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Fundamentals

» Modelization

» Notations and Auxiliary Results

Deformation of Materials

» Notation:
» ) C R%: domain initially occupied by a material moving
under the influence of interior and exterior forces
» 1 € €): initial position of an arbitrary particle
» 2 = ®(n,t): position of particle  at time ¢ > 0
» Qt) = ©(,t): domain occupied by the material at time
t>0
» Basic assumptions:
» O(-,t) : Q — Q(t) is an orientation preserving
diffeomorphism for all ¢ > 0.
» ®(-,0) is the identity.
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Lagrange and Euler Representation Velocity

» Lagrange representation: Fix n and look at the trajectory
t— ®(n,t). n is called Lagrange coordinate. The Velocity of the movement at the point x = ®(n,) is
Langrange coordinate system moves with the fluid. o
» Euler representation: Fix the point z and look at the v(z,t) = ot ®(n, 1).
trajectory t +—+ ®(-,¢)~!(z) which passes through z. z is
called Euler coordinate. The Euler coordinate system is
fixed.
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Properties Transport Theorem
Do = ( )1<m<d Jacobi matrix of ®, J = det D® Jacobi d
determlnant of ®, A;; co-factors of D® (1 <i,j < d): - Vo f(z,t)dx
Z O pey, = 3 (1, / F(@ (0, ),6). (0, e
a( D<I> - J dtom,
= @ M M J )
=Z<— HJA”; D SRR /(atf( (0.0, 01,)
. igik o + VI(@(1,1),t) - v(D(n, ), ) (1, 1)
= > o, = Jdivv + £(@(n, 1), ) div v(@(n, 1), 1)T (1,1) ) di
Tk L

_ /V (t)(gt F(@,1) —i—div[f(m,t)v(m,t)])d:c
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Conservation of Mass Conservation of Momentum

» p denotes the density of the material.

> / pdz is the total mass of a control volume. > / pvdzx is the total momentum of a control volume.
V(t) v (t) .
» Total mass is conserved: > Its temporal change is
d 0 d 0 .
0= — dx = <_ + div[pv )dg;, — pvdx:/ (— pv| +divipv®@ v )d:v.
dt Jv ) g /V(t> o” ] dt Jy V(e \Ot [#v] [ ]
» This holds for every control volume, hence: » This is in equilibrium with exterior and interior forces.
o » Exterior forces are given by / pfdzx.
—p+div [pv] =0. V(t)
ot
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Interior Forces Cauchy Theorem

The previous assumptions imply:

Basic assumptions: » There is a tensor field T : Q — R¥*? guch that the interior
» Interior forces act via the surface of a volume V (¢). forces are given by / T - ndS.
oV (1)

» Interior forces only depend on the normal direction of the
surface of the volume.

» Interior forces are additive and continuous. / T ndS — / div Tdax.
vt Ve

» T is such that the divergence theorem of Gaufl holds
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Conservation of Momentum (ctd.) Conservation of Energy

> / edx is the total energy of a control volume.
V(1)

» The conservation of momentum and the Cauchy theorem
imply:

v

Its temporal change is in equilibrium with the internal
energy and the energy of exterior and interior forces.

9 : _ : Exterior forces contribute / pof - vdx.
/V(t) <&(pv) + div(pv ® v)) = /V(t) (pf + d1vl>. v

v

» Interior forces give / n-T-vdS = / div [I . v] dx.
This holds f | wroltvame, hemee: V) V)
> 15 10lds Tor every control volume, hence: » The Cauchy theorem implies that the internal energy is of

the form
ov

¢ i 3 -odS = divodz.
—(pv) +div(pv @ v) = pf +divT. n-odS /V(t) ivodr

ot ()
» Hence, conservation of energy implies
0 . . .
5:¢ +div(ev) = pf - v+ div(T - v) +dive.
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Constitutive Laws Consequences of the Constitutive Laws

Basic assumptions:

» T only depends on the gradient of the velocity. Above assumptions imply:

» The dependence on the velocity gradient is linear. » T = 2AD(v) + p(divv) I — pl,

» T is symmetric. where D(v) = (Vv + Vv?) is the deformation tensor, A,
(Due to the Cauchy theorem this is a consequence of the are the dynamic viscosities, p is the pressure, I is the unit
conservation of angular momentum.) tensor.

» In the absence of internal friction, T is diagonal and > e = pe+ %p\v|2,
proportional to the pressure, i.e. all interior forces act in where ¢ is often identified with the temperature.

normal direction. > o= aVe
» The total energy e is the sum of internal and kinetic energy.

» o is proportional to the variation of the internal energy.
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Compressible Navier-Stokes Equations in
Conservative Form

0 . B
5" +div(pv) =0

%(pv) +div(pv ® v) = pf + 2AdivD(v)
+ pgraddivv — grad p

%e + div(ev) = pf - v + 2Adiv[D(v) - v]
+ pdiv[divv - v] — div(pv) + aAe
p=p(p,e)
Lo
e= pet plv]
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Compressible Navier-Stokes Equations in
Non-Conservative Form

Insert first equation in second one and first and second equation
in third one:

2p + div(pv) =0

ot
P[%V + (v V)v] = pf + AAvV + (X + p) grad div v — grad p
P[%«S + pv - grade] = AD(v) : D(v) + p(div v)2 _ pdivy
+ aAe
p=p(p:€)
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Euler Equations
Inviscid flows, i.e. A =pu=0:

0 : _
Eria +div(pv) =0

0
a(pv) +div(pv ® v + pI) = pf

%e +div(ev +pv) = pf - v+ aAe
p=p(p,¢)

L 2
e = pe+ Splv]
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Non-Stationary Incompressible Navier-Stokes
Equations

v

Assume that the density p is constant,

v

replace p by %,

v

denote by v = % the kinematic viscosity,

v

drop the energy equation:
divv =20

%v—i—(v-V)v:f—i—yAv—gradp
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Reynolds’ Number

» Introduce a reference length L, a reference time 7T, a
reference velocity U, a reference pressure P, and a
reference force F' and new variables and quantities by
r=Ly,t=T7,v=Uu,p=Pq, f=Fg.

> ChooseT,FandPsuchthatT:%,F:”LTUand%:

» Then
divu=0
0
" + Re(u-V)u =f + Au — grad g,
where Re = % is the dimensionless Reynolds’ number.
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Stokes Equations

Linearize at velocity v = 0:

divv =0

—Av +gradp=f
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Stationary Incompressible Navier-Stokes
Equations

Assume that the flow is stationary:

divv =0
—VvAvV+ (v-V)v+gradp=1f
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Boundary Conditions

» Around 1827, Pierre Louis Marie Henri Navier suggested
the general boundary condition

Av-on+(1—=XA)n-T-n=0
Mv—(v-nn+(1-XM)[T n—(n-T-nn/=0

with parameters \,, \s € [0, 1] depending on the actual
flow-problem.

» A particular case is the slip boundary condition
vn=0,T n—(n-T nn=0.

» Around 1845, Sir George Gabriel Stokes suggested the
no-slip boundary condition v = 0.
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Sobolev Spaces and Norms Poincaré, Friedrichs and Trace Inequalities

1
» L%(Q) Lebesgue space with norm |||l = ||¢|| = { @2}2
Jo » Poincaré inequality: ||¢|| < cp diam(Q2)|p|;1 for all

> Hk(Q) ={pe LQ(Q) : D% € L2(Q)Va1 +...+ag <k}, ©E Hl(ﬂ) ﬂL%(Q)

k > 1, Sobolev spaces with semi-norm 1. .

1 » cp = - if () is convex.
2
ole0 = lole = {Za1+...+ad:k”Da‘P”2} and norm » Friedrichs inequality: ||¢|| < cp diam(2)|¢|; for all
1 1
k 2 ¢ € Hy(2)

Ielke = el = {Sholol?} )
» Norms of vector- or tensor-valued functions are defined > Trace inequality: [l¢|r < {CT,l(Q)H@ 1% + CT,2(Q)|<P|%} for

component-wise. all p € H(Q)
» HY Q) ={p e H(Q): p=00nT = 90} » cr1(Q) ~ diam(Q) 71, cr2(Q) &~ diam(Q) if Q is a simplex
» V={veH}V?: divv =0} or parallelepiped
> L3(Q) ={p e L*(Q) : Jo» =0}
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Finite Element Meshes T Finite Element Spaces

» QUT is the union of all elements in 7T .
» Affine equ1valer'1ce: Each K € T is either a triangle or a span{z® ... 2% g + ... +ag < k)

parallelogram, if d = 2, or a tetrahedron or a K anel hed

llelepiped, if d — 3 - Ru(K) = 1 1s a triangle or a tetrahedron

para ’ ' span{z{" - ... 25? : max{o,..., a4} <k}
» Admissibility: Any two elements in 7 are either disjoint or if K is a parallelogram or a parallelepiped

share a vertex or a complete edge or — if d = 3 — a complete

o P & P > SEUT) = {p: Q>R g|, € Ry(K)VK € T}

) =
k,0 k,—1
» Shape-regularity: For every element K, the ratio of its = S (T) = $""(T)nC(Q)
diameter hx to the diameter pyx of the largest ball > ( T) = ST N H (Q)
inscribed into K is bounded independently of K. _ { oe Sk, 0(7-) =0 onT}

» Mesh-size: h = h— = maxh
i KeT K
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Approximation Properties Vertices and Faces
ar esi?f,l(T)HSO — o7l < ch* et
FESks
oe chJrl(Q)7 LN » N: set of all element vertices
> inf o —prl; < chEHi|g) » &: set of all (d — 1)-dimensional element faces
— o7l S k+1
pT€SRO(T) ! » A subscript K, Q or I" to A/ or £ indicates that only those
pe Hk‘*‘l(Q)’ je€{0,1}, k e N* vertices or faces are considered that are contained in the
. —F respective set.
> inf  |o — @rl; < Al P

7S (T)
p € HH(Q) N Hy (),
j€{0,1}, k e N*
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Patches Nodal Shape Functions
ExNEp1 70 . . .
KMepr? » )\, denotes the nodal shape function associated with the
vertex z.
> WK = K’ . »
K P mL/\% 0 > It is uniquely defined by the conditions
K K/
| 2 WE = U K’ 1,0
S A € SYT), \(2) = 1, \(y) = 0Vy € M\ {=).
Kl
> i = U K > w, is the support of \,.
NEONK/ #0
> w= U \Vavg
ZGNK/
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A Quasi-Interpolation Operator
» Define the quasi-interpolation operator

Ry : LMQ) — SYO(T) by

O O
Ryp = Z AP, with @, = m
ZENQ Wz

» It has the following local approximation properties for all
p € Hy(Q)

l¢ — Rrollx < carhi|p

1,0k

1
o — Rrollax < cazhle

1wk
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Bubble Functions

» Define element and face bubble functions by

YK = ok H Az, YE=ag H Az

2eNK 2€NE
» The weights ax and ap are determined by the conditions

:1 :1.
max Y (r) =1, maxyp(z)

» K is the support of ¥k; wg is the support of ¢ p.

33/ 300

35/ 300

Computational Fluid Dynamics
L Fundamentals

LNo':a':ions and Auxiliary Results

Proof of the Local Approximation Properties

v

The Poincaré inequality implies for every vertex z

¢ — B, llw. < c;diam(w,)|p

The trace inequality yields for all faces E of all elements K
1 1

1w, -

v

lelle < ethy el + e2hg Lol k-
The properties of the nodal shape functions imply

le —Rrollx < Y le—2:llx+ > I:lx-
ZENK ZENKJ‘

v

v

The first term is bounded using the Poincaré inequality,
the second one using p € H ().

Computational Fluid Dynamics
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Inverse Estimates for the Bubble Functions

For all elements K, all faces F and all polynomials ¢ the
following inverse estimates are valid

1
crnkllellx < IWiellk,
IV(Wre)lx < crzihi el k,

1
ckllelle < lvzel e,
_1
IV(@EP)|lws < crarhy’llelE,

1
[Vp¢llus < crs khgllel s
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Proof of the Inverse Estimates Jumps

» Transform the left hand-sides to the reference simplex or
cube.

» Take into account that the left-hand sides define
semi-norms.

> np: a unit vector perpendicular to a given face F

» [¢|p: jump of a given piece-wise continuous function across

. . . . a given face E in the direction of ng
» Invoke the equivalence of norms on finite dimensional

spaces to prove the corresponding estimates on the
reference element.

» [¢|p depends on the orientation of ng but quantities of the
form [ng - Vy|g are independent thereof.

» Transform the right-hand sides back to the current element
or face.
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Variational Formulation of the Stokes Equations A Variational Formulation of the Stokes
Equations

Computational Fluid Dynamics
LVariational Formulation of the Stokes Equations

LA First Attempt

» Stokes equations with no-slip boundary condition

—Au+gradp=fin Q, divu=0in Q, u=0on I
» A First Attempt

» Abstract Saddle-Point Problems » Multiply momentum equation with

» Saddle-Point Formulation of the Stokes Equations veV={we H}(Q):divw = 0}, integrate over  and
use integration by parts.

» Resulting variational formulation:
Find u € V such that for all v € V

/Vu:VV:/f-v
Q Q
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Corresponding Discretization

» Find ur € V(T) C V such that for all v € V(T)

/VuT:VVT:/f-VT
Q Q

» Advantage:

The discrete problem is symmetric positive definite.

» Disadvantage:

The discrete problem gives no information on the pressure.

» Candidate for lowest order discretization:

V(T)=S;°(T)enV.
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LA First Attempt

The Space V(T) = Sy(T)*NV

»(0=divvy on K

»0= [ divvy = n-vy
K oK

>0=/8Kn1-V7-
=v2h o () vr (@)

+h(3) - vr(a)
= 1(9) - vr(@)
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LA First Attempt

The Space V(T) = S, (T) NV

» 0 =(0,1)

» T Courant triangulation
consisting of 2N? isosceles
right-angled triangles with
short sides of length
h=N"1

> VT € Sé’O(T)d NV arbitrary
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LA First Attempt

The Space V(T) = S, (T) NV

»(0=divvy on K

»0= [ divvy = n-vy
K oK

>0=/8Kn1-V7-
= Vah (1) -vr()
+h(9) - vr(z)
= h(§) - vr(@)
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The Space V(T) = Sy(T)NV Finite Element Subspaces of

Computational Fluid Dynamics
LVariational Formulation of the Stokes Equations

LA First Attempt

» vy =0 in bottom left
square

» In order to obtain a non-trivial space S{f TNV, the

= USSR Gomn SO polynomial degree k£ must be at least 5.

yields:
v —0in 0 » Despite the high polynomial degree, the approximation
= properties of Sg (T4 NV are rather poor.
» Hence:

S0’ (T)* NV = {0}
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LA First Attempt

Another Variational Formulation of the Stokes Corresponding Discretization
p g
Equations
» Multiply the momentum equation with v € H&(Q)d, » Choose finite element spaces X (7)) C H& ()7 and
integrate over {2 and use integration by parts. Y(T) C Lg Q).
» Multiply the continuity equation with ¢ € L3(£2) and > Find wr € X(7T) and pr € Y (T such that for all
integrate over (2. vy € X(T) and g5 € Y(T)
» Resulting variational formulation:
Find u € H}(Q)? and p € L2(2) such that for all / T - / : B /
ur : Vv — divvyr= | f-v
v € HY(Q)? and q € L3() Q T T QpT T Q

/Vu:Vv—/pdivv—/f.v /QQTdIVUT:O
Q Q Q

/qdivu:O

Q
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Questions The Setting
» X and Y are Hilbert spaces with norms |[|-||x and |||y .
»a: X XX —-Rand b: X xY — R are continuous bilinear

forms.

v

Does the variational problem admit a unique solution?
» /: X - Rand x: Y — R are continuous linear functionals.

v

Does the discrete problem admit a unique solution?
Problem:

Find v € X and A € Y such that forallve X and p e Y

v
v

What is the quality of the approximation?

v

What are good choices for the discrete spaces?
a(u,v) + b(v,\) = (£, v)

o) = o] )
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Auxiliary Operators and Spaces The Inf-Sup Condition
» Define continuous linear operators A : X — X/,
B:X =Y, B':Y — X' by setting for all u,v € X, A€ Y The following conditions are equivalent:
(Au,v) = a(u,v), (Bu,\) = b(u, \), (B'\,v) = b(u, \). 1. There is a constant 3 > 0 such that (inf-sup condition)
b(u, A
inf sup M > 0.
> Set AEY\{0} yex\{0} [Jullx 1Ay
V =ker B,
o __ /., _
Vi={ge X :{g,v) =0Vv eV}, 2. B’ is an isomorphism of Y onto V° and ||B'A||x/ > B||A|ly
Vi={ueX:(uyv)x =0Y0 €V} forall \ €Y.
» Define the continuous linear operator 7 : X’ — V' by 3. B is an isomorphism of V1 onto Y’ and ||Bully: > Bl|ul|x

for all u € X.
(mf,v) ={(f,v) VYweV.
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Motivation of the Inf-Sup Condition

Assume that X = R", Y = R™ with m < n and b(u, \) = AT Bu
with a rectangular matrix B € R”™*™. Then the following
conditions are equivalent:

>

>

>

>

B has maximal rang m.

The rows of B are linearly independent.

M'Bu = 0 for all u € R™ implies A = 0.

inf sup,, ﬁl% > 0.

The linear system B”'\ = 0 only admits the trivial solution.

For every f € R™ there is a unique u € R™ which is
orthogonal to ker B and which satisfies Bu = f.
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Well-Posedness of Problem (5)

>

>

Problem (S) admits a unique solution for every right-hand
side if and only if

(i) mA is an isomorphism of V onto V' and
(i7) b satisfies the inf-sup condition.

If problem (.5) is well-posed, its solution satisfies

lullx + 1My < e{llellx + lIxlly}-

The constant ¢ grows with S71.
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Proof of the Equivalences

1. = 2.

2. = 1.
2. & 3.

Condition (1), the definition of B" and ||-|| x» imply

”B/)\HX/ = sup b(“, A)

> Bl Ally-
weX\{0} |l x

Hence, B’ is injective and its range is closed. The closed
graph theorem then proves (2).

This is a consequence of the above equality.

From the definitions of V° and V* one concludes that V°
and (V1) are isometric. Hence, B is an isomorphism of
V-t onto Y if and only if B’ is an isomorphism of

(Y') ~Y onto (V)" ~ V° and both isomorphisms have
the same norm.

Computational Fluid Dynamics
LVariationanl Formulation of the Stokes Equations

L Abstract Saddle-Point Problems

Proof of “ <7

v

v

v

v

Due to (4i) there is a unique ug € V1 with Bug = x and
luollx < FlIxly-

Due to (¢) there is a unique w € V with mAw = w(¢ — Auy)
and [w]x < [[(mA) 7o)€ — Auollx-

u = ug + w satisfies 7(¢ — Au) = 0 whence ¢ — Au € V°.
Due to (i7) there is a unique A € Y with B'’A = ¢ — Au and
IAlly < 3 — Aulxr

u, A solve (S) and satisfy the stability estimate.
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Proof of “ =" Coercive Forms a
» Problem (S) with £ = 0 and arbitrary x € Y’ admits a
unique solution. Hence Y’ = range B. The open mapping Assume that a is symmetric and coercive on X, i.e. there is an
theorem proves that B is an isomorphism and thus a > 0 such that a(u,u) > allul|% holds for all u € X. Then:

establishes (7).
» Consider a u € V with mAu = 0. Due to (i), there is a
unique A € Y with B’A\ = —Au. Thus u, X solve (S) with

homogeneous right-hand side. Hence, v = 0 and wA is
injective. » The solution of problem (.5) is the unique saddle-point of

the functional £(u, \) = La(u, ) + b(u, \) — (€, u) — (x, \).

> 7A is an isomorphism and [|(7A) ||z vy < 1
» Problem (5) is well-posed if and only if the form b satisfies
the inf-sup condition.

» Due to the Hahn-Banach theorem, for every g € V', there

is an £ € X' with 7¢ = g. Problem (S) admits a unique » The solution u of (S) minimizes the functional
solution u, A for the right-hand side ¢, x = 0. Hence, there J(u) = %a(u, u) — (¢, u) under the constraint
isau € X with mAu = g and 7A is surjective. b(u, ) = (x, ) for all p € Y.

» The open mapping theorem proves that wA is an
isomorphism and thus establishes (7).
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Discretization of Saddle-Point Problems Well-Posedness of Problem (S),)

Assume for simplicity that the form a is coercive on X. Then:

» Problem (S,,) is well posed if and only if the form b satisfies

» Replace X and Y by finite dimensional subspaces X, and the discrete inf-sup condition

Y.

b(un, An
> Resulting discrete problem: inf sup _b(tn: An) > B > 0.
. An€Ya\{0} u,ex,\ {0} [[tnllx[[Anly
Find u,, € X,, and \,, € Y}, such that for all v,, € X,, and
Hn € Yn
a(Un, Vn) + b(vn, M) = (£, vy) (5) » If problem (S,,) is well-posed, its solution satisfies
n

b(tn, tn) = (X, 14
(tn, tn) = X, bin) unllx + Pally < e{I1€llx + [Ix]ly}-

The constant ¢ grows with 3, 1.
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L Abstract Saddle-Point Problems

Error Estimates

» Assume that a is coercive and that b satisfies both the
inf-sup condition and the discrete inf-sup condition.

» Denote by u, A the unique solution of problem (S) and by
Un, \n the unique solution of problem (S,,).

» Then there is a constant ¢ which grows with 3, such that

[u = unllx + A= Aally

<ef inf fu—vallx+ inf A plly }
Vn € Xn, Mn€ YV’IL

Computational Fluid Dynamics
LVarial:ionanl Formulation of the Stokes Equations

L Abstract Saddle-Point Problems

A Duality Argument

» H is another Hilbert space with norm ||-||;; such that X is
dense in H with continuous injection.

» For every g € H denote by u,, )\, the solution of problem
(S) with ¢ = g and x = 0.

» Then u and u, satisfy the error estimate

|l — wn || 1
< e{llu— unllx + X = Aally }-

1 . e
sup 7{ inf ||u—wvy|x + inf ||A— ,U,nHy}.
l]GH\{O} HgHH vn€Xn /Ln,e}/n
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L Abstract Saddle-Point Problems

Proof of the Error Estimates

» For any v, € Xp, pn € Yy, define £ € X', Y € Y’ by

<Z, v) = a(u — vy, v) + bv, A — py),
(X 1) = b(u — vn, p).

> Then [|€]|x+ + [[Xlly < e{llu = vnllx + A = pnlly }-
» Subtracting problems (S) and (S,) gives for every w, € X,
and p, € Y,

<Z Wn) = a(Un — Vn, Wn) + b(Wn, Ap — ),
<%7 pn> = b(un — Un, pn)-

» The stability estimate for problem (S,,) and the triangle
inequality now prove the error estimate.
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L Abstract Saddle-Point Problems

Proof

» The density of X in H implies

N
gemfoy  llgllm

» Subtracting (5) and (S,) and using the definition of u,4, A,
yields for every v, € X,,, un € Y

(ga U — UTI)H
= a(u — Up, ug) + b(u — Un, Ag) + bug, A — An)
=0
= a(u — Un, Ug — Up) + b(Ug — Un, A — An) + 0w — Un, Ag — ftn)
+ a(u — Up, vy) + 0(Vny A — Ap) + b(w — Up, 1) -
=0 =0
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Saddle-Point Formulation of the Stokes A Proof in R?
Equations » Assume that Q C R? is either convex or has a C? boundary.
» The saddle-point formulation of the Stokes equations fits » Choose an arbitrary p € L§(9).
into the abstract framework with: > Set v = V¢ where p € H?(Q) N LE(Q2) is the unique weak

» X = H} Q)% Y =L3(Q), H=L*(Q)¢ solution of the Neumann problem

» a(u,v) = / Vu: Vv, b(u,p) = —
Jo

> (l,v>:/f-v,xz0
Q

pdivu 0
2 Ap =p in Q, —SD:O on I
on

JS

» The bilinear form a is coercive on X. Hence, we only have > Set w = (%, _%ﬁ) where ¢ € H 2(9) is the unique weak
to ascertain the inf-sup condition solution of the biharmonic equation
. 9 . oY
pdivu A“p=0inQ, =0 onl, 8—:v-t on I'.
inf K >3>0. n
PELF(O\{0} ueri(@)a{oy |al1llpll
» Set u=v +w. Then divu = p and |u|; < ¢[|p]|.
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LVarial:ionanl Formulation of the Stokes Equations @ & LVariationanl Formulation of the Stokes Equations M
LSaddle-Point Formulation of the Stokes Equations | ) X LSaddle-l:’oint Formulation of the Stokes Equations
A Proof by Duvaut, Lions and Necas. 15¢ Step A Proof by Duvaut, Lions and Neéas. 2" Step
|| < e(Q ol —1 + || Vpl| -1
HI H ( ){Hl’ H H T” } ||pH < C(Q)HVPH—I

> Set X () ={pec H Q) : Vpc H1(Q)?} equipped with
llplll = llpll-1 + VPl -1

» The definition H~1(f2) and the open mapping theorem
imply that it suffices to prove the inclusion X (Q) C L?(Q2).

» Assume the contrary.

» Then there is a sequence (p,,) in L3(Q) with ||p,|| = 1 and
[Vpnll—1 < £ for all n.

» Since H}(f2) is compactly embedded in L?(2), the latter

» Due to the characterization of Sobolev spaces by Fourier Shcei coraci b dembeddedin B )

transforms, the inclusion holds for R?. i
» Hence, there is subsequence (py, ) such that p,, — p

» Using suitable reflections shows that the inclusion also strongly in H~, p,, — p weakly in L? and

holds for C*-functions on R4~! x R,.
(o]
» The Hahn-Banach theorem implies that C*°(R4~! x R) is 0 VP -V = /va v for all O vector-fields v.
: d—1
dense in X(R™ x Ry). » This proves Vp = 0 and, since p,, € L(2), p = 0.
» Combining the previous results with suitable partitions of

» This contradicts the estimate on the previous slide.
unity establishes the inclusion for all Lipschitz domains €.
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A Proof by Duvaut, Lions and Neéas. 3'¢ Step A Proof by Bogovskii
Assume that the domain €2 is the union of a finite number of
The inf-sup condition is fulfilled. (eventually overlapping) subdomains which are star-shaped with
» The operator grad : L% Q) — H‘l(Q)d is injective and respect to an inscribed ball. Then the inf-sup condition holds.
continuous. » A suitable additive decomposition of the pressure and

» The previous result implies that range(grad) is a closed Veloc.it.y shows t}.lat it suffices t? establish the inf-sup
subspace of H~1(Q)?. condition for a single subdomain.

» Consider a subdomain w which is star-shaped with respect
to an open ball K with K C w. Choose a C*°-function ¢
with support in K and [ ¢ = 1.

» The open mapping theorem implies that grad is an
isomorphism of L3(Q) onto range(grad).

» The closed range theorem implies that

el = )P = 1P, > Properties of singular integrals imply that

o0
» Due to the abstract results, this proves the inf-sup u(z) = /p(y) Y=Y / ( +¢ T=Y )tdildtdy
.- — yld _
condition. w |z -y lz—y| |z -y
satisfies divu = p in w and |u|;, < cdiam(w)||p||w.
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LSaddle-Point Formulation of the Stokes Equations LSaddle-l:’oint Formulation of the Stokes Equations
A Regularity Result Finite Element Discretization

» The finite element discretization of the Stokes equations
fits into the abstract framework with

» Assume that the boundary I is of class C™*2 and that Xn = X(T), Yo =Y(T)

f € H™(Q)?% Then the weak solution of the Stokes problem » The bilinear form a is coercive on X. Hence, we only have
satisfies: to ascertain the discrete inf-sup condition
» uc H™2(Q)4n HH(Q)4, p e H™HL(Q) N L3(),
> e + lpllmsr < (@)l / o
» If  is a convex polyhedron, the above regularity result inf sup 22 >8>0,
holds with m = 0. preY (M\{0} urex ({0} urlillprll

» In order to obtain optimal error estimates, the
discretization must be uniformly stable, i.e. B> 8 > 0 for

all 7.
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LSaddle-Point Formulation of the Stokes Equations

Resulting Error Estimates Approximation of the Space V'

> Assume:
> ue HHY(Q)n HEH(Q)?, p e HHQ) N LA(Q).
» The discretization is uniformly stable. » The space V = {v € H}(Q)?: divv = 0} is approximated
> SEO(T)E ¢ X(T). by
> SF=LO(T) A L3(Q) € Y(T) or S*~2=1(T) N L3(Q) € Y(T).

» Then: V(T) = {VT e X(T): / prdivvy = 0Vpr € Y('T)}.

Q

u—ur|i +|p— < chk{ u + }
| Tl +llp=p7l i + [Pl » For almost all discretizations used in practice V(7) is not

contained in V.

» If in addition € is a convex polyhedron, then: > In this sense, all these discretizations are non-conforming
and not fully conservative.

lu = urll < e { [ulpss + ol |-
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LA Second Attempt
Discretization of the Stokes Equations The P1/P0-Element

» 7 is a triangulation of a two-dimensional domain (2.

> X(T) = S (T)%, Y(T) = 8%7H(T) N L§(9)
> A Second Attempt » Every solution ur € X(7), pr € Y(T) of every discrete
» Stable Finite Element Pairs Stokes problem satisfies:
> Petrov-Galerkin Methods » divuy is element-wise constant and / divuy = 0 for every
. . . K
» Non-Conforming Discretizations KeT.
» Stream-Function Formulation > Hence, divuy = 0.

» Our first attempt yields ur = 0.

v

Hence, this pair of finite element spaces is not stable and
not suited for the discretization of the Stokes problem.
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The Q1/Q0-Element Proof of the Checker-Board Instability

» 7 is a partition of the unit square Q = (0,1)? into N2
squares with sides of length h = N~! where N > 2 is even.

> X(T) = SY(TY, Y(T) = $%4T) N L3(@) T
» Denote by K;; the square with / > ; / s ] —
R ivvydr = VT - Ng,
—1 +1 =1 +1 bottom left corner (ih, jh). . o J (ih,jh)i
» pr € Y(T) is the pressure h
+1 -1 +1 -1 with pr,, = (—1)i* = §{VT(z‘h,jh) (Z1) +vr((E+ Dh,jh) - (L)
141 =1 41 (checker-board mode) .
» Then fQﬁdeva — (0 for + VT((Z + 1)h7 (] + l)h) . (%) + VT(Zh’v (] + l)h) . (_1 )}
+1 -1+ -1 every vy € X(T) o
~ . _ _1)\¢tg a =
(checker-board instability). = /Qp 7 CNT A = Z( 1) /Kij ey =0
» Hence, this pair of finite element spaces is not stable and w
not suited for the discretization of the Stokes problem.
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LA Second Attempt LStable Finite Element Pairs
Conclusions An Auxiliary Result

» Define a mesh-dependent norm on S*~1(7) by

1
el = {3 rkIVellk + > hellielelt ).

. . . KeT Ee&
The velocity space must contain enough degrees of freedom in
order to balance » Assume that:
> element-wise the gradient of the pressure, » Sy ¢ X(T),

> Y(T) c 8%~X(T) for some k,

» face-wise the jump of the pressure. - .
» There is a constant 8 > 0 independent of 7 such that

T div ur
inf sup L2 >3
preY (T\0} urex(mnfo} luTllprli,7T

» Then the pair X (7), Y(7) is uniformly stable.
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L/ DEREX

L Stable Finite Element Pairs

Proof of the Auxiliary Result. 15t Step
» Choose a pressure pr € Y(7) with ||pr| = 1.

» Due to the well-posedness of the Stokes problem, there is a

velocity u € H}(T)? with
lujy =1 and /pTdivu > B.
Q

» Rpu satisfies

|R7ul; < crluly = e,
/pTdiv(RTu) :/pfrdivu—i-/pfrdiv(RTu—u)
Q Q Q

> ﬁ-l—/pTdiV(RTu—u).
Q
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Proof of the Auxiliary Result. 39 Step

» The previous estimate and the third assumption imply

/ prdivur
sp 12
urex(M\{oy  lurh
> max{mp’r 1,7 l{ﬁ - CQ\IJT\LT}}
c1

~ 1
> mi — —
> IZHZIBI max{ﬁz, o {ﬂ 02,2}}

_ BB
1B+ co
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Proof of the Auxiliary Result. 2"¢ Step

» Integration by parts and the properties of Ry imply

/ prdiv(R7u — u)
Q

= Z/KVPT‘(U——RTU)+Z/E[PT]E(RTU_U)'HE

KeT Eeg

< e2|prlirlali-

» The last two estimates yield

/ pr divur

> —{B-clprhT}
wrex(M\fo}  larh c1
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The Bernardi-Raugel Element

The following pair of finite element spaces is uniformly stable:

» 7 is any affine equivalent partition of a two or three
dimensional domain.

> X(T) = SS9 @ span{ypmp : E€ €}~ [

> Y(T) = S%"HT) N L§(Q) *
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L Stable Finite Element Pairs

Proof of the Stability of the Bernardi-Raugel The Mini Element of Brezzi-Fortin
Element
The following pair of finite element spaces is uniformly stable:
> For pr € Y(T) set ur = Z helpr]EnE. » 7T is any simplicial partition of a two or three dimensional
. . . . domain.
» Integration by parts element-wise and the properties of the
bubble-functions imply
_ > X(T) = 5°(T)" ®span{yx : K € T} ]&
/pTdiV ur = Z / [prleur -ng > Blprli+
& Eee’E

and
lur|i < clprliT > Y(T) = SY(T) N L§()

» Hence, the auxiliary result proves the stability.
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Proof of the Stability of the Mini Element The Hood-Taylor Element
» For pr € Y(T) set ur = — Z h3 b VpT. The following pair of finite element spaces is uniformly stable:
KeT > 7 is any simplicial partition of a two or three dimensional
» Integration by parts element-wise and the properties of the S

bubble-functions imply

/pTdiV ur=->y_ / Vpr - ur > Blprlis > X(T) = 85°(T)* &&
Q K

KeT

lurli < clpr|iT
» Y(T) =S"(T) N L§(Q)

» Hence, the auxiliary result proves the stability.

and
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The Modified Hood-Taylor Element Proof of the Stability of the Hood-Taylor and
The following pair of finite element spaces is uniformly stable: Modified Hood-Tay]or Elements
» 7 is any simplicial partition of a two or three dimensional
domain.
» 7 /2 is obtained from 7 by uniform refinement connecting > For every pr € Y(T) there is a ur € X(T) such that ur

the midpoints of edges. coincides with the tangential derivative of p7 at the

midpoints of edges.

. X(T) = 5370(7./2)61 %& » Bercovier and Pironneau proved in 1979 that with this

choice of uy the third condition of the auxiliary result is
fulfilled.
> Y(T) = 84T N 3() IL

» Hence, the auxiliary result proves the stability.
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A Catalogue of Stable Elements Properties of the Mini Element

The previous arguments can be modified to prove that the
following pairs of spaces are uniformly stable on any affine
equivalent partition in R?, d > 2:
> X(T) = Sg°(T)* @ span{pvpn : E € €, ¢ € Ry_1(E)}
@Span{deK QIS T? pEe Rk—2(K)}d7
Y(T)=S*5"NT) N L§(Q), k > 2
> X(T) =Sy ()4, v(T) = SF5-Y(T) N L3(Q), k > 2
> X(T) = 85°(T)%, Y(T) = S5 AT) N L3(Q), k = 3

v

/V¢K-V¢K/ =0 for all K # K’
Q

v

/w'w—/ W-WK——/ Agig = 0
Q K K
for all p € SY(T), K € T

Hence, the bubble part of the velocity of the mini element
can be eliminated by static condensation.

v

v

The resulting system only incorporates linear velocities and
pressures.
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The Mini Element with Static Condensation

» Original system:

14[ 0 lggj Uy f}
0 Db Bg up = fb
Bg Bb 0 P 0

» System with static condensation:

(5 mneg) () = Capon)
B, —ByD;'BT') \ p —ByD; 'f,

» A straightforward calculation yields:

(BeDy 'BY),, ~ Y hk / V- VA
KeT K

Computational Fluid Dynamics
LDiscretiz:—mtion of the Stokes Equations
L petrov-Galerkin Methods

General Form of Petrov-Galerkin Methods

Find ur € X(T), pr € Y(T) such that for all v € X(T),
qr € Y(T)

/VuT:VvT—/pTdiVVT:/f-VT
Q Q Q

/quivuT
Q
+ 5Kh3</ (—Aur + Vpr) - Var
KeT K
+ Y dohe [ prlelerle = 3 owhd [ £-Ver
EeEr E KeT K
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Idea of Petrov-Galerkin Methods

» Try to obtain control on the pressure by adding

» eclement-wise terms of the form § Kh%( / Vor - Var,
K

» face-wise terms of the form dphg | [p7leler]Ee-
JE
» The form of the scaling parameters is motivated by the

Mini element and the request that element and face
contributions should be of comparable size.

v

The resulting problem should be coercive.

v

Contrary to penalty methods, the additional terms should
be consistent with the variational problem, i.e. they should
vanish for the weak solution of the Stokes problem.

v

Pressure-jumps are no problem.

v

Test the momentum equation element-wise with dxh% Vqr.

Computational Fluid Dynamics
LDiscretizz—mtion of the Stokes Equations
L petrov-Galerkin Methods

Choice of Stabilization Parameters

» Set
Omax = max{maxdx , max ég
e {KeT " Eegr b

min{ min ¢§ min 9 if pressures
{KET K> peer s} ip i i
are discontinuous,
5min = ) .
min dg if pressures

KeT .
are continuous.

» A reasonable choice of the stabilization parameters then is
determined by the condition

5max ~ 5min .
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Choice of Spaces Mesh-Dependent Norms and (Bi-)Linear Forms

» Optimal with respect to error estimates versus degrees of
freedom:

=

2 2 2
> | (ur, = {jurl? + lorl? + lprfi 7 }
k,0 d
X(T) = 8" (T) » Br((ur,pr), (V7,97))
k=10 (T 2 .
Y (T) = Sk 1 (1 ) N L§(Q2) cc.)ntlnu.ous pressure _ / Tt 3 Voo — / pTdiVV7—+/ -
Sk=L=L(T)N L3(Q) discontinuous pressure Q Q
» Equal order interpolation: u Z 0K hK / —Aur +Vpr) - Var
KeT
k,0 d
X(T) = S5°(T) + Y buh [ prlelerls
Y (T) = SEO(T)NL (Q) continuous pressure 252
Sk=1(T)n L3(Q) discontinuous pressure > L ((vr,q7)) = / f v+ Z 5KhK/ f Vg
KeT 1
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Stability of the Petrov-Galerkin Discretization Proof of the Stability

» Inverse estimates imply that

1
Br((ur,pr); (ur,p7)) = S0min{ ll a7 p7) IR 7 = o712}

» Due to the well-posedness of the Stokes problem, there is a
velocity v € H(T)? with |v|1 = ||pr| and

» Assume that dpin > 0 and dpmax < 99 Where dg only depends
on the shape parameter of 7.

» Then there is a constant v > 0 which does not depend on
T such that / prdivv > Bllpr]l*.
Q

Br((ur,p7), (vT,97)) » The properties of Ry imply that

inf  sup >
urp7) (vrgr) a7, D)l 7NV, @)l

1
Br((ur,p7), (RTV,0)) > (Z + 82 lprll? = B2l (ur, pr)IlIE 7
II(R7v,0)|l|1,7 < callpr]l-

» Taking the maximum of both estimates proves the stability.
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Error Estimates Proof of the Error Estimates
The stability and the definitions of By and ¢7 yield

» There is a constant ¢ &~ 6maxy ! such that

Il(u = ur,p—p7r)|lT > [lu—ur,p—p7)lhs
: < [l =vr,p—qr)lly,7 + (v —ur, ¢7 — p7)lll,7
<c¢ inf {m(u —vr,p— QT)’H%,T |”( ) )|H H’( » 4T )||
(vrar) : > [lvr —uar,qr —p7)lli7
]
+ 3 BXlA - vT)yﬁ(} . <1 g Brvr-vurer—pr) (wrr)
KeT Y (wr,rT) |||(WTa rT)lHLT
B _ _
» Ifuec Hk-i-l(Q)d n H&(Q)d, pe Hk(Q) N L%(Q), > 7((vr —ur, 97 —p71), (WT,77))
Sg’O(T)d C X(T) and Sk_l’_l(T) N L%(Q) CY(T)or = Br((vr —u,q7 — p), (Wr,77)) )
SE=LO(T) N LE() C Y(T) the 3
(T)NL5(8)  Y(T) then <fllm—vr.p— e+ 3 WklA@- vk}
ll(a = ur,p — pr) 7 < R {|ulpsr + Iplx}- KeT
1w, el
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LNon-Conforming Discretizations LNon-Conforming Discretizations
The Basic Idea The Crouzeix-Raviart Element (d = 2)
» 7 a triangulation

v

X(T)=Avr:vrlk € Rl(K)Q,
v is continuous a midpoints of edges,
v vanishes at midpoints of boundary edges}

Y(T) = 8%"(T) N L§(Q)

All integrals are taken element-wise.

Degrees of freedom: E& [A

103/ 300 104/ 300

> We want a fully conservative discretization, i.e. the discrete
solution has to satisfy divu; = 0.

v

» As a trade-off, we are willing to relax the conformity
condition X (7)) C H}(Q)%.

v

v
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L/ DEREX

LNon-Conforming Discretizations

LNon-Conforming Discretizations

Properties of the Crouzeix-Raviart Element Drawbacks of the Crouzeix-Raviart Element

» The Crouzeix-Raviart discretization admits a unique
solution u7, pr.

» The discretization is fully conservative, i.e. the continuity

sgiaitten div i = 0 & sotisfied dlemeniuiee. » Its accuracy deteriorates drastically in the presence of

. . . re-entrant corners.
» If Q is convex, the following error estimates hold . .
» It has no higher order equivalent.

{ Z e uﬂ% K}% +lp - pr|l < chllf] » It has no three-dimensional equivalent.
KeT

lu —ur| < ch?||f].
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Construction of a Solenoidal Bases Solution of the Discrete Problem
» Denote by ¢z € SU~1(T) the function which takes the
value 1 at the midpoint of £ and vanishes at all other » The velocity uyr € V(7)) is determined by the conditions
midpoints of edges.
» Set wp = pptp where tg is a unit vector tangential to E. Z / Vur : Vv = Z / f-vr
KeT 'K KeT VK
1
= Slefh v = Z —PEnE. ; t for all v € V(7).
EE&, |E| — » The pressure py is determined by the conditions

» Th
en Z/ f-nppp — Z / Vur : (Vop ®ng) = —|E|[pr]e
K K

V(T)={ur € X(T) : divur =0} = P

= span{w,, wg : 2 € N, F € &} for all E € &q.
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Computation of the Velocity Computation of the Pressure

» Set F =0, M =0.
» Choose an element K € T with an edge on the boundary.
» Set py =0on K.
The problem for the velocity » Add K to M.
» is symmetric positive definite, » While M # () do:
» Choose an element K € M.
» For all elements K’ which share an edge with K and which
are not contained in F do:
» has condition number O(h74). » On K’ set pr equal to the value of p7 on K plus the jump

across the common edge.
» If K’ is not contained in M, add it to M.

» Remove K from M and add it to F.

» Compute the average of py and subtract it from p7 on
every element.

» corresponds to a Morley element discretization of the
biharmonic equation,
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The curl Operators (d = 2) Stream-Function Formulation of the
Two-Dimensional Stokes Equations
_ ¢ . g
> curlp = ( ﬁz ) Taking the curl of the momentum equation proves:
5 ‘9118 > u is a solution of the two-dimensional Stokes equations if

> curlv = gl — 52 and only if
> curl(curlp) = —Ap » u = curly and 9 solves the biharmonic equation

» curl(curlv) = —Av + V(divv)
» curl(Vy) =0

» divu = 0 if and only if there is a stream-function ¢ with

¥ =0on I and u = curly in Q gﬂzo on T
n

A2 = curlf in Q
Y =0 on I
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LDiscretization of the Stokes Equations

L Stream-Function Formulation

Drawbacks of the Stream-Function Formulation

v

It is restricted to two dimensions.

v

It gives no information on the pressure.

v

A conforming discretization of the biharmonic equation
requires C!-elements.

v

Low order non-conforming discretizations of the

biharmonic equation are equivalent to the Crouzeix-Raviart

discretization.

v

Mixed formulations of the biharmonic equation using the
vorticity w = curlu as additional variable are at least as
difficult to discretize as the original Stokes problem.

Computational Fluid Dynamics
L_Solution of the Discrete Problems
L Motivation

Direct Solvers

» Typically require O(N 2_%) storage for a discrete problem
with N unknowns.

» Typically require O(N 3_%) operations.
» Yield the exact solution of the discrete problem up to
rounding errors.

» Yield an approximation for the differential equation with
an O(h®) = O(N~1) error (typically: o € {1,2}).
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Solution of the Discrete Problems

v

Motivation

» Uzawa Type Algorithms
Multigrid Algorithms

Subspace Decomposition Methods

v

v

v

Conjugate Gradient Type Algorithms
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.
Iterative Solvers

» Typically require O(N) storage.

» Typically require O(N) operations per iteration.

» Their convergence rate deteriorates with an increasing
condition number of the discrete problem which typically is
O(h=2) = O(N1).

» In order to reduce an initial error by a factor 0.1 one
typically needs the following numbers of operations:

» O(N'*7) with the GauB-Seidel algorithm,
» O(N't7) with the conjugate gradient (CG-) algorithm,
> O(Nl'*'ﬁ) with the CG-algorithm with GauB-Seidel

preconditioning,
» O(N) with a multigrid (MG-) algorithm.
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Nested Grids

>

>

Often one has to solve a sequence of discrete problems
Lyuyp = fi corresponding to increasingly more accurate
discretizations.

Typically there is a natural interpolation operator ;i j
which maps functions associated with the (k — 1)-st
discrete problem into those corresponding to the k-th
discrete problem.

Then the interpolate of any reasonable approximate
solution of the (k — 1)-st discrete problem is a good initial
guess for any iterative solver applied to the k-th discrete
problem.

Often it suffices to reduce the initial error by a factor 0.1.

Computational Fluid Dynamics
L_Solution of the Discrete Problems
LUzawa Type Algorithms

Structure of Discrete Stokes Problems

Discrete Stokes problems have the form ( ;T _?C) =1 f )

0g

with:

>

>

>

v

v

v

6 = 0 for mixed methods,
0 < § ~ 1 for Petrov-Galerkin methods,

a square, symmetric, positive definite n, X n, matrix A
with condition of O(h™2),

a rectangular n, X n, matrix B,

a square, symmetric, positive definite n, x n, matrix C'
with condition of O(1),

a vector f of dimension n, discretizing the exterior force,

a vector g of dimension n, which equals 0 for mixed
methods.
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Nested Iteration

» Compute

Uy = Ug = Lalfo.

» For k =1, ... compute an approximate solution u; for

Up = lel fr by applying m,. iterations of an iterative solver
for the problem
Liup = fk

with starting value Ij,_j pug—1.

> my is implicitly determined by the stopping criterion

| fr — Liur|| < ellfx — Li(Te—1,xUr—1)]|-
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Consequences

» The stiffness matrix ( ;T —?C) is symmetric but indefinite,

i.e. it has positive and negative real eigenvalues.

» Hence, standard iterative methods such as the Gauf3-Seidel

and CG-algorithms fail.
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The Uzawa Algorithm Properties of the Uzawa Algorithm

0. Given: an initial guess pg, a tolerance ¢ > 0 and a
relaxation parameter w > 0.
1. Set 7 =0. .
w € (1,2), typically w = 1.5.
2. Apply a few GauBl-Seidel iterations to the linear system (1,2), typ v

Au = f — Bp; » Typically ||v| = \/F and ||q|| m

» The problem Au = f — Bp; is a discrete version of d
Poisson equations for the components of the velocity field.

v

and denote the result by u;;+;. Compute

i = T Tyl — S0 — )
Pi+1 = pi +w{B w1 — g — ICpi}. » The Uzawa algorithm falls into the class of pressure
correction schemes.
3. If » The convergence rate of the Uzawa algorithm is 1 — O(h?).
|Aui1 + Bpiy1 — || + | BT w41 — 6Cps1 — dgll < e
return u;4+1 and p;41 as approximate solution; stop.
Otherwise increase ¢ by 1 and go to step 2.
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Idea for an Improvement of the Uzawa Properties of BTA™'B
Algorithm
> Identify vectors with corresponding finite element
» The problem ( ;T _?C) (p)= ( 5‘;) is equivalent to functions.
- _ 41 : )
u= A"Y(f — Bp) and BTA~!(f — Bp) — 6Cp = dg. > u= A" Bp satisfies:
» The matrix BT A~'B + §C' is symmetric, positive definite » [ Vu:Vv= / pdivv for all v,
" Q Q
and has a condition of O(1). > uls < VA|[p,
» Hence, a standard CG-algorithm can be applied to the » |ul; > B||p|| (inf-sup condition).
pressure problem and has a uniform convergence rate » ¢ = BTu = BT A~'Bp satisfies:
independently of any mesh-size. . / = / rdivu for all 7.
» The evaluation of A~'g corresponds to the solution of d Q Q
discrete Poisson equations Au = g for the components of u. > llgll < Vdluly < d|jp],
2 2 2 .
» The discrete Poisson problems can efficiently be solved > Bolpll” < fuli = de“’u =/, ap < allllpll-

with a MG-algorithm.
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Properties of the Improved Uzawa Algorithm

Computational Fluid Dynamics
L_Solution of the Discrete Problems
LUzawa Type Algorithms

The Improved Uzawa Algorithm

0. Given: an initial guess pg and a tolerance € > 0.

1. Apply a MG-algorithm with starting value zero and >
tolerance € to Av =f — Bpy and denote the result by ug.
Compute rg = BTug — 6g — 6Cpo, do = 19, Yo = 70 - 79 Set
ug =0 and z =0.

It is a nested iteration with MG-iterations in the inner
loops.

» Typically 2 to 4 MG-iterations suffice in the inner loops.

2. It y; < 2 ST = - s, 2Py & MIC alnesiim i » It requires O(N) operations per iteration.

starting value zero and tolerance € to Av =f — Bp and
denote the result by u, stop. » [t yields an approximate solution with error less than e
with O(N Ine€) operations.

» [ts convergence rate is uniformly less than 1 for all meshes.

3. Apply a MG-algorithm with starting value u; and tolerance

€ to Av = Bd; and denote the result by u;;1. Compute » Numerical experiments yield convergence rates less than
8; = BTU¢+1 +0Cd;, o = F5-, piv1 = pi + cids, 0.5.
Ti41 = T3 — Q485, Vi+1 = Ti4+1 * Ti+1, Bi = %fl

dit1 = nH + B;d;. Increase i by 1 and go to step 2.
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Convergence Rate of the Improved Uzawa The Basic Idea

Algorithm

» Denote by Mv the result of the MG-algorithm applied to a
problem with right-hand side v.

» Classical iterative methods such as the Gauf}-Seidel

The improved Uzawa algorithm then corresponds to a
CG-algorithm applied to the problem
BTM(f — Bp) — 6Cp = dg.
Properties of the MG-algorithm imply that

» M is symmetric,

» M satisfies | Mv — A7lv|| < || A~ 1v]| for all v.
Hence,
(1—e)p"BTA'Bp < p"B"MBp < (1 +¢)p" BTA"'Bp
for all p.
Thus, BT M B is symmetric, positive definite and has a
condition of O(1) uniformly for all meshes.
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algorithm quickly reduce highly oscillatory error
components.

Classical iterative methods such as the Gau-Seidel
algorithm are very poor in reducing slowly oscillatory error
components.

Slowly oscillating error components can well be resolved on
coarser meshes with fewer unknowns.
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The Basic Two-Grid Algorithm Schematic Form
g g
» Perform several steps of a classical iterative method on the :
. Two-Grid Rl TP
current grid.
» Correct the current approximation as follows: e
» Compute the current residual. G G
> Restrict the residual to the next coarser grid. — —
» Exactly solve the resulting problem on the coarse grid.
» Prolongate the coarse-grid solution to the next finer grid. R TP
» Perform several steps of a classical iterative method on the Multigrid _g__) _g__)
current grid.
R | |7
£
-
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Basic Ingredients The Multigrid Algorithm

0. Given: the actual level k, parameters 1, v1, and o, the
matrix Ly, the right-hand side f, an initial guess ug.

» A sequence 7 of increasingly refined meshes with Sought: improved approximate solution wy.
associated discrete problems Lipup = f. 1. If k = 0 compute ug = -1 fo; stop
o ) . . - = 0 5 o
» A smoothing ope‘:rator My, Wthh‘ShOuld be casy to 2. (Pre-smoothing) Perform v steps of the iterative
evaluate and which at the same time should give a procedure uy, — wj, + My(fi — Liug)
. q -1 o
reasonable approximation to L, . 3. (Coarse grid correction)
> A restriction operator Ry ;—1, which maps functions on a 3.1 Compute fr_1 = Rgr—1(fx — Lrug) and set ug_q = 0.
fine mesh 7 to the next coarser mesh T_1. 3.2 Perform . iterations of the MG-algorithm with parameters
» A prolongation operator Ij,_; ;, which maps functions from k=1, s, v1, v, L1, fi—1, up—1 and denote the result by
) Uk—1-

a coarse mesh 7,_1 to the next finer mesh 7. 3.3 Update us by s — s + To—1 ste1.

4. (Post-smoothing) Perform v steps of the iterative
procedure ug — up + My (frx — Lipug).
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Typical Choices of Parameters Prolongation and Restriction

» The prolongation is typically determined by the natural
inclusion of the finite element spaces, i.e. a finite element
function corresponding to a coarse mesh is expressed in

> p=1 V-cycle or terms of the finite element bases functions corresponding to
u =2 W-cycle the fine mesh.

> V] =Vy =V Or 0 0
v1 =v,vy=0o0r % 0
v1=0,1n=vr ; 2 0 ; 0

» 1 <v <4 2

» The restriction is typically determined by inserting finite
element bases functions corresponding to the coarse mesh
in the variational form of the discrete problem
corresponding to the fine mesh.
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Smoothing (Positive Definite Problems) Smoothing (Stokes Problem)

» Squared Jacobi iteration:
» GauBl-Seidel iteration . M, — ﬁ (h A h;%B )

—2BT —h%sC
. . k k
> SSOR iteration: » The factors h; > and hy* compensate the different order of

» Perform a forward Gauf3-Seidel sweep with over-relaxation differentiation for the velocity and pressure.
as pre-smoothing.

» Perform a backward Gauf-Seidel sweep with over-relaxation
as post-smoothing.

» [LU smoothing:

» Vanka smoothers:
» Similarly to the Gauf}-Seidel iteration, simultaneously
adjust all degrees of freedom for the velocity and pressure
corresponding to an element or to a patch of elements while

» Perform an incomplete lower upper decomposition of Ly by fixing the remaining degrees of freedom.
suppressing all fill-in. » Patches typically consist of two elements sharing a common
» The result is an approximate decomposition LUy ~ Ly,. face or the elements sharing a given vertex.

» Compute vy = Myuy by solving the system LpUrvr = ug.
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Number of Operations Convergence Rate (Positive Definite Problems)

» Assume that

» The convergence rate is uniformly less than 1 for all
» one smoothing step requires O(Ny) operations,

meshes.

» the prolongation requires O(Ny) operations, . . .
» the restriction requires O(Ny) operations, > The convergence rate is bounded by ctvitve with a
<2, constant which only depends on the shape parameter of the
> Ni > uNp_1, meshes.
» then one iteration of the multigrid algorithm requires » Numerical experiments yield convergence rates less than
O(Ny) operations. 0.1.
137/ 300 138/ 300
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Convergence Rate (Stokes Problem) Techniques for Proving the Convergence of
Multigrid Algorithms
» The convergence rate is uniformly less than 1 for all
—r) » Methods of linear algebra and discrete Fourier analysis

(&}
Vvitre
which only depends on the shape parameter of the meshes.

(Hackbusch)

» Spectral decomposition and scales of discrete Sobolev
spaces (Bank-DuPont and Braess-Hackbusch)

» The convergence rate is bounded by with a constant

» Numerical experiments yield convergence rates less than o .
0.5. » Subspace decomposition methods (Bramble-Pasciak-Xu

and Wang)
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Convergence Proof a la Hackbusch

The iteration matrix of the smoother is Ny = I — My L.
The iteration matrix of the two-grid algorithm is

Sk =NP(I — Iy—1 Ly R e—1) NY*

The iteration matrix of the multigrid algorithm is
IS §k: + N,?Ik_LkS;:_lLI;_lle,k_lNgl.

Prove the smoothing property Ly Ny < n(v)h,* with
n(v) — 0 for v — oo and a > 0.

Prove the approximation property

IILy" = Tk—16 Lty Rigoma Il < ch®.

Tl}\e smoothing and approximation property imply
1Skl < en(v1 + va).

If i > 2 a perturbation argument yields

1Skl < 2en(or + v2).
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Convergence Proof a la Braess-Hackbusch

>

Assume that L islsymmetric7 positive definite and set
vkl = (vk, Livi) 2.
Denote by Q. = Ik_lykL,;_llevk_lLk the Ritz projection.

Denote by J; the iteration matrix of the Jacobi iteration
1

4 2
and set |vg| = ||| J2 k||| and p(vy) = m

Prove that

> 15 okl < p” lllowlll with p = p(Jgvr),

> llor — Qrvwlll < minf{1, ey/T = p(vr) vk -
Then the convergence rate §; of the multigrid algorithm
with p =1 and v; = 19 = v and Jacobi smoothing satisfies

O < Orgggl{p” [0k—1 + (1 = 6 —1) min{1, ¢(1 — p)}] }

By induction this proves d; < 5.
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» The proof of the smoothing property is usually based on a
spectral decomposition of L; and V.

» The proof of the approximation property is usually based
on arguments used in the proof of a priori error estimates.

» The crucial point is to correctly link both techniques.

Computational Fluid Dynamics
L_Solution of the Discrete Problems
LSubspace Decomposition Methods

The Setting

v

V' a finite dimensional Hilbert space with inner product
('7 )
» Vi, 1 <i < N, subspaces of V with >, V; =V

Establishing the Smoothing and Approximation
Property

142/ 300

The decomposition usually neither is direct nor orthogonal.

v

Q; : V — V; orthogonal projection w.r.t. to (-, )

v

A v — V asymmetric, positive definite operator
A; . V; = V; the restriction of A to V;

R; : V; = V; an easy-to-evaluate, symmetric, positive
definite approximation to A;l

v

v
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The Subspace Decomposition Algorithm Examples

» V =R and V; = span{e;} corresponds to the classical
GauB3-Seidel algorithm.
> V = Se%(T), Vi = S¢°(T), Ro = Aj* and R; = LT with
Upy g = Upyict + R;Q;(f — Au,, pizt ). uniformly or locally refined nested meshes 7; correslponds
to the multigrid algorithm with Jacobi smoothing and
vy = 1, vy = 0.

» Given an initial guess ug € V.

» Forn=0,1,...and j =1,..., N compute
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Convergence Rate Proof of the Bound for the Convergence Rate
> Set ||| = (Av,v)%. » Set T; = R;Q;A, Ey =1, E; = (I- T]) oo (I =T).
> Set A = min; Amax(Rid;) and A = max; Amax (RiAs). » For every j this gives —E; + E;_1 = T;E;_1 and

IEj-1olll* = | Ejolll? = (AT; Ej—1v, (21 = Tj) Ej—1v) 2
(2 — A)(AT]'Ej_lv, Ej_l’l)).

N a > Summation yields
> {2l < Kollol) for all v =3, ol ~ 1ENvll> > (2~ A) 3 (AT Ej 10, Ej1v)-

=1 » The first assumption yields for v =) v;

N 1 N 1
5} 2 3
s 2 o) KD (Sl 10112 = S AE:A) " Tiw,v) < A Kool { 1Tl

» Assume that A < 2.
Assume that there are two constants Ky and K7 such that

v

1<i,j<N
for all v; € Vi, w; € V. » The second assumption implies
» Then the convergence rate of the subspace decomposition SllTv|? < A3K? > ;(AT;E; 1v, Ej_1v).
l P
algorithm w.r.t. |||-||| is less than [1 _ (% _ 1) (7AKQK1 )2} 2 » Combining all estimates yields the bound for the

convergence rate.

147/ 300 148/ 300



Computational Fluid Dynamics N4 Computational Fluid Dynamics
L_Solution of the Discrete Problems IS d L_Solution of the Discrete Problems
LS\.lbspace Decomposition Methods S LCorljugate Gradient Type Algorithms

Verification of the Assumptions CG-Type Algorithms for Non-Symmetric and
» The condition A < 2 can be satisfied by a suitable scaling Indefinite Systems of Equations
of Rz
» Since V' =), V; the mapping » The classical CG-algorithm breaks down for non-symmetric
Vi x...x VN> (vi,...,un) = >, v; € V is surjective. The or indefinite systems of equations.

open mapping theorem therefore proves the first
assumption. The crucial point is to obtain an explicit
bound for Ky which does not depend on N. This requires
deep results concerning the characterization of Sobolev
spaces as approximation spaces.

» Due to the Cauchy-Schwarz inequality, the second
assumption is always satisfied with K7 < N. If the
subspaces satisfy a strengthened Cauchy-Schwarz

> A naive remedy is to apply the CG-algorithm to the system
LTLu = L™ f of the normal equations.

» This approach cannot be recommended since passing to the
normal system squares the condition number.

» The following variants of the CG-algorithm are particularly
adapted to non-symmetric and indefinite problems:

» the stabilized bi-conjugate gradient algorithm (Bi-CG-stab

SV in short),
inequality (Av;,w;) < Al [[[os [l lfw;]l| with v <1, the » the generalized minimal residual method (GMRES in short).
second assumption is satisfied with K; < ﬁ
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The Idea of the Bi-CG-stab Algorithm The Idea of the GMRES Algorithm

» The algorithm tries to simultaneously solve the original
problem Lu = f and its adjoint problem LTv = f.

» For both problems it performs a simultaneous three-term

recursion similar to the CC-iteration. > [t performs a three-term recursion to build increasingly

' ; : . larger Krylov spaces K,, = span{u, Lu, ..., L" tu}.
» It incorporates particular devices to detect possible

break-downs and to restart the iteration before breaking
down.

» For every Krylov space K, it approximately solves the
minimization problem v, = argmin, g | Lw — f| using a

R-method.
» It can be combined with preconditioning. Possible methods QR-metho

for preconditioning are:
» the SSOR-iteration applied to the symmetric part of L,
» incomplete factorizations of L as used in the context of
ILU-smoothing.
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A Posteriori Error Estimation and Adaptivity Drawbacks of A Priori Error Estimates

v

They only yield information on the asymptotic behaviour
of the error.
> Motivation

v

They require regularity properties of the solution which
» A Posteriori Error Estimates for the Stokes Problem often are not realistic.

v

» Mesh Refinement, Coarsening and Smoothing They give no information on the actual size of the error.

» They are not able to detect local singularities arising from
re-entrant corners or boundary or interior layers which
deteriorate the overall accuracy of the discretization.
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Goal of A Posteriori Error Estimation and General Adaptive Algorithm
Adaptivity ‘ o ‘ .
0. Given: The data of a partial differential equation and a
» We want to obtain explicit information about the error of tolerance .
the discretization and its spatial (and temporal) Sought: A numerical solution with an error less than e.
distribution. 1. Construct an initial coarse mesh 7y representing sufficiently
» The information should a posteriori be extracted from the well the geometry and data of the problem; set k& = 0.
computed numerical solution and the given data of the %, Sallve tae chsexste prallem om
problem. .

3. For every element K in T compute an a posteriori error

» The cost for obtaining this information should be far less .
indicator.

than for the computation of the numerical solution.
4. If the estimated global error is less than ¢ then stop.

Otherwise decide which elements have to be refined or
coarsened and construct the next mesh 7;.1. Replace k by
k + 1 and return to step 2.

» We want to obtain a numerical solution with a prescribed
tolerance using a (nearly) minimal number of grid-points.

» To this end we need reliable upper and lower bounds for
the true error in a user-specified norm.
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Basic Ingredients The Stokes Problem and its Discretization

» u € H(Q)Y, p € LE(Q) weak solution of the Stokes
problem with no-slip boundary condition:

» An error indicator which furnishes the a posteriori error

. —Au+gradp=1f in
estimate.

divu=0 in Q

> A refinement strategy which determines which elements
u=0 onTl

have to be refined or coarsened and how this has to be

done.

» ur € X(T), pr € Y(T) solution of a mixed or

Petrov-Galerkin discretization of the Stokes problem
1,0
» Assume that S," (7)¢ C X(T)
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Residual Equivalence of Error and Residual

» Define two residuals Ry, € H~1(Q)¢ and R. € L?(Q)

. ; oe . » The well-posedness of the saddle-point formulation of the
associated with the momentum and continuity equation by

Stokes problem implies

Rn,v)= [ f-v— [ Vur:V di 1
(Bngvh = [ £:v= | Vor Vv [ praivy (Rl o1 + 1Bl < Ju— wrls + llp — pr
(Fesa) = [ adivur < {1 Bmll1 + IR}

» Then the error u — u7, p — p7 solves the Stokes problem
» ¢, and c* depend on the space dimension d.

/ V(u—uy): Vv — / (p—pr)divv = (R, V) » ¢* in addition depends on the constant in the inf-sup
@ Q condition for the Stokes problem.
/Q gdiv(u —uy) = (R, q) » The above equivalence holds for every discretization be it

stable or not.
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Evaluation of || R.||
» The definition of R, implies
[Re|| = [|div ur]].

» Hence, ||R.|| can be evaluated easily and is a measure for
the lacking incompressibility of uy.
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The Discrete Problem Reviewed
u7, pr satisfies for every vy € X(T), g7 € Y(T)

0 = £r((vr,q7)) — Br((ur,p7), (VT,97))

:/f'VT—/VUTZVVT+/pTdiVVT—/(JTdiVUT
Q Q Q Q

= <Rm :VT>

+ 3 outi [ £-Var

KeT K

-y 5Kh%</ (=Aur + Vpr) - Var
KeT LS

— > dphp /E [prlElerle

Ec¢
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Evaluation of || Rpy||—1

» The explicit evaluation of || Ry ||—1 would require the
solution of an infinite dimensional variational problem
which is as expensive as the solution of the original Stokes
problem.

» Hence, we must obtain estimates for ||Ry,||—1 which at the
same time are as sharp as possible and easy to evaluate.

» Main tools for achieving this goal are:

» properties of the discrete problem,

the Galerkin orthogonality of R,

an L2-representation of Ry,

approximation properties of the quasi-interpolation
operator Ry,

> inverse estimates for the bubble functions.

vV vyy
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Galerkin Orthogonality of Ry,

The form of the discrete problem and the assumption
Sy°(T)¢ € X(T) imply the Galerkin orthogonality

(R, vr) =0 Vvre Sé’O(T)d.
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L*-Representation of Ry, Upper Bounds for ||Ry,||-1
» The Galerkin orthogonality, the L2-representation and the
approximation properties of Ry imply
Integration by parts element-wise yields for every v € H{(Q)¢ (Rm,V) = (R, v — R7V)
the L2-representation
. < 3 eathllf + Aur — Vprllk|viiz,
KeT
(R, V) = / f+Auyr —Vpr) v 1
=2 ) + Y cahdling - (Vur - prD)slelvha,
Ee&q
- Z / [HE ~(Vur —prl )] g Vv » The Cauchy-Schwarz inequality therefore yields
Eegq’ P 2 2
IRl 1 < e{ 3= WRIIE + Aur - Vpr|k
KeT L
212
+ > hollg - (Vur - pri)sl} |

Ee&q
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Lower Bounds for ||Ru|-1 Residual A Posteriori Error Estimates

» Define the residual a posteriori error indicator ng x by

» Denote be f7- any piece-wise polynomial approximation of MRK = { h%( £ + Auy — Vp 7_”%( + [|divu 7’”%{

f.
1
» Inserting the functions ¢k (f7 + Aur — Vpr) and + B Z helng - (Vur — pTI)]EH%} ‘)
Ypng - (Vur — prl)|g in the definition of Ry, and using Z Eefrq

the inverse estimates for the bubble functions proves
» Then the error is bounded from above and from below by
hi|fr + Aur — Vorllx < c{||Rull-1,x + hxllf — frx}

1 1 .
hi\ng - (Vur — prDlele < e{ || Rl -1wp + hellf — £rllup } {lu—urfi +llp—prl?}> <c { > (ke + Wil - fTH%)}
KeT

ol

1
M < e fu—urlly, + lp—pri2, +HklE — £, )
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Discussion of the A Posteriori Error Estimates I Discussion of the A Posteriori Error Estimates 11

» The first term in 7g g is related to the residual of ur, pr
with respect to the strong form of the momentum equation.

» The second term in npg g is related to the residual of ur

» The constants ¢* and ¢, depend on the shape parameter of with respect to the strong form of the continuity equation.
T. » The third term in ng i is related to the boundary operator

» The constant ¢, in addition depends on the polynomial which canonically links the strong and weak form of the
degrees of ur, pr, and fr. momentum equation.

» The third term in ng i is crucial for low order
discretizations.

» The different scalings of the three terms in 7g x take into
account the different order of the differential operators.

169/ 300 170/ 300
Computational Fluid Dynamics Computational Fluid Dynamics
LA Posteriori Error Estimation and Adaptivity LA Posteriori Error Estimation and Adaptivity
L A Posteriori Error Estimates for the Stokes Problem L A Posteriori Error Estimates for the Stokes Problem
Discussion of the A Posteriori Error Estimates Auxiliary Discrete Stokes Problems
I11 » With every element K € 7 associate

» a patch 7Tx C T containing K,
» finite element spaces X (7x), Y (Tx) on Tk.

» The upper bound is global. » Find ux € X(Tk), px € Y(Tk) such that for all
» This is due to the fact that it is based on the norm of the Vi € X(Tk), ax € Y(Tk)
inverse of the Stokes operator which is a global operator. ) )
(local force — global flow) /K Vug : Vvg — /Kp K divvg + /K gk divug
» The lower bound is local. /
= f+Aur -V -V—i—/n-Vu—Ia-V
» This is due to the fact that it is based on the norm of the K{ T PT} VK aK[ i - (Vur =prDlox -V
Stokes operator itself which is a local operator. n / divu
(local flow — local force) K S T

N|=

> Set Ny Kk = {\HK\?,TK + HpKHQTK}
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Choice of Patches and Spaces

» Patches typically consist of:

» the element itself: Tx = K,
» all elements sharing a face with K: Tx = wg,
» all elements sharing a vertex with K: Tx = Wk

» The spaces X (Tk), Y (Tk) typically consist of finite
element functions of a sufficiently high degree, e.g.
X(Tk) = span{vg/v, Ypw : v € RkT(K’)d, w € Ry, (E)
K’ S TK7E/ € STK7Q},
Y (Tk) = span{vxrq : q € R, 1(K'), K' € Tk}

with k7 = max{ky + d,kp — 1}, ke = max{ky — 1,k }.

Computational Fluid Dynamics

LA Posteriori Error Estimation and Adaptivity

LMesh Refinement, Coarsening and Smoothing

Overview

» The mesh refinement requires two key-ingredients:
» a marking strategy that decides which elements should be
refined,

d
’
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» refinement rules which determine the actual subdivision of a

single element.

» To maintain the admissibility of the partitions, i.e. to avoid

hanging nodes, the refinement process proceeds in two
stages:
» Firstly refine all those elements that are marked due to a
too large value of ng (regular refinement).

» Secondly refine additional elements in order to eliminate the

hanging nodes which are eventually created during the first
stage (irregular refinement).
» The mesh refinement may eventually be combined with
mesh coarsening and mesh smoothing.
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Comparison of the Error Indicators

» Both indicators yield global upper and local lower bounds
for the error.

» Fach indicator can be bounded from above and from below

by the other one.

» Both indicators well predict the spatial distribution of the
error.

» Both indicators are well suited for adaptive mesh
refinement.

» The evaluation of the residual indicator is less expensive.

» The indicator based on the auxiliary Stokes problems more

precisely predicts the size of the error.

Computational Fluid Dynamics
LA Posteriori Error Estimation and Adaptivity

LMesh Refinement, Coarsening and Smoothing

Maximum Strategy for Marking

0. Given: A partition 7T, error estimates ng for the elements
K € T, and a threshold 0 € (0,1).
Sought: A subset T of marked elements that should be
refined.

1. Compute 77 max = 111212%(_771(.

2. If nx > On7 max mark K by putting it into T.
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Equilibration Strategy for Marking Comparison of the Marking Strategies

(Bulk Chasing or Dorfler Marking)

0. Given: A partition 7, error estimates nx for the elements

K €T, and a threshold § € (0,1). » The maximum strategy is cheaper.

Sought: A subset 7 of marked elements that should be e . = .

rofined. » At the end of the equilibration strategy the set T satisfies
1. Compute O = 2. Set Xy =0and T = 0.

ompute O %771( et X1 an 0 ZU%{ZQZW%{-
- T KeT
2. If X7 > 005 return T; stop. Otherwise go to step 3. KeT
3. Compute 77 max = Max_7ng. » Convergence proofs for adaptive finite element methods are
KeT\T

~ often based on this property.
4. For all elements K € T\T check whether ng = 17 max. If

this is the case, mark K by putting it into 7 and add 77%(
to X7. Otherwise skip K. When all elements have been
checked, return to step 2.
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. o
Ensuring a Sufficient Refinement Regular Refinement

> Sometimes very few elements have an extremely large
estimated error, whereas the remaining ones split into the
vast majority with an extremely small estimated error and
a third group of medium size consisting of elements with an
estimated error of medium size.

» Elements are subdivided by joining the midpoints of their
edges.

» Then the marking strategies only refine the elements of the
first group.

» This deteriorates the performance of the adaptive
algorithm.

» This can be avoided by the following modification: > s preserves e Soape paremeer.

Given a small percentage e, first mark the €% elements
with largest estimated error for refinement and then apply
the marking strategies to the remaining elements.
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Hanging Nodes Irregular Refinement

» Hanging nodes destroy the admissibility of the partition.

E ’ ‘ > Triangles

» Therefore » Quadrilaterals

» either the continuity of the finite element spaces must be
enforced at hanging nodes

» or an additional irregular refinement must be performed.

» Enforcing the continuity at hanging nodes may counteract
the refinement.
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Marked Edge Bisection Mesh Coarsening
» The first mesh is constructed such that the longest edge of » The coarsening of meshes is needed
an element is also the longest edge of its neighbour. > to ensure the optimality of the adaptive process, i.e. to
. obtain a given accuracy with a minimal amount of
» The longest edges in the first mesh are marked. & v
unknowns,
» An element is refined by joining the midpoint of its marked » to resolve moving singularities.
edge with the vertex opposite to this edge (bisection). » The basic idea is to cluster elements with too small an
» When bisecting the edge of an element, its two remaining error.
edges become the marked edges of the resulting triangles. » This is achieved by

‘ ‘ AN » either by going back in the grid hierarchy
» or by removing resolvable vertices.
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Going Back in the Grid Hierarchy

0. Given: A hierarchy 7y, ..., 7 of adaptively refined
partitions, error indicators ng for the elements K of Ty,
and parameters 1 <m < k and n > m.

Sought: A new partition Ti_1p.

1. For every element K € Tj_,, set g = 0.

2. For every element K € 7Ty, determine its ancestor
K' € Ty—m and add 0% to N%..

3. Successively apply the maximum or equilibration strategy
n times with 77 as error indicator. In this process, equally

distribute nx over the descendants of K once an element K
is subdivided.
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Removing Resolvable Vertices

0. Given: A partition T, error indicators ng for all elements
K of T, and parameters 0 < 6 < 0y < 1.
Sought: Subsets 7. and 7T; of elements that should be
coarsened and refined, respectively.

1. Set 7o =0, 7y = 0 and compute 177 max = max )y
€
2. For all K € T check whether ng > 0217 max. If this is the
case, put K into 7.

3. For all vertices z € N check whether z is resolvable. If this

is the case and if Ir(nax Nk < 0117 max, put all elements
Cwyz

contained in w, into 7.
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Resolvable Vertices

> An element K of the current partition 7 has refinement
level £ if it is obtained by subdividing ¢ times an element of
the coarsest partition.

» Given a triangle K of the current partition 7 which is
obtained by bisecting a parent triangle K’, the vertex of K
which is not a vertex of K’ is called the refinement vertex
of K.

» A vertex z € N of the current partition 7 and the
corresponding patch w, are called resolvable if

» 2z is the refinement vertex of all elements contained in w,,
» all elements contained in w, have the same refinement level.

resolvable vertex E non-resolvable vertex W
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.
Mesh Smoothing

» Improve the quality of a given partition 7 by moving its
vertices while retaining the adjacency of the elements.

» The quality is measured by a a quality function ¢ such that
a larger value of ¢ indicates a better quality.

» The quality is improved by sweeping through the vertices
with a Gauf3-Seidel type smoothing procedure:

For every vertex z in T, fix the vertices of Jw, and find a
new vertex z inside w, such that

in ¢(K) > min q(K).
[?élfzq( ) [gggzq( )
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Quality Functions

» Based on geometric criteria:

B 4v/3p19(K)
1 (Eo)? + p1(Br)? + pa(E2)?

q(K)

» Based on interpolation:
9(K) = |V (uq —u)lli

with linear and quadratic interpolants of u
» Based on an error indicator:

q(K) = /K’i eiVYE,
=0

1
with e; = h, ng, - Vur]g,

2
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L vVariational Formulation

Strong Form

» Stationary incompressible Navier-Stokes equations in
dimensionless form with no-slip boundary condition

—Au+ Re(u-V)u+gradp=£f in Q
divu=0 in {2

u=0 onT

» For the variational formulation, we want to multiply the
momentum equation with a test function v € H}(2)? and
integrate the result over 2.
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» This is possible if u € H}(Q)¢ implies (u-V)u € H~1(Q)4.
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Stationary Incompressible Navier-Stokes
Equations

Variational Formulation

v

Discretization

v

Solution of the Discrete Problems

v

A Posteriori Error Estimates

v
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L vVariational Formulation

Properties of the Non-Linear Term
» Holder’s inequality yields for v € H} ()9, u,w € L*(Q2)?

/Q[<u-V>v] w < [l VI Wl e,

» Since HE(€) is continuously embedded in L*(2) for d < 4
(compactly for d < 3), this proves that

[HS ()Y 5 (u, v, w) — /Q

trilinear form.

[(u-V)v] - wis a continuous

» Integration by parts yields for all u,v,w € Hg(Q)¢ with
divu=20
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/Q[(u'v)v]'W:_/Q[(U‘V)W]'V, /[(u~V)v}~v—O.

Q
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Variational Form

» Find u € H}(Q)?, p € L3(9) such that for all v € H}(Q)?,

q € L§(9Q)

/QVu:Vv—/gpdivv—&-/QRe[(u-V)u]-v:/Qf-v

/qdivu:()
Q

» Equivalent form:
Find u € V such that for all v e V

/QVu:VV—l—/QRe[(u-V)u]~v:/Qf-v

193/ 300

Computational Fluid Dynamics
LStationary Incompressible Navier-Stokes Equations

L vVariational Formulation

Properties of the Variational Problem

» Every solution satisfies the a priori bound
lul; < cpdiam(Q)||f]|, where cF is the constant in the
Friedrichs inequality.
_ _d
> If Re2°T [cr diam(Q)]3 2||f]] < 1, there is at most one
solution.

» For every Reynolds’ number Re there exists at least one
solution.

» Every solution has the same regularity as the solution of

the corresponding Stokes problem.

» Every solution belongs to a differentiable branch Re — ug,

of solutions which has at most a countable number of
turning or bifurcation points.
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Fixed-Point Formulation

» Denote by 7': H~1(Q)¢ — V the Stokes operator which
associates with g € H~1(92)? the weak solution 7'g = v of
the Stokes problem with right-hand side g, i.e.

/Vv:Vw:/g-w Yw e V.
Q Q

» Then the variational formulation of the Navier-Stokes
equations is equivalent to

u="T(f — Re(u-V)u).
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A Priori Bound

Every solution u of the variational problem satisfies
lul? = / Vu: Vu
Q

:/Qvu:VquRe/Q[(u'V)“]'“

:/f-u
Q

< [[£[|{}ull
< |If|lcp diam(2)|ul;.
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Uniqueness

» The difference v = u; — us of any two solutions satisfies

vii

—Re/Q[(ul Vu] v+ Re/ﬂ[(ug Vug] - v
= —Re/ﬂ[(ul V)v] v — Re/g[(v “Vug] - v
= —Re/Q[(v Vug] - v

< Re[v|[3s 0zl

» Combined with the a priori bound, the estimate
d—1
[Vllza) <271

this proves the uniqueness.
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L variational Formulation

Regularity

The regularity is proved by a bootstrap-argument using the

fixed-point equation u = T(f — Re(u - V)u) and the regularity

of the Stokes problem:

ucH = ucl :>(u-V)u€Lg
_3 142

= (u-V)ue H10 —uecH 10

= uel™ — (u-V)u e L?

—u e H?

4 d
Hle_Zl |v|{ and the Friedrichs inequality
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Existence

> V is separable, i.e. there is as sequence of nested finite

dimensional subspaces V},, such that J,, Vi is dense in V.
Denote by T7,,, the Stokes operator corresponding to V.
The properties of the non-linear term and Schauder’s
fixed-point theorem imply that for every m there is a

W, € Vi with up, = T, (f — Re(up, - V)up,).

The arguments used to prove the a priori bound imply that
the sequence u,, is bounded in H'.

The compact embedding of H' in L* and the properties of
the non-linear term imply that the u,, converge weakly to
an u € H}(9)? which solves the variational problem with
V replaced by anyone of the V,,.

The density of J,, Vi, in V' proves that u solves the
variational problem.
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Branches of Solutions

» The fixed-point formulation implies that there are no

isolated solutions and that every solution depends in a
differentiable way on Re.

Differentiation of the fixed-point equation yields that v,
the derivative w.r.t. Re of any solution u, satisfies

v=—ReT((u-V)v+(v-V)u) —T((u-V)u).

The compact embedding of H! in L* implies that the
operator w — T'((u- V)w + (w - V)u) is compact.

The statement concerning limit and bifurcation points
therefore follows from properties of the spectra of compact
operators, the Fredholm alternative and the a priori bound.
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Basic Idea Discrete Problem
> Find ur € X(T), pr € Y(T) such that for all v;- € X (T),
> Replace H(Q)4, LE(Q) by a pair X (T), Y (T) of finite q;—ne ;7(-7-) (7). pr (T) such that for all vr (7)
element spaces which is uniformly stable for the Stokes
problem. / Vur : Vv — / prdivvy + Re N(uT, ur,vy) = / f-vr
» Denote by V(7)) the corresponding approximation of V. Q Q Q
» Since V(T) ¢ V the anti-symmetry of the non-linear term / grdivur =0
is lost. Q

» To recover the anti-symmetry replace the non-linear term
by » Equivalent form:

Find uy € V(T) such that for all vy € V(T)

/VuT:VVT—i-Re]V(uT,uT,VT):/f-vT
Q Q
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Fixed-Point Formulation of the Discrete Problem Properties of the Discrete Problem

» Denote by 77 : H~1(2)% — V(T) the discrete Stokes

operator which associates with g € H~1(Q)? the weak » Every solution satisfies the a priori bound
solution 7°rg = v of the Stokes problem with right-hand lur|i < cpdiam(Q)||£]].
side g, i.e.

_ _d
> If Re2°T [cr diam(Q)]3 2||f]] < 1, there is at most one
solution.

/VVT:VWT:/g-WT Ywr € V(T).
Q Q

» For every Reynolds’ number Re there exists at least one

solution.
» Then the discrete problem is equivalent to > EVeI'y SOlutiOH belongs to a differentiable branch
B Re +— ur ge of solutions which has at most a finite number
ur = T7(f — Re N(ur,ur,)). of turning or bifurcation points.
g
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Error Estimates Proof of the Error Estimates. The Basic Steps

> Assume that: » The continuous and discrete problem can be written as

» A C (0,00) is a compact, non empty interval. . B
» A > Re s up. is a regular branch of solutions of the F(Re,uge) = 0 and Fr(Re, ur rc) = 0.
Navier-Stokes equations. » Fr evaluated at the H 1—projection of upe is small.
= = f{ikH(Q)d’ PRe © zfpi((? for all QRe € A with k& > 1. » The derivative of Fy evaluated at the H'-projection of ug.
> Sp(T)* € X(T) and S*=~H(T) N L5(€) C Y(T) or is close to the derivative of F' evaluated at upe.

gmax{k=L1L0(T) N L3(Q) C Y(T).
» Then there is a maximal mesh-size hg = ho(A, f,uge) >0
such that for every partition 7 with hy < hg the discrete
problem has a solution ur g. € X(T), p7.re € Y(T) with

» The derivative of Fr evaluated at the H!'-projection of ug,
is invertible.

» The derivative of F is Lipschitz-continuous.

. ) » The discrete problem has a solution in a neighbourhood of
[URre — UT Rel1 + [[PRe — PT Rell < chy ;113\|UR6|1€+1- the H'-projection of upe.
H2
» Compare the obtained solution with the solution of the
> [[uge — U gell < chr|uge — ur ge|1 if Q is convex. Stokes problem with right-hand side f — Re (ug. - V)uge.
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Proof of the Error Estimates. 15¢ Step Proof of the Error Estimates. 2" Step
Auxiliary quantities

» Define G, G € C(HE(Q)?, H-1(Q)?) by

Computational Fluid Dynamics
LStationary Incompressible Navier-Stokes Equations

L Discretization

er(Re) < chlé— sup |uRe|z~+1

- ~ ReeA
(G(v),w) = /Q[(v Vv -w, (G(v),w) = N(v,v,w). > o7 (Re) = |[Pr(Re, 7 ge) —F(Re, )1 .
< |ugre — T Rel1 + Re|Tr(G(Ur Re) — G(uge))|1
» Define F, Fr € C((0,00) x H} (Q)4, HL(Q)?) by + Re|(Tr — T)G(uge)1 + (T — Tr)f|y
F(Re,v) =v+ ReTG(v) —Tf, > [ure — U7 Refr < CthuRe|k+l
Fr(Re,v) = v + ReTrG(v) — Ty f. > |Tr(G(ar,ge) — G(uge))l1 < [|G(UT,Re) — G(uge)| -1
< C|uRe|1|uRe - ﬁT,Re‘l
» [(Tr — T)G(ure)|1 < chE||G(upge)||p—1 < chf|up.|?
» Note that F'(Re,ug.) = 0 and Fr(Re,ur ge) = 0. (T )f (us )|; _f TG -1 < chrfurefi
» Denote by Ui g the H'-projection of ug. on V(7T) and set > (T = T7)fh < chip||fll-1 < chrupelrs

ET(Re) = ‘FT(Re, ﬁ7-7R€)|1.
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Proof of the Error Estimates. 3'¢ Step Proof of the Error Estimates. 4" Step

| Dy Fr(Re, Ut Re) — DvF(Re,uge)||| < chluge|2
> DyFr(Re,ur re)w — DyF(Re, upe)w
_RETT(DG(UTRP)W DG(URP) )

1Dw Fr (Re, tir ) | < 2/ Dy F(Re, uge) || for sufficiently
small hy

> [|A||| < 3 implies that (I — A) is invertible and satisfies

+ Re (T — T)DG(uRE) 11T = A)Y|| < 2
> ]TT(DG(uT Re)W — DG(uRe) i » DyFr(Re, Ut Re)
< | DG (@7 re)w — DG (upe)wl|-1 = DyF(Re,ug.) — [DyF(Re, up.) — DyFr(Re, 07 ge)]
< chrluge|2|wls N — DyF(Re, upe)[I—
e |(TT - T)DG(uRe)W‘l < ChTHDG(uRG)W” DVF(Rea uRe)_l(DvF(Re, U—Re) - DVFT(R67 ﬁT,Re)]

< chr|ugela|wly
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L Discretization

Proof of the Error Estimates. 5" Step Proof of the Error Estimates. 6" Step

The discrete problem has a solution ur g, with
67, re — T Re|1 < 4[|DvF(Re, uge) " [[le7(Re)
|Dv Fr(Re,vi) — Dy Fr(Re, va)||| < cRe|vi — va|1 » Thanks to the fourth step we can define a mapping ® by
» DyFr(Re,vi)w — DyFr(Re,va)w
= ReTr(DG(v1)w — DG(v2)wW)
> |Tr(DG(vi)w — DG(v2)w)ls
< |DG(v1)w — DG(va)w| -1
< vy —vali|wly

®(v) = v — DyFr(Re, i ge) ' Fr(Re,v).

» Then ut g is a solution of the discrete problem if and only
if it is a fixed-point of ®.

» The fourth and fifth step imply that ® is a contraction on
the ball B in H' with centre u7 ge and radius
A||DvF(Re, uge) " [lle(Re).
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Proof of the Error Estimates. 7" Step

Proof of the error estimate
» The sixth step implies that
[uge — ur Rel1 < (1 +4||DvF(Re, uge)'||)e7(Re).
» Set ur e = T7(f — é(uRe)) and denote by pr g the
corresponding pressure.
> The stability of the discretization implies
[u7,Re — UT,Rel1 + IPT,Re — DT Rell
< cRe||G(uge) — G(ur Re)|l-1
< cRe (Juge|i + [ur,gel1) [ure — U, Rel1-

» The error estimates for the Stokes problem with right-hand

side f — Re (uge - V)upg, yield
U7, Re — URe|1 + [|PT,Re — PRell < ch-[uge|p+1.

Computational Fluid Dynamics

LStationary Incompressible Navier-Stokes Equations

L Discretization

Conclusion

» We must stabilize the convective derivative.

» This can be achieved by
» upwind schemes or
» adding an artificial consistent viscosity in the direction of

the streamlines (streamline diffusion method or SDFEM in
short).
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A Warning Example

» Consider the two-point boundary value problem
—u” 4+ Rewu' = 0 in (—1,1) with boundary conditions
u(—=1) =1, u(l) = —1.

» The solution is u(z) = (@)

tanh(age)
age is determined by the relation 2ap. tanh(ag.) = Re.

where the parameter

» The solution exhibits a strong interior layer at = = 0.
» Explicitly solving the difference equations shows that:
» central differences are unstable,

» one-sided differences with a constant
orientation on the whole interval are
unstable,

» one-sided differences with their
orientation depending on the sign of
u are stable.

Computational Fluid Dynamics

LStationary Incompressible Navier-Stokes Equations

L Discretization

An Upwind Scheme

» Approximate the integral involving the convective
derivative by a one-point quadrature rule

214/ 300

/Q (- Vyur)vr & 3 Ko 9)ur (xre)] v (xi0)-

KeT
» Replace the convective derivative by an up-wind difference

(ur(xx) - V)ur(xx) ~ M(UT(XK) —ur(yx))

» Replace ur(yx) by [7ur(yx), the linear interpolate of uy

in the vertices of the face of K which contains yx.
a

XK
y K/
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1 LStationary Incompressible Navier-Stokes Equations

L Discretization

Drawbacks of the Upwind Scheme The Streamline Diffusion Method
Find uy € X(7) and py € Y(T) such that for all vy, g7

/ Vur : Vvrdzr — / pTdiva—i—/ Re[(ur - V)ur|-vr
Q Q Q

2 _ —_ . .
» It does not fit well into the framework of variational - KZGT(SK}LK /K A = SR R e Ty = V)

methods. [(ur - V)vr]
» The discrete problem is no longer differentiable. + Z axdx | divurdivvy = / f vy
KeT e Q
[ ardivurs > dchs [ prlclerls

Ee&
+ 3 okt [ (£~ Aur +Vpr + Re(ur - V)ur] - Var =0

KeT S
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LDiscretization Sy LSolution of the Discrete Problems
Properties of the Streamline Diffusion Method Potential Algorithms I
» Fixed-point iteration:
» [t is able to simultaneously stabilize the effects of the » Requires the solution of Stokes problems.

convection and of the divergence constraint. > Converges for sufficiently small Re.

» It gives rise to a differentiable discrete problem. > Newton iteration:

» Requires the solution of linear Oseen problems with
potentially large convection.
» Converges quadratically if the starting value is sufficiently
» It yields the same error estimates as before without the close to the solution.
stability condition for the finite element spaces. > May be combined with path-tracking.
» Path tracking:
» Requires the solution of linear Oseen problems with
potentially large convection.
» May yield reasonable starting values for the Newton
iteration.

» Up to more technical arguments, its error analysis proceeds
along the lines indicated before.

» In a mesh-dependent norm, it in addition gives control on
(upe - V)(ugre — ut Re), the convective derivative of the
error.
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Computational Fluid Dynamics
ationary Incompressible Navier-Stokes Equations
L stati I ible Navier-Stokes Equati

L Solution of the Discrete Problems

Potential Algorithms II

» Non-linear CG-algorithm of Polak-Ribiere:
» Minimizes |u— T(f — Re(u- V)u)|3.
» Requires the solution of Stokes problems.
» Operator splitting:
» Decouples the non-linearity and the incompressibility.
» Requires the solution of Stokes problems and of non-linear
Poisson equations for the components of the velocity.
» Multigrid algorithms:

» May either be applied to the linear problems in an inner
iteration or be used as an outer iteration with one of the
above methods as smoothing method.

Fixed-Point Iteration

For¢=0,1,... do:

> Solve the Stokes equations
—Aut 4+ Vpitl = {f — Re(u’- V)u'} in Q
divut =0 in Q
utl =0 on .

» If [u't! — u’|; < e return u't!, p'*t! as approximate
solution; stop.
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L Solution of the Discrete Problems

Newton Iteration

For¢=0,1,... do:

» Solve the Oseen equations
—Aut + Vp 4 Re(u' - V)u'?
+Re(u™ - V)u' = {f + Re(u’ - V)u'} inQ

diva'™t =0 in

utl =90 on I'.

» If [ut! — u’|; < e return utl, pitl

solution; stop.

, P as approximate

223/ 300

Path Tracking

Given a Reynolds’ number A, an increment A\ > 0 and an
approximate solution uy for the Navier-Stokes equations with
Re = A

> Solve the Oseen equations

—Avy + Vg + A(uy - V)vy
+)\(V)\ . V)U)\ = {f — )\(U)\ . V)U)\} in
divvy =0 in €

vy=0 on I

» Return uy + A\v) as approximate solution of the
Navier-Stokes equations with Re = A + A\.
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Operator Splitting
For¢=0,1,... do:

» Solve the Stokes equations with no-slip boundary condition

2uuitT — Auiti + Vpiti = 2wu’ + f — Re(u’ - V)u'
diV ui+% = 0.

» Solve the non-linear Poisson equations with homogeneous
boundary condition

., 3 ., 3 .3 ., 3 s 1 i1
wu'ti — Auti 4+ Re(u't1 - V)u'tt = wu'ts + f — Vp'ta,

» Solve the Stokes equations with no-slip boundary condition

2wu't — Aut 4 vpitl = 2uuiti 4 f — Re(u”% . V)u”%

divu'™ = 0.

7

41
T

» If [ut! — u?|; < e return u +1: stop.

Computational Fluid Dynamics
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L A Posteriori Error Estimates

Equivalence of Error and Residual

» Assume that:
» (X, |I'llx), (Y, |]|ly) are Banach spaces.
FeCYX,Y")
F(po) =0
DF(gp) is an isomorphism of X onto Y*.

vV Yy VvVyYy

centre g and radius Ry.
> Set R = min{Ro,v " [|IDF (o)~ '[|=1, 2y I DF (o) |ll}-
» Then, the following error estimates hold for all ¢ in a ball
with centre ¢y and radius R:

1 _
SIDF (@)~ IF(@)lly+ < llp = wollx
< 2|IDF (o) I E()ly~-
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IIDF(2) = DE@W)I| < vl — wllx for all @,  in a ball with
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LA Posteriori Error Estimates

Basic Idea

For regular branches of solutions, a quantitative form of
the implicit function theorem implies that error and
residual are equivalent, i.e. the norm of the error can be
bounded from above and from below by constant multiples
of the dual norm of the residual.
The dual norm of the residual can be estimated as for
linear problems by
> either evaluating element-wise the residual with respect to
the strong form of the differential equation and suitable
inter-element jumps
» or solving auxiliary local discrete linear problems.
Limit and bifurcation points can be treated by suitably
augmenting the residual.

Computational Fluid Dynamics
LStationary Incompressible Navier-Stokes Equations

L A Posteriori Error Estimates

Proof of the Equivalence

» The upper bound for ||¢ — ol x follows from

¥ — %o
= DF(¢0) " { DF (o) (> = %0) + F(¢) — F(¢9) + Flspo) }

= DF (o) { F(¢)

ol
+ [ [DF(0) — DF(pu + o - )] (6 — w)it}.

» The lower bound for || — ¢gl||x follows from

F(p) = DF(¢0)(¥ — ¢o)

1
+ /0 [DF (0 + (¢ — o)) — DF(0)] (¢ — ¢o)dt.
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Residual A Posteriori Error Estimates Non-Stationary Incompressible Navier-Stokes
Equations

» Residual a posteriori error indicator:

nr = {WkllEr + Aur — Re (ur - V)ur - Vprllk

+ [|div urfk
1 2% » Variational Formulation
T3 Ee; hel[ng - (Vur —prl) ]EHE} » Finite Element Discretization
K,Q

Solution of the Discrete Problems

v

» Upper bound:

. 1
{u—urfi+lp—prl?} < {3 (ha-+iklE~Erii) |
KeT

v

A Posteriori Error Estimation and Adaptivity

» Lower bound: .
nrk < a{lu—urll,. +lp—prll, +hklf—£rl2,. )2
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Strong Form Function Spaces for Parabolic Problems
» Non-stationary incompressible Navier-Stokes equations in > (U, [Illo), (W, ||[lw) Banach spaces, U < W, 1 <p < oo
dimensionless form with no-slip boundary condition » LP(a,b;U) all measurable functions u : (a,b) — U such that
) ts e, D)l is in Z2((a, b))
—u—Au—l—Re(u Viu—gradp=f inQx(0,7)
o | | /||u ||pdt | fp<se
divu=0 in Qx (0,7) ull Lo (o bty = .
w=0 onTx(0,7) ess. supl|uf., Nw if p = o0
’ te(a,b)
u(-,0) =ug inQ
» WP(a,b;U, W) = {u € LP(a,b;U) : Oyu € LP(a,b; W)}
> We want to multiply the momentum equation with a / Ju(-, )||Fdt + / | = 8u |15 }
suitable test function v and integrate over  x (0,7). llullwo (a,6:0,w)
» We need appropriate spaces of univariate functions with €S8. sup max{”u( Ollo H ot ( )”W}

values in suitable Sobolev spaces. te(a,b)
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Properties of the Function Spaces Variational Form

Computational Fluid Dynamics
LNon-Stationary Incompressible Navier-Stokes Equations

L vVariational Formulation

Find u € L?(0,T; H}(Q)?), p € L2(0,T; L3(£2)) such that for all
v € W=(0,T; Hy ()%, L*(Q)?), ¢ € L®(LF())

» LP(a,b;U), WP(a,b;U, W) are Banach spaces. T v .
> % is defined in the distributional sense. /0 /Q{—u "t +Vu: Vv + Re[(u-V)u]-v—pdiv V}
» Functions in WP(a, b; U, W) have traces u(-,a), u(-,b) in W T

if p>1. :/0 /Qf-v—&—/gu()-v(-,O)

T
/ /qdivu:()
0 JQ
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L vVariational Formulation

Equivalent Variational Form Properties of the Variational Problem

» For every Reynolds’ number Re, every right-hand side

Find u € L2(0,T; V) such that for all v € W (0, T; V, L2(Q)?) f € L?(0,T;V*) and every initial value ug € L*(Q)? with
divug = 0, there exists at least one solution. It satisfies
T v gu ¢ LY(0,T; V¥).
/0 /Q{u ot +Vu: Vv + Ref(u-Vju]-v » If d = 2, there exists at most one solution. It satisfies
T 9u ¢ 12(0,T;V*) and u € C([0, T, L2(2)?).
= [ [£ovt [woovt0) fon satisfies 22 € )
0 Jo Q » If d = 3, every solution satisfies G € L3(0,T;V*) and
ue L%(O, T; L*(Q)3). There is at most one solution in
L2(0,T; V)N L>(0,T; L*(Q)%) N L8(0,T; L*(2)3). Every
such solution satisfies u € C([0, 7], L?(Q2)3).
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L Variational Formulation

Existence. 15t Step

> V is separable, i.e. there is as sequence of nested finite
dimensional subspaces V,,, such that Um Vin 1s dense in V.

» Denote by ug,, the L?-projection of uy onto Vj,.
» Recall that [H&(Q)d]g 3 (u,v,w) — / [(u-V)v] -wisa
Q

continuous anti-symmetric trilinear form.

Computational Fluid Dynamics
LNon-Stationary Incompressible Navier-Stokes Equations

L variational Formulation

Existence. 3" Step

» This implies lim sup|| vy, (-, )| < oo.
t—tm

» Hence, t,, = T and (v;;,) is contained in a bounded subset
of L°°(0,T; L2(Q)%) N L?(0,T; V).
» A compactness theorem implies that there is a
u e L>(0,T; L2(Q2)%) N L?(0,T; V) such that v,,, — u
» weak in L2(0,T;V),
» weakx in L>(0,T; L*(Q)9),
» strong in L2(0,T; L?(2)%).
» The convergence allows to take the limit in the defining
equation for the v,,.

» Since |V, is dense in V, this proves the existence.
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Existence. 279 Step

» The theorem of Picard-Lindelof implies that for every m
there is a maximal t,,, € (0,7] and a v,,, € C1([0, ], Vin)
with vy, (-, 0) = g, such that for all w,, € V,,

v
/ { v . Wm+VVm : vwm + Re Kvm : V)V,nl : Wm}
Q

ot
:/f-wm.
Q

» Inserting w,, = v,, yields

1d ov
3o Ivl? + 1vnl? = [ 2 v v
o ot

1 1
:/Qf~vm§2\vmﬁ+2]f|21.

Computational Fluid Dynamics
on-Stationary Incompressible Navier-Stokes Equations
L Non-Stati I ible Navier-Stokes Equati

L Variational Formulation

Uniqueness. 15 Step

» Define operators A, N on L*(0,T; L*(Q)%) N L?(0,T;V)
by

(Au,v)z/QVu:Vv, <N(u),v>:/ﬂ[(u-V)u] V.

» Then |[N(u)|_; < \|‘1H%4(s'2)'

d—1

> Recall that |[uf|psq) <22

» Every solution of the variational problem satisfies

d
|25 ulf.

%;JrAquN(u):f in V*.
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L Variational Formulation

L Variational Formulation

Uniqueness. 2" Step (d = 2) Uniqueness. 3™ Step (d = 3)

3
> Sincea\N(u)]_l < \/iHuH’uh, this proves that Au, N(u), » Since now |N(u)|_1 < ||u||%4(ﬂ) < 2Hu||%|u|12, we have
du i 2 VA
i e e el o A0, 25 ) o _ Au € L2(0,T; V*) and N(u), 2 in L3(0,T; V*).
< Dl S O S (S e S L a7 s » Embedding theorems yield the remaining regularity results.

» The difference w = u; — uy of any two solutions satisfies . .
L - Y » The difference w = u; — uy of any two solutions now

1d :
w2 + [wi? = (N(ur), w) — (N(uz), w) satisfies
o WO+ it = [ [ D] - w
= /ﬂ[(w . V)ul] -w < \/§|w|1\|w|||u1]1 2.dt ’ L Q 1
z 1
=— [ [(w-V)w] -w < 2lw|{|lw]|7]lui] L)
= @”"V('J)HQ < Jui () FIw( )17 . /Q -
t = — ot 2 < (YT S8 - 1)]|2
= glweores[- [lucsta]} <o a0 DI7 < 3 () T € Ollzay 1wl
0 » Since u; € L3(0,T; L*(©2)3) and w(-,0) = 0, this proves
» Since u; € L?(0,7T;V) and w(-,0) = 0, this proves w = 0. — =
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L variational Formulation

Regularity of Solutions Further Regularity of Solutions

» Assume that » The above regularity results do not suffice to prove second
> d=2, order error estimates w.r.t. time.
» I'e C? o » In order to obtain such estimates, the quantities
» £ e L*(0,T;L*(Q)?), 4 € L*(0,T;V*), divf =0, = i
» up € H2(Q)2NV, du " du 24 0*u 24

60l [ 1S ColRds, [ 15 ) s

» then the solution is in L°°(0,T; H%(Q2)?). t ¢

» Assume that must remain bounded for ¢ — 0.
» d=3, » If any of these quantities remains bounded, the following
» e C, overdetermined Neumann problem admits a unique
» fe LOO(OaTa LQ(Q)s)’ % € L1(07T5 LZ(Q)3)’ divf = 07 solution:
> uOEHz(Q)BﬂV, ) .
> I£¢,0)l, [|E]| o= o.7v+) and [[ugllz are sufficiently small, Agp = div(f(-,0) — (ugV)up) in Q

» then the there is a unique solution with Vi = Aug+£f(-,0) — (upV)up onT.

u e L>(0,T; HX(Q)%), 22 € L2(0,T; V) N L*>(0,T; L*(Q)?).

» This is a non-local compatibility condition.
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‘ L Finite Element Discretization

Discretization of Parabolic Problems Basic Idea of the Method of Lines

» There are three main approaches for the discretization of
parabolic problems:

» Method of lines,
» Rothe’s method,

» Space-Time Finite Elements. » Choose a fixed spatial mesh and associated finite element

» For classical non-adaptive discretizations all approaches SPaces.

often yield the same discrete solution. » Apply a standard ODE-solver (e.g. implicit Euler,

Crank-Nicolson, Runge-Kutta, ...) to the resulting system

» The method of lines is very inflexible w.r.t. to adaptivity. oF iy @Rt @i

» The error analysis of Rothe’s method is very intricate since
it requires regularity results w.r.t. time which often are not
available.

» Space-time finite elements are well amenable to a posteriori
error estimation and space and time adaptivity.
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Discretization of the Navier-Stokes Equations Temporal Discretization with the 6-Scheme

with the Method of Lines » Applying the 0-scheme to the above system requires to

» Choose a spatial mesh 7 and associated finite element compute an appropriate interpolate uOT = R7ug of the
spaces X (7)), Y(T) which are uniformly stable for the initial value and, for n = 1,2, ..., to solve the discrete
Stokes problem. stationary Navier-Stokes problems

» Denote by A7, By and N7 (uy) the associated stiffness u gl
matrices. TTiT = —B7p% + 0 {f} — vATu — Ny(ul})}

» Then the spatial discretization yields the following system " 1 el ne1
of differential-algebraic equations: + (1 =0 {f7 —vAruz - Ny(up )}

Bruf =0
dur
~ = fr —vArur — Brpr — Nr(ur)
T
Brur =0. » The choice 6 = % corresponds to the Crank-Nicolson

scheme, 6 = 1 to the implicit Euler scheme.

247/ 300 248/ 300



Computational Fluid Dynamics

LNon-Stationary Incompressible Navier-Stokes Equations
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Basic Idea of Rothe’s Method

» Interpret the parabolic problem as an ordinary differential
equation in a suitable infinite dimensional Banach space
and apply a standard ODE-solver (e.g. implicit Euler,
Crank-Nicolson, Runge-Kutta, . ..).

» Every time-step then requires the solution of a stationary

elliptic equation which is achieved by applying a standard
finite element discretization.

Computational Fluid Dynamics

LNon-Stationary Incompressible Navier-Stokes Equations

L Finite Element Discretization

Spatial Discretization of the Stationary
Problems

» The stationary problems only differ by the reaction term
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%u" from the standard stationary Navier-Stokes equations.

» They can be discretized and solved as the standard
Navier-Stokes equations.
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Rothe’s Method for the Navier-Stokes Equations

» Rothe’s method in form of the #-scheme requires to solve
the following stationary non-linear elliptic equations for
n=12 ...

1
—u" — 0Au" + ORe (u" - V)u" — grad p"

Tn

(- t) + — 0" 4 (1= O){E(, tn) — Au"
T

n
+ Re(u" 1. v)u" 1} in Q
diva” =0 in
u”" =0 onI'.

> 0= % corresponds to the Crank-Nicolson scheme, 8 = 1 to
the implicit Euler scheme.
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Basic Idea of Space-Time Finite Element
Methods

» Construct a space-time mesh for the space-time cylinder.

» In the variational formulation of the parabolic problem,
replace the infinite dimensional spaces by finite dimensional
approximations which consist of piece-wise polynomial
functions w.r.t. time with values in spatial finite element
spaces.
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L Finite Element Discretization

Space-Time Meshes Conditions
» Choose a partition 7 =
{[tn_1,tn] : 1 <n < Nz} of » Non-Degeneracy: 7, > 0 for all n and Z.
! Tor the time-interval [0, 7] with » Transition Condition: For every n there is an affine _
tNy . O=to<...<tn,=T. equivalent, admissible, and shape-regular partition 7, such
‘ ‘ ‘ ‘ > Set 7, = t, — ty_1. that it is a refinement of both 7, and 7,_1 and such that
HI‘ ‘ — » With every t,, associate an W
to ‘ admissible, affine 1<Snu<PN sup KS’??)’ P < 0
SN>INT n
equivalent, shape regular et KCK'
t 1] ] partition 7, of 2 and finite . . o
to - element spaces uniformly with respect to all partitions Z.
To X0 =X(To), Yo =Y(Tp) » Degree Condition: The polynomial degrees of the functions
for the velocity and in X,, Y, are bounded uniformly w.r.t. all partitions 7,
pressure. and 7.
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L Finite Element Discretization

Effect of the Transition Condition Space-Time Finite Element Discretization
Set u% = Ryyug and successively determine ug-n e X,, p% €y,
such that for all vi- € X, ¢f €Y,

> It trict h- ing: It t not be t brupt 1 .
restricts mesh-coarsening: It must not be too abrupt nor - / W v 40 / Vul :VvE / P2 divvi
n JQ Q Q

too strong.
» The method of characteristics below additionally requires a +ORe [ (0, - V)u% ] v
transition condition with reversed roles of 7,_1 and T,. 17 Ell
» This restricts mesh-refinement: It must not be too abrupt = 7n o u%,,, " v +0 /Q £(,tn) - Vllrn
nor too strong. n ' 1 N
» Both restrictions are satisfied by the refinement and +(1-0) /Q BCo 1) vy + (1= 9),/9 Vur L P Vv,
coarsening methods used in practice. 4 (1—O)Re [(u%;ll ) v)u%_}l} v

Ja
OZ/ql}ndivuﬁrn
Q
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Choice of Parameters

> 0= % corresponds to the Crank-Nicolson scheme.

» O = 1 corresponds to the implicit Euler scheme.

» Due to the poor regularity for ¢ — 0, one usually uses the
implicit Euler scheme for the first few time-steps.

» O =1 corresponds to a fully implicit treatment of the
non-linear term. This requires the solution of discrete
stationary Navier-Stokes equations in each time-step.

» O = 0 corresponds to a fully explicit treatment of the
non-linear term. This requires the solution of discrete
Stokes equations in each time-step. As a compensation the
size of the time-steps must be reduced drastically.

» The divergence constraint and the non-linear term may be
stabilized as for stationary problems.
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Basic Idea of the Method of Characteristics

» For every v € V and every (z*,t*) € Q x (0,7 the
following characteristic equation admits a maximal solution
which exists for all t € (0,t*)

1
é:p(t;x*,t*) = Rev(x(t;x*,t%),t), =z(t";z", ) =a".

» U(z*,t) = u(x(t; x*, t¥),t) satisfies
dU Ou
E — E‘FRB(V-V)U.
» The momentum equation therefore takes the form
dU

E—Au + gradp = f.
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LSolution of the Discrete Problems

Overview

» All discretizations considered so far require the solution of
a sequence of discrete stationary Navier-Stokes equations.

» At the expense of a drastically reduced time-step, the
non-linear problems can be replaced by discrete Stokes
problems.

» The method of characteristics, alias transport-diffusion
algorithm, is particularly suited for the discretization of
parabolic problems with a large convection term.

» It decouples the discretization of the temporal derivative
and of the convection from the discretization of the
diffusion terms.

» [t requires the solution of a sequence of ODEs and of linear
elliptic problems.
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Re-Interpolation

» Assume that every function
in X, is determined by its
values at a set V,, of nodes

h (Lagrange condition).

Mo

» For every n and z € V,, o
apply a classical

Z ] ODE-solver to the

characteristic equation

associated with
\% (z*,t*) = (2,t,) and denote
z by 27! the resulting

approximation for
Z(tn—1; 2,tn).
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The Method of Characteristics

>

>

Determine ﬁi};l € X, such that ﬁl};l(z) = u%ill (z771) for

all z € V0.

Find u?—n e X,, p”Tn € Y,, such that for all V%L € Xy,
q7, €Yy

1
/U%L.V%LJF/Vu%:Vv%/p%diVV%
Tn JQ Q Q

1 [ _ ,
= [ @t ovi o+ [ s vy
™mJgo " ' Q

/q’;—n divuy, =0
Q
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LA Posteriori Error Estimation and Adaptivity

Basic Steps of A Posteriori Error Estimation

>

Use a parabolic energy estimate to prove that a suitable
norm of the error can be bounded from above and from
below by constant multiples of the corresponding dual
norm of the residual.

Appropriately split the residual in a contribution
associated with the corresponding stationary problem and
a complement which is associated with the temporal
discretization.

Prove that the norm of the residual can be bounded from
above and from below by the sum of the norms of the two
contributions.

Bound the norms of the contributions separately using
standard elliptic techniques for the part corresponding to
the stationary problem.
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Properties

» Every time-step requires the solution of

» an ODE for every node associated with X,,,
> a discrete Stokes problem.

» The Stokes problems can be stabilized in the usual way.
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LA Posteriori Error Estimation and Adaptivity

Difficulty with the Navier-Stokes Equations

» There is no appropriate parabolic energy estimate available.
» This is due to the fact that the non-linear convection is too
“strong” compared with the linear diffusion.

» This is reflected by the unsatisfactory regularity and
uniqueness results for the the Navier-Stokes equations.

» For the non-stationary Stokes equations a suitable energy
estimate is available. Then the main (technical) difficulty
lies in the non-conformity V(T) ¢ V.
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A Residual Error Indicator for the
Non-Stationary Stokes Equations

» Spatial error indicator

1
P={ D0 BRIEC ) — = (wf, —ui ) + A, -
KeTn "
+ > helog - (Vug, —p5DlellE
Ee&, 0
1
+ > llaiv g, %}
KeTn

» Temporal error indicator

1
= {IV(ut, —wi I + ldiv(uy, —wit)|2}
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LA Posteriori Error Estimation and Adaptivity

> Add the non-linear term Re (u%- - V)u to the element
residuals in 7.

» For every n determine u}- € SO’O(’EL)d such that for all

VT, € o (Tn)°

/VﬁTn : Vv7, = Re / [(U%V)u%] VI
Q Q

> Augment (n¢)2 by

W7 R+ Y AilAUT + Re (uf, - V)(uf, — o7tk

KeT,

A
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A Posteriori Error Estimates for the
Non-Stationary Stokes Equations

» Denote by uz the continuous, temporally piece-wise affine
function which coincides with u’- at time ¢, and by pz the

temporally piece-wise constant function which coincides
with p7- on (tn—1,tn]-

» Then

{190 = uz) + V(0 = p2) 22011110y
3
+ Hu — uIH%oo([LT;LQ(Q)d) ol Hu — uIH%Q(O’T;Hé(Q)d)}

© (-« 3o+ )

n=1
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LA Posteriori Error Estimation and Adaptivity

An Algorithm for Space-Time Adaptivity

0.

1. Refine 7p until ||Ryyup — ug| <

Il >

Given a tolerance ¢, an initial mesh 7y and an initial
time-step 7.

\[, setn=1,t; = 7.

. Solve the discrete problem on time-level n and determine

the error indicators 7;" and 7.

2\f’ replace t, by 3(tn—1 +t,) and return to 2.

4. Apply a standard mesh-refinement and coarsening

algorithm to the discrete problem on time-level n with the
current time-step 7, until 7; < 5 \f Ifn? < 4\5/?, replace

Tn DY 275,.

. If t,, =T, stop. Otherwise set t,+1 = min{T t, + 7},

increment n by 1 and return to 2.
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Compressible and Inviscid Problems

» Systems in Divergence Form

» Discretization
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LCompressible and Inviscid Problems

LSystems in Divergence Form

The Setting

vV VY VvV VY

Domain: 2 ¢ R?

Source: g: R™ x Q x (0,00) — R™

Mass: M : R™ — R™

Flux: F : R™ — R™*d

Initial value: Uy : Q — R™

Problem: Find U : Q x (0,00) — R™ such that under
appropriate boundary conditions

OM(U)

T —+ dIVE(U) = g(U,Jf,t) n Q X (O, OO)
U(-, O) - UO in )
iv =
o : Ox; /1<i<m
j=1
269/ 300 270/ 300
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LSystems in Divergence Form LSystems in Divergence Form
Advective and Viscous Fluxes Euler Equations
o o P
» The flux F splits into two contributions F = F,, + F ;... m=d4o U= v
» F 4. is called advective flux and contains no derivatives. e
» F ... is called viscous flux and contains spatial derivatives. p 0
» The advective flux stems from the transport theorem and M((U) = | pv g=| pf
models transport or convection phenomena. e f-v
» The viscous flux models viscosity or diffusion phenomena. pv
Eadv(U) = pv Vv +p1
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Compressible Navier-Stokes Equations in
Conservative Form

p
m=d+2 U=|(v
e
P 0
M(U) = | pv g=| pf
e f-v
A% 0
Eadv(U) = PV Vv +pl EViSC(U) = I + pl
ev + pv (T+pD)-v+o

Computational Fluid Dynamics

LCompressible and Inviscid Problems

LSystems in Divergence Form

Remarks

» The previous result is proved by a fixed-point argument.

» Long-time existence results require conditions of the form
“initial data and exterior forces sufficiently small”.

» Existence results under weaker assumptions can be proved

using the concept of compensated compactness.

» Uniqueness results typically require some sort of entropy
condition.
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LSystems in Divergence Form

An Existence and Uniqueness Result

> Assume that
» the boundary I' is sufficiently smooth,
» the exterior forces are sufficiently smooth,
» the initial data pg, ug, pg and the exterior forces satisfy
appropriate compatibility conditions of the form

u-n=20 on I’
%~n:0 on I’
of Juy OJuy
(5~ (G Vo= (- V!

+V(py 'po div(pouo))) n=0 on I'.

» Then the compressible Navier-Stokes and Euler equations
admit a unique solution on a small time interval.

Computational Fluid Dynamics
LCompressible and Inviscid Problems

L Discretization

Most Popular Methods

» Finite Volume Methods

Discretize the integral form of the system using piece-wise
constant approximations on a mesh consisting of
polyhedral cells combined with suitable numerical
approximations for the fluxes across the cells’ boundaries.

» Discontinuous Galerkin Methods

Discretize a suitable weak formulation of the system using
discontinuous piece-wise polynomial approximations
combined with appropriate stabilization terms.
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Finite Volume Discretization. 15 Step

» Choose a time-step 7 > 0.

» Choose a partition 7 of the domain 2 consisting of
arbitrary non-overlapping polyhedra.

» Fixne N*and K € T.

» Integrate the system over K x [(n — 1)7,n7|:

[ L2507 fr
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Finite Volume Discretization. 3'9 Step

» Assume that U is piecewise constant with respect to space

and time.

» Denote by U’ and U}‘(_l its constant values on K at times

nt and (n — 1)7 respectively:
/ M(U(z, ) ~ |K|M(UF)

/ M(U(z, (n — 1)7)) ~ |K[M(UY)

oo /BK

/1/ (U, z,t) = 7|K|g(Ux ", 2k, (n = 1)7)

‘N =~ T/ E(UTIL(_I) N
0K
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Finite Volume Discretization. 2" Step

Use integration by parts for the terms on the left-hand side:

/M (z,nT))

- [ MU, (= 1))

- [ [ rw
(n—1)1 JOK

/ / 3M

(n—1)7

/ / divF(U
(n—-1)7 JK
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Finite Volume Discretization. 4" Step

Approximate the boundary integral for the flux by a numerical

flux:

T/ FUE ) ng~r Y 0K NOK|Fr (UL, U
0K

K'eT
OKNOK'eE
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A Simple Finite Volume Scheme Possible Modifications

» For every element K € T compute
Ul = 1 / Up(z).
K| Jk

» For n =1,2,... successively compute for all elements
KeT » The spatial mesh may vary with time.

> The time-step may not be constant.

. . n
M(U%) = M (U?{l) » The approximation U% may not be constant.

!
Ly 10K NOK'|

FT(Un_l, Un—/l)

K'eT
OKNOK'e&

+7’g(Uanl, i, (n—1)7).
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Open Tasks Dual Meshes

» Often the finite volume mesh 7 is constructed as a dual
mesh departing from an admissible primal finite element
» Construct the partition 7. mesh 7.

» Determine the numerical flux F. » In two dimensions there are basically two approaches for

. the construction of dual meshes:
» Handle boundary conditions. =~ =~ . .
» for every element K € T draw the perpendicular bisectors

at the midpoints of its edges,
» for every element K € T connect its barycentre with the
midpoints of its edges.
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Perpendicular Bisectors and Barycentres Properties of Dual Meshes

Perpendicular bisectors Barycentres » Every element in

K €T can be
associated with a
vertex in xx of T and
vice versa.

» With every edge F of
T one may associate
two vertices 1, TE 2
of T such that the line
TE1ZEz2 intersects E.
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; sa|

Advantages and Disadvantages of Perpendicular Construction of Numerical Fluxes. Notations
Bisectors and Assumptions
» The intersection of T 1 g2 with F is perpendicular. » Assume that 7 is a dual mesh corresponding to a primal
» The perpendicular bisectors of a triangle may intersect in a finite element mesh 7.
point outside the triangle. The intersection point is within » For every straight edge or face E¥ of T denote by
the triangle only if its largest angle is at most a right one. » K, and K, the adjacent volumes,

» Uy, U, the values U}gl and U}gl,

» The perpendicular bisectors of a quadrilateral may not i€
» 11, T the vertices of 7 such that the line Z7 T3 intersects F.

intersect at all. They intersect in a common point inside
the quadrilateral only if it is a rectangle. » Split the numerical flux F-(U;, U,) into a viscous
numerical flux F7 ;. (U, Uz) and an advective numerical

» The construction with perpendicular bisectors has no three
flux 7 .q,(U1, Uz).

dimensional analogue.
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Approximation of Viscous Fluxes Spectral Decomposition of Advective Fluxes

» Denote by C(V) = D(Eadv(v) . nKl) € R™*X™M the

Introduce a local coordinate system 7, ..., 74 such that the Aeatiive 68 10 o (A7) - e, it Tesieash o .

direction 7); is parallel to the direction 7| 75 and such that

the other directions are tangential to £.
WV Euler and compressible Navier-Stokes equations):
n

» Assume that this matrix can be diagonalized (satisfied for

QV)TIC(V)Q(V) = A(V)

with Q(V) € R™*™ invertible and A(V) € R™*™ diagonal.

» Express all derivatives in F_... in terms of the new

visc

coordinate system. > Set 2t = max{z,0}, 2~ = min{z,0} and
» Suppress all derivatives not involving 7. A (V)i _ diag( A(V)ﬁ A (V)i )
’c mm)?
» Approximate derivatives with respect to 7; by difference C’(V)i _ Q(V)A(V)iQ(V)fl
quotients of the form Iii:izzl' '
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Approximation of Advective Fluxes Properties

> Steger-Warming

» Both schemes require the computation of DF 4, (V) - ng,
and of its eigenvalues and eigenvectors for suitable values of

FT,‘(LdV(Ula UZ) = C<Ul)+Ul s C(UQ)_UQ

V.
= e Theer » The van Leer approximation in general is more costly than
the Steger-Warming approximation since it requires three
Fraav(U1, Uy) evaluations of C(V) instead of two.

» For the compressible Navier-Stokes and Euler equations,
however, this can be reduced to one evaluation since for
these equations F, 4, (V) - ng, = C(V)V holds for all V.

= [0(U) + CG UL+ ) — O (UL + Uy) |0,

+ [C(Uz) - C(%(Ul +Uy)) T+ C(%(Ul + Ug))—} U,
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ou

ou
Burger’s equation: — +u— =0

ot ox
Fadv(u) - %u27 C(U) =u, Cf(u)i =u*

Steger-Warming:
uf
2
U
1
F’T,adv(ula u2) = 9
Uy
0
van Leer:

FT,adV(u17u2) = { 2

Computational Fluid Dynamics

2
Uuy

U
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L Discretization

if up > 0,u3 >0
if up > 0,u3 <0
if u; <0,u9 <0
if uy <0,u9 >0

if uy

if uy

Relation to Finite Element Methods

» Assume that 7 is a dual mesh corresponding to a primal

finite element mesh 7.

» There is a natural one-to-one correspondence between
piece-wise constant functions on 7 and continuous
piece-wise linear functions on 7T

SOTHT)™ > Ur & Uz € SYU(T™

UT\K - 6

F

(zK)

VK € T.
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TVD and ENO Schemes

» The convergence analysis of finite volume methods is based
on compactness arguments, in particular the concept of
compensated compactness.

» This requires to bound the total variation of the numerical
approximation and to avoid unphysical oscillations.

» This leads to the concept of total variation diminishing
TVD and essentially non-oscillating ENO schemes.

» Corresponding material may be found under the names of
Enquvist, LeVeque, Osher, Roe, Tadmor, .. ..
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A Simple Adaptive Algorithm

0. Given the solution Ut of the finite volume scheme _
compute the corresponding finite element function Uz

1. Apply a standard a posteriori error estimator to ﬁ%.

2. Given the error estimator apply a standard mesh
refinement and coarsening strategy to the finite element
mesh 7 and thus construct a new, locally refined and
coarsened partition 7.

3. Use T to construct a new dual mesh 77. This is the
refinement of 7.
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Idea of Discontinuous Galerkin Methods

Approximate U by discontinuous functions which are
polynomials w.r.t. space and time on small space-time
cylinders of the form K X [(n — 1)7,n7| with K € T.

For every such cylinder multiply the differential equation
by a corresponding test-polynomial and integrate the result
over the cylinder.

Use integration by parts for the flux term.

Accumulate the contributions of all elements in 7.
Compensate for the illegal partial integration by adding
appropriate jump-terms across the element boundaries.
Stabilize the scheme in a Petrov-Galerkin way by adding
suitable element residuals.
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Possible Modifications

The jump and stabilization terms can be chosen more
judiciously.

The time-step may not be constant.

The spatial mesh may depend on time.

The functions Uy and V7 may be piece-wise polynomials
of higher order w.r.t. to time. Then the term

M (U
/ / Z T - V7 must be added on the
—-1)r

OM(Ur)
t

KeT
left-hand side and terms of the form - V7 must

be added to the element residuals.

299/ 300

Computational Fluid Dynamics

LCoyfnpressible and Inviscid Problems M
L Discretization

A Simple Discontinuous Galerkin Scheme

» Compute UY, the L2-projection of Uy onto S*~1(T).
» For n > 1 find U% € S%~(T) such that for all V7

d o= /MUT )- Vi — Z/ (U%): VVT

K E’T KeT
+> dghe / g F(URVT],
Eec&
+ Y oxhi / divF(U%) - divF(V7)
K eT
- 2 [ My vr+ X e
K 67’ KeT
+ ) dkhi / n7) - divE(Vy)
KeT
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