {H‘uTn —uT A+ ‘Ha V(ur, —uTn . H } <" Ill
representation of R(uz).
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Proof of the Lower Bound

n— 1

» Set w" = uf —uy  and choose v € H}(Q) with
2
ol = la- Vew™|l, and (a-Vu™, v) = la- Vw"|[

> Insert %w” + %v in the definition of p™:

1 1
<Pna iw" + 2U>

1 1 1
=3 (eVuw™, Vu™) + 3 (Bw™, w") + i(a -V, w")

2 =
=3 =

43 €V, Vo) + 2 (Bu”, v) + 5 (a- Vur, v)

>~ 3 llwn |l lla-Vwn|l, =3 lla-Vwr|?
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Estimation of the Convective Derivative 11

» Assume that |a| > .

» Auxiliary problem with analytical and discrete solutions ®
and &7 :

e(Vp, Vi) + B8 (p, ) = ( - V(up, —ug ) z/)> (%)
1
> S UIerll+1ie — 27} < ||a- V0, — i)

< @7 Il + [1® — @7 |l
> |||® — @7, ||| is equivalent to robust residual error indicator
ne for (x).
a-V(up —up 11)

» Hence ’

H is equivalent to |||®7, ||| + 72.
*
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Estimation of the Convective Derivative I

» Assume that |a|] < c.e.

» Friedrichs’ inequality implies
=il

(a-V(uT —u ), ) < |al Hv w — L)

» Hence H‘a- V( UT — uT H’ < ce.Cq

H‘a-V(uT —u’;- ! )

ca [[Vo||.

n—1

u7- —ur and

is equivalent to H‘uT — 11

*
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Estimation of the Spatial Residual

» Spatial error indicator 7);':

1
mh=3 > ax’|Rklk + Y ¢ zop|Rsl
KeTn BEs

. 1 1
> aS:mm{s 2hg, B 2}

» Ry and Rg are the usual element and interface residuals.

» Standard arguments for stationary problems yield:

lIBw(uz)lll, < ey + IR (uz) ., 7 < et Il Ru(uz) |l
> |11 Rn(uz)l||, measures the consistency error of the
stabilization.

> ci, ¢! only depend on the polynomial degrees and on the
shape parameters of the partitions 7.
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Proof of the Upper Bound

» L?-representation:

(Ru(uz) , v) = /Qm/zjv

» Quasi-interpolation error estimate:
[ = Il < cox o]l
» Trace inequality:

> _ 1Bl 12 2hk|E]
vl < & [ollx + IR [vllx IVollx
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Estimation of the consistency error ||I},R;(uz)l|,

(Bn(uz), Imv)

> I Rp(uz)lll, = sup
B TP
— sup SH(UI,[MU)
s |

» Streamline diffusion and interior penalty methods:

IHABR(u)l, < en

» Local projection scheme and subgrid-scale approach:

Vi € ker kpq and Iyqv € ker IT,, hence
173 Rr(uz)lll, = 0.
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Proof of the Lower Bound

» Insert ¥i Ry in L2-representation with standard element
cut-off functions k.

» Insert YgyRE in L?-representation with squeezed face
cut-off functions ¥g » and

¥ = e2h'ap = min {1,5%@1,3—%}.

Jos
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A Posteriori Error Estimate

» Define the space-time error estimator by:

=(np)? 2

2 ~n\2
+ (127 Il +77)

1
SN 32 - n\2 n n—1
=kt o -

spatial

NV
temporal

» Then
%

Nz
* 2 2
lellxo.r) < ¢ {HuUwOuoll +> (") } ;
n=1

n" < e ||6HX(tn,1,tn)-
> Cx, ¢* only depend on the polynomial degrees and the
shape parameters of the partitions 7.
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Overview Adaptive Space-Time Algorithm

1. Given 79 and eps, choose €g, €, 7, €+ such that
g2 +Te? +e2=eps®. Set n=0.
Determine 7y and moug such that ||ug — moug|| < eo.

» The adaptive Algorithm yields a solution such that, for all

times, its error is below a prescribed tolerance eps.
» The algorithm consists of several modules that coarsen and ) . N i
refine spatial meshes. Set 1, = 6*/(||fHQX(07T) + ||V (moup)||”) minimal time-step.

» An a priori bound for the energy of the discrete solution Increment n by 1 and set 7, = min{QTn 1T —tp1}.

co B 59

guarantees that the final time is actually reached within a Determine 7, = COARSEN(uZ " , Tp—1).
finite number of time-steps. Determine (u , 7, Tp) = ADAPT(u%?_ll,Tn, Tos Tt €nr)
» The coarsening of spatial meshes leads to an increase in the and compute the energy—increment
0 9 0 0 2
energy of the discrete solution which must effectively be T = H TFnUT uTn ) 1 up — ﬂnu% 11
controlled. 7 It e o EL (G e
. o to 8. erwise determine
» Results hold for reaction-diffusion problems with dominant s =% &
e Tn = REFINE(7n «, Tn, Tn—1) and go to 6.
diffusion, ie. a =0 and 3 < ¢,e. ’ .
8. If t,_1 + 7, =T, stop. Otherwise go to 4.
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Module COARSEN Module REFINE

» This module is used in two different ways depending on its

» COARSEN (u%}l,ﬁl,l) produces a partial coarsening of 7,_1. input arguments. )
» This module may not be based on an error indicator at all; > Given a partition 7 and an error indicator n = (3, 1%)?,
its output may be independent of w7 1 and may equal REFINE(7, 7) produces a new admissible partition such
T 1. that at least one element in the subset argmax s+ nx of T
is refined.

» This module should remove as many degrees of freedom as

possible while keeping the difference of u” 1 to a suitable » Given a partition 7, an associated error indicator n and a

interpolation in the resulting finite element space at a second partition 7", REFINE(n, 7, 7") has the same effect as

moderate size. REFINE(n, 7) with the additional condition that at least
one element of 7 \ 7" which has previously been coarsened
is refined.
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Module ADAPT

. Solve the discrete problem for 7, and 7,; compute 07, n;.
2. If (02 + (n)? < &2 _, stop; otherwise go to 3.
. If np > n?, set T, = REFINE(n;, T,) and go to 1; else set

—1 —1 —1
ny = H’u% = Wnu%l_l”’ and ny = ‘ u%_l = 71',11/75”_1 ’
4. If 7, > 7, go to 5; else go to 6.
5. If n > ny, set 7, = max{%Tn,T*}; else set

T = REFINE(n}, Tn, Tn—1) and go to 1.
6. If (n7)% 4+ 2(n%)? < &% _, stop; else go to 7.

7. If gy > V20, set Ty,
T = REFINE(np, Tn,

= REFINE(np, Tr); else set
Tn—1). Go to 1.
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Modifications and Open Problems

» Instead on parabolic energy estimates, one can also base
the a posteriori error analysis on properties of the evolution
operator and elliptic reconstruction. This is an alternative
way to decouple the temporal and spatial error.

For the spatial error one may also use other a posteriori
error indicators, e.g. auxiliary local discrete problems,

H (div)-liftings, . ... These, however, may not be robust.
Mildly nonlinear problems may be handled similarly. The
results, however, are less complete and are based on the
assumption that the variational solution is a regular one in
the sense of the implicit function theorem.

Contrary to stationary problems, for time-dependent
problems, the optimality of the adaptive algorithm is
completely open.
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LSpace-Time Adaptivity

Convergence Proof

» Difficulty: The goal 1 < eps involves all times while, at any

intermediate time, only information up to that time is
available.
» Basic steps:

» Prove an a priori bound for the discrete energy depending
only on the given data.

» Using convergence results for stationary problems, prove the

termination of the module REFINE.
» Prove the termination of the module ADAPT.
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