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Modelization

Deformation of Materials

I Notation:
I Ω ⊂ Rd: domain initially occupied by a material moving

under the influence of interior and exterior forces
I η ∈ Ω: initial position of an arbitrary particle
I x = Φ(η, t): position of particle η at time t > 0
I Ω(t) = Φ(Ω, t): domain occupied by the material at time
t > 0

I Basic assumptions:
I Φ(·, t) : Ω→ Ω(t) is an orientation preserving

diffeomorphism for all t > 0.
I Φ(·, 0) is the identity.
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Lagrange and Euler Representation

I Lagrange representation: Fix η and look at the trajectory
t 7→ Φ(η, t). η is called Lagrange coordinate. The
Langrange coordinate system moves with the fluid.

I Euler representation: Fix the point x and look at the
trajectory t 7→ Φ(·, t)−1(x) which passes through x. x is
called Euler coordinate. The Euler coordinate system is
fixed.
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Velocity

Velocity of the movement at the point x = Φ(η, t) is

v(x, t) =
∂

∂t
Φ(η, t).
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Properties

DΦ = (∂Φi
∂ηj

)1≤i,j≤d Jacobi matrix of Φ, J = detDΦ Jacobi

determinant of Φ, Aij co-factors of DΦ (1 ≤ i, j ≤ d):

∂

∂t
J =

∑
i,j

∂

∂(DΦ)ij
J
∂

∂t
(DΦ)ij =

∑
i,j

(−1)i+jAij
∂2

∂t∂ηj
Φi

=
∑
i,j

(−1)i+jAij
∂

∂ηj
vi =

∑
i,j,k

(−1)i+jAij
∂

∂ηj
Φk

∂

∂xk
vi

=
∑
i,k

Jδi,k
∂

∂xk
vi = J divv
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Transport Theorem

d

dt

∫
V (t)

f(x, t)dx

=
d

dt

∫
V
f(Φ(η, t), t)J(η, t)dη

=

∫
V

( ∂
∂t
f(Φ(η, t), t)J(η, t)

+∇f(Φ(η, t), t) · v(Φ(η, t), t)J(η, t)

+ f(Φ(η, t), t) divv(Φ(η, t), t)J(η, t)
)
dη

=

∫
V (t)

( ∂
∂t
f(x, t) + div

[
f(x, t)v(x, t)

])
dx
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Conservation of Mass

I ρ denotes the density of the material.

I

∫
V (t)

ρdx is the total mass of a control volume.

I Total mass is conserved:

0 =
d

dt

∫
V (t)

ρdx =

∫
V (t)

( ∂
∂t
ρ+ div

[
ρv
])
dx.

I This holds for every control volume, hence:

∂

∂t
ρ+ div

[
ρv
]

= 0.
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Conservation of Momentum

I

∫
V (t)

ρvdx is the total momentum of a control volume.

I Its temporal change is

d

dt

∫
V (t)

ρvdx =

∫
V (t)

( ∂
∂t

[
ρv
]

+ div
[
ρv ⊗ v

])
dx.

I This is in equilibrium with exterior and interior forces.

I Exterior forces are given by

∫
V (t)

ρfdx.
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Interior Forces

Basic assumptions:

I Interior forces act via the surface of a volume V (t).

I Interior forces only depend on the normal direction of the
surface of the volume.

I Interior forces are additive and continuous.
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Cauchy Theorem

The previous assumptions imply:

I There is a tensor field T : Ω→ Rd×d such that the interior

forces are given by

∫
∂V (t)

T · ndS.

I T is such that the divergence theorem of Gauß holds∫
∂V (t)

T · ndS =

∫
V (t)

divTdx.
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Conservation of Momentum (ctd.)

I The conservation of momentum and the Cauchy theorem
imply:∫

V (t)

( ∂
∂t

(ρv) + div(ρv ⊗ v)
)

=

∫
V (t)

(
ρf + divT

)
.

I This holds for every control volume, hence:

∂

∂t
(ρv) + div(ρv ⊗ v) = ρf + divT.
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Conservation of Energy

I

∫
V (t)

edx is the total energy of a control volume.

I Its temporal change is in equilibrium with the internal
energy and the energy of exterior and interior forces.

I Exterior forces contribute

∫
V (t)

ρf · vdx.

I Interior forces give

∫
∂V (t)

n ·T · vdS =

∫
V (t)

div
[
T · v

]
dx.

I The Cauchy theorem implies that the internal energy is of

the form

∫
∂V (t)

n · σdS =

∫
V (t)

divσdx.

I Hence, conservation of energy implies

∂

∂t
e+ div(ev) = ρf · v + div(T · v) + divσ.
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Constitutive Laws

Basic assumptions:

I T only depends on the gradient of the velocity.

I The dependence on the velocity gradient is linear.

I T is symmetric.

(Due to the Cauchy theorem this is a consequence of the
conservation of angular momentum.)

I In the absence of internal friction, T is diagonal and
proportional to the pressure, i.e. all interior forces act in
normal direction.

I The total energy e is the sum of internal and kinetic energy.

I σ is proportional to the variation of the internal energy.
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Consequences of the Constitutive Laws

Above assumptions imply:

I T = 2λD(v) + µ(divv) I− pI,
where D(v) = 1

2(∇v +∇vt) is the deformation tensor, λ, µ
are the dynamic viscosities, p is the pressure, I is the unit
tensor.

I e = ρε+ 1
2ρ|v|

2,

where ε is often identified with the temperature.

I σ = α∇ε.
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Compressible Navier-Stokes Equations in
Conservative Form

∂

∂t
ρ+ div(ρv) = 0

∂

∂t
(ρv) + div(ρv ⊗ v) = ρf + 2λdivD(v)

+ µ grad divv − grad p

∂

∂t
e+ div(ev) = ρf · v + 2λ div[D(v) · v]

+ µdiv[divv · v]− div(pv) + α∆ε

p = p(ρ, ε)

e = ρε+
1

2
ρ|v|2
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Euler Equations

Inviscid flows, i.e. λ = µ = 0:

∂

∂t
ρ+ div(ρv) = 0

∂

∂t
(ρv) + div(ρv ⊗ v + pI) = ρf

∂

∂t
e+ div(ev + pv) = ρf · v + α∆ε

p = p(ρ, ε)

e = ρε+
1

2
ρ|v|2
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Compressible Navier-Stokes Equations in
Non-Conservative Form

Insert first equation in second one and first and second equation
in third one:

∂

∂t
ρ+ div(ρv) = 0

ρ[
∂

∂t
v + (v · ∇)v] = ρf + λ∆v + (λ+ µ) grad divv − grad p

ρ[
∂

∂t
ε+ ρv · grad ε] = λD(v) : D(v) + µ(divv)2 − p divv

+ α∆ε

p = p(ρ, ε)
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Non-Stationary Incompressible Navier-Stokes
Equations

I Assume that the density ρ is constant,

I replace p by p
ρ ,

I denote by ν = λ
ρ the kinematic viscosity,

I drop the energy equation:

divv = 0

∂

∂t
v + (v · ∇)v = f + ν∆v − grad p
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Reynolds’ Number

I Introduce a reference length L, a reference time T , a
reference velocity U , a reference pressure P , and a
reference force F and new variables and quantities by
x = Ly, t = Tτ , v = Uu, p = Pq, f = Fg.

I Choose T , F and P such that T = L
U , F = νU

L2 and PL
νU = 1.

I Then

divu = 0

∂

∂t
u +Re(u · ∇)u = f + ∆u− grad q,

where Re = LU
ν is the dimensionless Reynolds’ number.
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Stationary Incompressible Navier-Stokes
Equations

Assume that the flow is stationary:

divv = 0

−ν∆v + (v · ∇)v + grad p = f
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Stokes Equations

Linearize at velocity v = 0:

divv = 0

−∆v + grad p = f
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Boundary Conditions

I Around 1827, Pierre Louis Marie Henri Navier suggested
the general boundary condition

λnv · n + (1− λn)n ·T · n = 0

λt[v − (v · n)n] + (1− λt)[T · n− (n ·T · n)n] = 0

with parameters λn, λt ∈ [0, 1] depending on the actual
flow-problem.

I A particular case is the slip boundary condition
v · n = 0, T · n− (n ·T · n)n = 0.

I Around 1845, Sir George Gabriel Stokes suggested the
no-slip boundary condition v = 0.
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Sobolev Spaces and Norms

I L2(Ω) Lebesgue space with norm ‖ϕ‖Ω = ‖ϕ‖ =
{∫

Ω ϕ
2
} 1

2

I Hk(Ω) = {ϕ ∈ L2(Ω) : Dαϕ ∈ L2(Ω)∀α1 + . . .+ αd ≤ k},
k ≥ 1, Sobolev spaces with semi-norm

|ϕ|k,Ω = |ϕ|k =
{∑

α1+...+αd=k‖Dαϕ‖2
} 1

2
and norm

‖ϕ‖k,Ω = ‖ϕ‖k =
{∑k

`=0|ϕ|2`
} 1

2

I Norms of vector- or tensor-valued functions are defined
component-wise.

I H1
0 (Ω) = {ϕ ∈ H1(Ω) : ϕ = 0 on Γ = ∂Ω}

I V = {v ∈ H1
0 (Ω)d : divv = 0}

I L2
0(Ω) = {ϕ ∈ L2(Ω) :

∫
Ω ϕ = 0}
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Poincaré, Friedrichs and Trace Inequalities

I Poincaré inequality: ‖ϕ‖ ≤ cP diam(Ω)|ϕ|1 for all
ϕ ∈ H1(Ω) ∩ L2

0(Ω)

I cP = 1
π if Ω is convex.

I Friedrichs inequality: ‖ϕ‖ ≤ cF diam(Ω)|ϕ|1 for all
ϕ ∈ H1

0 (Ω)

I Trace inequality: ‖ϕ‖Γ ≤
{
cT,1(Ω)‖ϕ‖2 + cT,2(Ω)|ϕ|21

} 1
2

for

all ϕ ∈ H1(Ω)

I cT,1(Ω) ≈ diam(Ω)−1, cT,2(Ω) ≈ diam(Ω) if Ω is a simplex
or parallelepiped

26/ 300

Computational Fluid Dynamics

Fundamentals

Notations and Auxiliary Results

Finite Element Meshes T

I Ω ∪ Γ is the union of all elements in T .

I Affine equivalence: Each K ∈ T is either a triangle or a
parallelogram, if d = 2, or a tetrahedron or a
parallelepiped, if d = 3.

I Admissibility: Any two elements in T are either disjoint or
share a vertex or a complete edge or – if d = 3 – a complete
face.

I Shape-regularity: For every element K, the ratio of its
diameter hK to the diameter ρK of the largest ball
inscribed into K is bounded independently of K.

I Mesh-size: h = hT = max
K∈T

hK
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Finite Element Spaces

I Rk(K) =


span{xα1

1 · . . . · x
αd
d : α1 + . . .+ αd ≤ k}

if K is a triangle or a tetrahedron
span{xα1

1 · . . . · x
αd
d : max{α1, . . . , αd} ≤ k}

if K is a parallelogram or a parallelepiped

I Sk,−1(T ) = {ϕ : Ω→ R : ϕ
∣∣
K
∈ Rk(K) ∀K ∈ T }

I Sk,0(T ) = Sk,−1(T ) ∩ C(Ω)

I Sk,00 (T ) = Sk,0(T ) ∩H1
0 (Ω)

= {ϕ ∈ Sk,0(T ) : ϕ = 0 on Γ}
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Approximation Properties

I inf
ϕT ∈Sk,−1(T )

‖ϕ− ϕT ‖ ≤ chk+1|ϕ|k+1

ϕ ∈ Hk+1(Ω), k ∈ N
I inf

ϕT ∈Sk,0(T )
|ϕ− ϕT |j ≤ chk+1−j |ϕ|k+1

ϕ ∈ Hk+1(Ω), j ∈ {0, 1}, k ∈ N∗

I inf
ϕT ∈Sk,00 (T )

|ϕ− ϕT |j ≤ chk+1−j |ϕ|k+1

ϕ ∈ Hk+1(Ω) ∩H1
0 (Ω),

j ∈ {0, 1}, k ∈ N∗
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Vertices and Faces

I N : set of all element vertices

I E : set of all (d− 1)-dimensional element faces

I A subscript K, Ω or Γ to N or E indicates that only those
vertices or faces are considered that are contained in the
respective set.

30/ 300

Computational Fluid Dynamics

Fundamentals

Notations and Auxiliary Results

Patches

I ωK =
⋃

EK∩EK′ 6=∅

K ′ @
@@

�
��

��@@

I ω̃K =
⋃

NK∩NK′ 6=∅

K ′
��@@��@@
@@
��@@

��
@@��

��@@

I ωE =
⋃

E∈EK′

K ′ ��
@@
@@
��

I ω̃E =
⋃

NE∩NK′ 6=∅

K ′

�
��

@
@@�
��

@
@@

I ωz =
⋃

z∈NK′

K ′ @
@@�
����

@@
@@
��

•
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Nodal Shape Functions

I λz denotes the nodal shape function associated with the
vertex z.

I It is uniquely defined by the conditions

λz ∈ S1,0(T ), λz(z) = 1, λz(y) = 0∀y ∈ N \ {z}.

I ωz is the support of λz.
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A Quasi-Interpolation Operator

I Define the quasi-interpolation operator
RT : L1(Ω)→ S1,0

0 (T ) by

RT ϕ =
∑
z∈NΩ

λzϕz with ϕz =

∫
ωz
ϕdx∫

ωz
dx

.

I It has the following local approximation properties for all
ϕ ∈ H1

0 (Ω)

‖ϕ−RT ϕ‖K ≤ cA1hK |ϕ|1,ω̃K

‖ϕ−RT ϕ‖∂K ≤ cA2h
1
2
K |ϕ|1,ω̃K .
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Proof of the Local Approximation Properties

I The Poincaré inequality implies for every vertex z
‖ϕ− ϕz‖ωz ≤ cz diam(ωz)|ϕ|1,ωz .

I The trace inequality yields for all faces E of all elements K

‖ϕ‖E ≤ c1h
− 1

2
K ‖ϕ‖K + c2h

1
2
K |ϕ|1,K .

I The properties of the nodal shape functions imply

‖ϕ−RT ϕ‖K ≤
∑
z∈NK

‖ϕ− ϕz‖K +
∑

z∈NK,Γ

‖ϕz‖K .

I The first term is bounded using the Poincaré inequality,
the second one using ϕ ∈ H1

0 (Ω).
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Bubble Functions

I Define element and face bubble functions by

ψK = αK
∏
z∈NK

λz, ψE = αE
∏
z∈NE

λz.

I The weights αK and αE are determined by the conditions

max
x∈K

ψK(x) = 1, max
x∈E

ψE(x) = 1.

I K is the support of ψK ; ωE is the support of ψE .
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Inverse Estimates for the Bubble Functions

For all elements K, all faces E and all polynomials ϕ the
following inverse estimates are valid

cI1,k‖ϕ‖K ≤ ‖ψ
1
2
Kϕ‖K ,

‖∇(ψKϕ)‖K ≤ cI2,kh−1
K ‖ϕ‖K ,

cI3,k‖ϕ‖E ≤ ‖ψ
1
2
Eϕ‖E ,

‖∇(ψEϕ)‖ωE ≤ cI4,kh
− 1

2
E ‖ϕ‖E ,

‖ψEϕ‖ωE ≤ cI5,kh
1
2
E‖ϕ‖E .
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Proof of the Inverse Estimates

I Transform the left hand-sides to the reference simplex or
cube.

I Take into account that the left-hand sides define
semi-norms.

I Invoke the equivalence of norms on finite dimensional
spaces to prove the corresponding estimates on the
reference element.

I Transform the right-hand sides back to the current element
or face.
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Jumps

I nE : a unit vector perpendicular to a given face E

I [ϕ]E : jump of a given piece-wise continuous function across
a given face E in the direction of nE

I [ϕ]E depends on the orientation of nE but quantities of the
form [nE · ∇ϕ]E are independent thereof.

38/ 300

Computational Fluid Dynamics

Variational Formulation of the Stokes Equations

Variational Formulation of the Stokes Equations

I A First Attempt

I Abstract Saddle-Point Problems

I Saddle-Point Formulation of the Stokes Equations
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A First Attempt

A Variational Formulation of the Stokes
Equations

I Stokes equations with no-slip boundary condition

−∆u + grad p = f in Ω, divu = 0 in Ω, u = 0 on Γ

I Multiply momentum equation with
v ∈ V = {w ∈ H1

0 (Ω)d : divw = 0}, integrate over Ω and
use integration by parts.

I Resulting variational formulation:

Find u ∈ V such that for all v ∈ V∫
Ω
∇u : ∇v =

∫
Ω
f · v
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A First Attempt

Corresponding Discretization

I Find uT ∈ V (T ) ⊂ V such that for all vT ∈ V (T )∫
Ω
∇uT : ∇vT =

∫
Ω
f · vT

I Advantage:

The discrete problem is symmetric positive definite.

I Disadvantage:

The discrete problem gives no information on the pressure.

I Candidate for lowest order discretization:

V (T ) = S1,0
0 (T )d ∩ V .
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A First Attempt

The Space V (T ) = S1,0
0 (T )d ∩ V

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

I Ω = (0, 1)2

I T Courant triangulation
consisting of 2N2 isosceles
right-angled triangles with
short sides of length
h = N−1

I vT ∈ S1,0
0 (T )d ∩ V arbitrary
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A First Attempt

The Space V (T ) = S1,0
0 (T )d ∩ V

�
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�
�
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�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�
•

I 0 = divvT on K

I 0 =

∫
K

divvT =

∫
∂K

n · vT

I 0 =

∫
∂K

n · vT

=
√

2h
1√
2

(−1
1

)
· vT (x)

+ h ( 1
0 ) · vT (x)

= h ( 0
1 ) · vT (x)

43/ 300

Computational Fluid Dynamics

Variational Formulation of the Stokes Equations

A First Attempt

The Space V (T ) = S1,0
0 (T )d ∩ V
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I 0 = divvT on K

I 0 =

∫
K

divvT =

∫
∂K

n · vT

I 0 =

∫
∂K

n · vT

=
√

2h
1√
2

(
1
−1

)
· vT (x)

+ h ( 0
1 ) · vT (x)

= h ( 1
0 ) · vT (x)
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A First Attempt

The Space V (T ) = S1,0
0 (T )d ∩ V
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I vT = 0 in bottom left
square

I Sweeping through squares
yields:

vT = 0 in Ω

I Hence:

S1,0
0 (T )d ∩ V = {0}
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A First Attempt

Finite Element Subspaces of V

I In order to obtain a non-trivial space Sk,00 (T )d ∩ V , the
polynomial degree k must be at least 5.

I Despite the high polynomial degree, the approximation
properties of Sk,00 (T )d ∩ V are rather poor.
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A First Attempt

Another Variational Formulation of the Stokes
Equations

I Multiply the momentum equation with v ∈ H1
0 (Ω)d,

integrate over Ω and use integration by parts.

I Multiply the continuity equation with q ∈ L2
0(Ω) and

integrate over Ω.

I Resulting variational formulation:

Find u ∈ H1
0 (Ω)d and p ∈ L2

0(Ω) such that for all
v ∈ H1

0 (Ω)d and q ∈ L2
0(Ω)∫

Ω
∇u : ∇v −

∫
Ω
p divv =

∫
Ω
f · v∫

Ω
q divu = 0
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A First Attempt

Corresponding Discretization

I Choose finite element spaces X(T ) ⊂ H1
0 (Ω)d and

Y (T ) ⊂ L2
0(Ω).

I Find uT ∈ X(T ) and pT ∈ Y (T ) such that for all
vT ∈ X(T ) and qT ∈ Y (T )∫

Ω
∇uT : ∇vT −

∫
Ω
pT divvT =

∫
Ω
f · v∫

Ω
qT divuT = 0
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A First Attempt

Questions

I Does the variational problem admit a unique solution?

I Does the discrete problem admit a unique solution?

I What is the quality of the approximation?

I What are good choices for the discrete spaces?
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Abstract Saddle-Point Problems

The Setting

I X and Y are Hilbert spaces with norms ‖·‖X and ‖·‖Y .

I a : X ×X → R and b : X × Y → R are continuous bilinear
forms.

I ` : X → R and χ : Y → R are continuous linear functionals.

I Problem:

Find u ∈ X and λ ∈ Y such that for all v ∈ X and µ ∈ Y

a(u, v) + b(v, λ) = 〈`, v〉
b(u, µ) = 〈χ, µ〉

(S)
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Auxiliary Operators and Spaces

I Define continuous linear operators A : X → X ′,
B : X → Y ′, B′ : Y → X ′ by setting for all u, v ∈ X, λ ∈ Y

〈Au, v〉 = a(u, v), 〈Bu, λ〉 = b(u, λ), 〈B′λ, v〉 = b(u, λ).

I Set
V = kerB,

V ◦ = {g ∈ X ′ : 〈g, v〉 = 0∀v ∈ V },
V ⊥ = {u ∈ X : (u, v)X = 0∀v ∈ V }.

I Define the continuous linear operator π : X ′ → V ′ by

〈πf, v〉 = 〈f, v〉 ∀v ∈ V.
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Abstract Saddle-Point Problems

The Inf-Sup Condition

The following conditions are equivalent:

1. There is a constant β > 0 such that (inf-sup condition)

inf
λ∈Y \{0}

sup
u∈X\{0}

b(u, λ)

‖u‖X‖λ‖Y
≥ β.

2. B′ is an isomorphism of Y onto V ◦ and ‖B′λ‖X′ ≥ β‖λ‖Y
for all λ ∈ Y .

3. B is an isomorphism of V ⊥ onto Y ′ and ‖Bu‖Y ′ ≥ β‖u‖X
for all u ∈ X.
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Motivation of the Inf-Sup Condition

Assume that X = Rn, Y = Rm with m < n and b(u, λ) = λTBu
with a rectangular matrix B ∈ Rm×n. Then the following
conditions are equivalent:

I B has maximal rang m.

I The rows of B are linearly independent.

I λTBu = 0 for all u ∈ Rn implies λ = 0.

I infλ supu
λTBu
|u||λ| > 0.

I The linear system BTλ = 0 only admits the trivial solution.

I For every f ∈ Rm there is a unique u ∈ Rn which is
orthogonal to kerB and which satisfies Bu = f .
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Proof of the Equivalences

1.⇒ 2. Condition (1), the definition of B′ and ‖·‖X′ imply

‖B′λ‖X′ = sup
u∈X\{0}

b(u, λ)

‖u‖X
≥ β‖λ‖Y .

Hence, B′ is injective and its range is closed. The closed
graph theorem then proves (2).

2.⇒ 1. This is a consequence of the above equality.

2.⇔ 3. From the definitions of V ◦ and V ⊥ one concludes that V ◦

and (V ⊥)′ are isometric. Hence, B is an isomorphism of
V ⊥ onto Y ′ if and only if B′ is an isomorphism of
(Y ′)′ ' Y onto (V ⊥)′ ' V ◦ and both isomorphisms have
the same norm.
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Well-Posedness of Problem (S)

I Problem (S) admits a unique solution for every right-hand
side if and only if

(i) πA is an isomorphism of V onto V ′ and
(ii) b satisfies the inf-sup condition.

I If problem (S) is well-posed, its solution satisfies

‖u‖X + ‖λ‖Y ≤ c
{
‖`‖X′ + ‖χ‖Y ′

}
.

The constant c grows with β−1.
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Proof of “⇐ ”

I Due to (ii) there is a unique u0 ∈ V ⊥ with Bu0 = χ and
‖u0‖X ≤ 1

β‖χ‖Y ′ .
I Due to (i) there is a unique w ∈ V with πAw = π(`−Au0)

and ‖w‖X ≤ ‖(πA)−1‖L(V ′,V )‖`−Au0‖X′ .
I u = u0 + w satisfies π(`−Au) = 0 whence `−Au ∈ V ◦.
I Due to (ii) there is a unique λ ∈ Y with B′λ = `−Au and
‖λ‖Y ≤ 1

β‖`−Au‖X′ .
I u, λ solve (S) and satisfy the stability estimate.
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Proof of “⇒ ”
I Problem (S) with ` = 0 and arbitrary χ ∈ Y ′ admits a

unique solution. Hence Y ′ = rangeB. The open mapping
theorem proves that B is an isomorphism and thus
establishes (ii).

I Consider a u ∈ V with πAu = 0. Due to (ii), there is a
unique λ ∈ Y with B′λ = −Au. Thus u, λ solve (S) with
homogeneous right-hand side. Hence, u = 0 and πA is
injective.

I Due to the Hahn-Banach theorem, for every g ∈ V ′, there
is an ` ∈ X ′ with π` = g. Problem (S) admits a unique
solution u, λ for the right-hand side `, χ = 0. Hence, there
is a u ∈ X with πAu = g and πA is surjective.

I The open mapping theorem proves that πA is an
isomorphism and thus establishes (i).
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Coercive Forms a

Assume that a is symmetric and coercive on X, i.e. there is an
α > 0 such that a(u, u) ≥ α‖u‖2X holds for all u ∈ X. Then:

I πA is an isomorphism and ‖(πA)−1‖L(V ′,V ) ≤ 1
α .

I Problem (S) is well-posed if and only if the form b satisfies
the inf-sup condition.

I The solution of problem (S) is the unique saddle-point of
the functional L(u, λ) = 1

2a(u, u) + b(u, λ)− 〈`, u〉 − 〈χ, λ〉.
I The solution u of (S) minimizes the functional
J(u) = 1

2a(u, u)− 〈`, u〉 under the constraint
b(u, µ) = 〈χ, µ〉 for all µ ∈ Y .
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Discretization of Saddle-Point Problems

I Replace X and Y by finite dimensional subspaces Xn and
Yn.

I Resulting discrete problem:

Find un ∈ Xn and λn ∈ Yn such that for all vn ∈ Xn and
µn ∈ Yn

a(un, vn) + b(vn, λn) = 〈`, vn〉
b(un, µn) = 〈χ, µn〉

(Sn)
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Well-Posedness of Problem (Sn)

Assume for simplicity that the form a is coercive on X. Then:

I Problem (Sn) is well posed if and only if the form b satisfies
the discrete inf-sup condition

inf
λn∈Yn\{0}

sup
un∈Xn\{0}

b(un, λn)

‖un‖X‖λn‖Y
≥ βn > 0.

I If problem (Sn) is well-posed, its solution satisfies

‖un‖X + ‖λn‖Y ≤ c
{
‖`‖X′ + ‖χ‖Y ′

}
.

The constant c grows with β−1
n .
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Error Estimates

I Assume that a is coercive and that b satisfies both the
inf-sup condition and the discrete inf-sup condition.

I Denote by u, λ the unique solution of problem (S) and by
un, λn the unique solution of problem (Sn).

I Then there is a constant c which grows with β−1
n such that

‖u− un‖X + ‖λ− λn‖Y

≤ c
{

inf
vn∈Xn

‖u− vn‖X + inf
µn∈Yn

‖λ− µn‖Y
}
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Proof of the Error Estimates
I For any vn ∈ Xn, µn ∈ Yn define ˜̀∈ X ′, χ̃ ∈ Y ′ by

〈˜̀, v〉 = a(u− vn, v) + b(v, λ− µn),

〈χ̃, µ〉 = b(u− vn, µ).

I Then ‖˜̀‖X′ + ‖χ̃‖Y ′ ≤ c{‖u− vn‖X + ‖λ− µn‖Y
}

.
I Subtracting problems (S) and (Sn) gives for every wn ∈ Xn

and ρn ∈ Yn
〈˜̀, wn〉 = a(un − vn, wn) + b(wn, λn − µn),

〈χ̃, ρn〉 = b(un − vn, ρn).

I The stability estimate for problem (Sn) and the triangle
inequality now prove the error estimate.
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A Duality Argument

I H is another Hilbert space with norm ‖·‖H such that X is
dense in H with continuous injection.

I For every g ∈ H denote by ug, λg the solution of problem
(S) with ` = g and χ = 0.

I Then u and un satisfy the error estimate

‖u− un‖H
≤ c
{
‖u− un‖X + ‖λ− λn‖Y

}
·

· sup
g∈H\{0}

1

‖g‖H

{
inf

vn∈Xn
‖u− vn‖X + inf

µn∈Yn
‖λ− µn‖Y

}
.
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Proof
I The density of X in H implies

‖u− un‖H = sup
g∈H\{0}

(g, u− un)H
‖g‖H

.

I Subtracting (S) and (Sn) and using the definition of ug, λg
yields for every vn ∈ Xn, µn ∈ Yn

(g, u− un)H

= a(u− un, ug) + b(u− un, λg) + b(ug, λ− λn)︸ ︷︷ ︸
=0

= a(u− un, ug − vn) + b(ug − vn, λ− λn) + b(u− un, λg − µn)

+ a(u− un, vn) + b(vn, λ− λn)︸ ︷︷ ︸
=0

+ b(u− un, µn)︸ ︷︷ ︸
=0

.
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Saddle-Point Formulation of the Stokes
Equations

I The saddle-point formulation of the Stokes equations fits
into the abstract framework with:

I X = H1
0 (Ω)d, Y = L2

0(Ω), H = L2(Ω)d

I a(u,v) =

∫
Ω

∇u : ∇v, b(u, p) = −
∫

Ω

pdivu

I 〈`,v〉 =

∫
Ω

f · v, χ = 0

I The bilinear form a is coercive on X. Hence, we only have
to ascertain the inf-sup condition

inf
p∈L2

0(Ω)\{0}
sup

u∈H1
0 (Ω)d\{0}

∫
Ω
p divu

|u|1‖p‖
≥ β > 0.
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A Proof in R2

I Assume that Ω ⊂ R2 is either convex or has a C2 boundary.
I Choose an arbitrary p ∈ L2

0(Ω).
I Set v = ∇ϕ where ϕ ∈ H2(Ω) ∩ L2

0(Ω) is the unique weak
solution of the Neumann problem

∆ϕ = p in Ω,
∂ϕ

∂n
= 0 on Γ.

I Set w = ( ∂ψ∂x2
,− ∂ψ

∂x1
) where ψ ∈ H2(Ω) is the unique weak

solution of the biharmonic equation

∆2ψ = 0 in Ω, ψ = 0 on Γ,
∂ψ

∂n
= v · t on Γ.

I Set u = v + w. Then divu = p and |u|1 ≤ c‖p‖.
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A Proof by Duvaut, Lions and Nečas. 1st Step
‖p‖ ≤ c(Ω)

{
‖p‖−1 + ‖∇p‖−1

}
I Set X(Ω) = {p ∈ H−1(Ω) : ∇p ∈ H−1(Ω)d} equipped with
‖|p‖| = ‖p‖−1 + ‖∇p‖−1.

I The definition H−1(Ω) and the open mapping theorem
imply that it suffices to prove the inclusion X(Ω) ⊂ L2(Ω).

I Due to the characterization of Sobolev spaces by Fourier
transforms, the inclusion holds for Rd.

I Using suitable reflections shows that the inclusion also
holds for C∞-functions on Rd−1 × R+.

I The Hahn-Banach theorem implies that C∞(Rd−1 × R+) is
dense in X(Rd−1 × R+).

I Combining the previous results with suitable partitions of
unity establishes the inclusion for all Lipschitz domains Ω.
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A Proof by Duvaut, Lions and Nečas. 2nd Step

‖p‖ ≤ c(Ω)‖∇p‖−1

I Assume the contrary.

I Then there is a sequence (pn) in L2
0(Ω) with ‖pn‖ = 1 and

‖∇pn‖−1 ≤ 1
n for all n.

I Since H1
0 (Ω) is compactly embedded in L2(Ω), the latter

space is compactly embedded in H−1(Ω).

I Hence, there is subsequence (pnk) such that pnk → p
strongly in H−1, pnk → p weakly in L2 and∫

Ω
∇pnk · v→

∫
Ω
∇p · v for all C∞ vector-fields v.

I This proves ∇p = 0 and, since pn ∈ L2
0(Ω), p = 0.

I This contradicts the estimate on the previous slide.
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A Proof by Duvaut, Lions and Nečas. 3rd Step

The inf-sup condition is fulfilled.

I The operator grad : L2
0(Ω)→ H−1(Ω)d is injective and

continuous.

I The previous result implies that range(grad) is a closed
subspace of H−1(Ω)d.

I The open mapping theorem implies that grad is an
isomorphism of L2

0(Ω) onto range(grad).

I The closed range theorem implies that
range(grad) = ker(div)◦ = V ◦.

I Due to the abstract results, this proves the inf-sup
condition.
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A Proof by Bogovskii
Assume that the domain Ω is the union of a finite number of
(eventually overlapping) subdomains which are star-shaped with
respect to an inscribed ball. Then the inf-sup condition holds.

I A suitable additive decomposition of the pressure and
velocity shows that it suffices to establish the inf-sup
condition for a single subdomain.

I Consider a subdomain ω which is star-shaped with respect
to an open ball K with K ⊂ ω. Choose a C∞-function ϕ
with support in K and

∫
K ϕ = 1.

I Properties of singular integrals imply that

u(x) =

∫
ω
p(y)

x− y
|x− y|d

∫ ∞
|x−y|

ϕ
(
y + t

x− y
|x− y|

)
td−1dtdy

satisfies divu = p in ω and |u|1,ω ≤ cdiam(ω)‖p‖ω.
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A Regularity Result

I Assume that the boundary Γ is of class Cm+2 and that
f ∈ Hm(Ω)d. Then the weak solution of the Stokes problem
satisfies:

I u ∈ Hm+2(Ω)d ∩H1
0 (Ω)d, p ∈ Hm+1(Ω) ∩ L2

0(Ω),
I ‖u‖m+2 + ‖p‖m+1 ≤ c(Ω)‖f‖m.

I If Ω is a convex polyhedron, the above regularity result
holds with m = 0.
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Finite Element Discretization

I The finite element discretization of the Stokes equations
fits into the abstract framework with

Xn = X(T ), Yn = Y (T )

I The bilinear form a is coercive on X. Hence, we only have
to ascertain the discrete inf-sup condition

inf
pT ∈Y (T )\{0}

sup
uT ∈X(T )\{0}

∫
Ω
pT divuT

|uT |1‖pT ‖
≥ βT > 0.

I In order to obtain optimal error estimates, the
discretization must be uniformly stable, i.e. βT ≥ β̃ > 0 for
all T .
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Resulting Error Estimates

I Assume:
I u ∈ Hk+1(Ω)d ∩H1

0 (Ω)d, p ∈ Hk(Ω) ∩ L2
0(Ω).

I The discretization is uniformly stable.
I Sk,0(T )d ⊂ X(T ).
I Sk−1,0(T ) ∩ L2

0(Ω) ⊂ Y (T ) or Sk−1,−1(T ) ∩ L2
0(Ω) ⊂ Y (T ).

I Then:

|u− uT |1 + ‖p− pT ‖ ≤ chk
{
|u|k+1 + |p|k

}
.

I If in addition Ω is a convex polyhedron, then:

‖u− uT ‖ ≤ chk+1
{
|u|k+1 + |p|k

}
.
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Approximation of the Space V

I The space V = {v ∈ H1
0 (Ω)d : divv = 0} is approximated

by

V (T ) =
{
vT ∈ X(T ) :

∫
Ω
pT divvT = 0∀pT ∈ Y (T )

}
.

I For almost all discretizations used in practice V (T ) is not
contained in V .

I In this sense, all these discretizations are non-conforming
and not fully conservative.
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Discretization of the Stokes Equations

I A Second Attempt

I Stable Finite Element Pairs

I Petrov-Galerkin Methods

I Non-Conforming Discretizations

I Stream-Function Formulation
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A Second Attempt

The P1/P0-Element

I T is a triangulation of a two-dimensional domain Ω.

I X(T ) = S1,0
0 (T )d, Y (T ) = S0,−1(T ) ∩ L2

0(Ω)

I Every solution uT ∈ X(T ), pT ∈ Y (T ) of every discrete
Stokes problem satisfies:

I divuT is element-wise constant and

∫
K

divuT = 0 for every

K ∈ T .
I Hence, divuT = 0.
I Our first attempt yields uT = 0.

I Hence, this pair of finite element spaces is not stable and
not suited for the discretization of the Stokes problem.
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A Second Attempt

The Q1/Q0-Element

I T is a partition of the unit square Ω = (0, 1)2 into N2

squares with sides of length h = N−1 where N ≥ 2 is even.

I X(T ) = S1,0
0 (T )d, Y (T ) = S0,−1(T ) ∩ L2

0(Ω)

+1 +1

+1 +1

+1 +1

+1 +1

−1 −1

−1 −1

−1 −1

−1 −1

I Denote by Kij the square with
bottom left corner (ih, jh).

I p̂T ∈ Y (T ) is the pressure
with pT |Kij = (−1)i+j

(checker-board mode)

I Then
∫

Ω p̂T divvT = 0 for
every vT ∈ X(T )
(checker-board instability).

I Hence, this pair of finite element spaces is not stable and
not suited for the discretization of the Stokes problem.
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A Second Attempt

Proof of the Checker-Board Instability

∫
Kij

divvT dx =

∫
∂Kij

vT · nKijdS
� -

?

6

(ih,jh)

=
h

2

{
vT (ih, jh) ·

(−1
−1

)
+ vT ((i+ 1)h, jh) ·

(
1
−1

)
+ vT ((i+ 1)h, (j + 1)h) · ( 1

1 ) + vT (ih, (j + 1)h) ·
(−1

1

)}
⇒
∫

Ω
p̂T divvT dx =

∑
i,j

(−1)i+j
∫
Kij

divvT dx = 0
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A Second Attempt

Conclusions

The velocity space must contain enough degrees of freedom in
order to balance

I element-wise the gradient of the pressure,

I face-wise the jump of the pressure.
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Stable Finite Element Pairs

An Auxiliary Result

I Define a mesh-dependent norm on Sk,−1(T ) by

|ϕ|1,T =
{∑
K∈T

h2
K‖∇ϕ‖2K +

∑
E∈E

hE‖[ϕ]E‖2E
} 1

2
.

I Assume that:
I S1,0

0 (T )d ⊂ X(T ),
I Y (T ) ⊂ Sk,−1(T ) for some k,
I There is a constant β̃ > 0 independent of T such that

inf
pT ∈Y (T )\{0}

sup
uT ∈X(T )\{0}

∫
Ω

pT divuT

|uT |1|pT |1,T
≥ β̃.

I Then the pair X(T ), Y (T ) is uniformly stable.

80/ 300



Computational Fluid Dynamics

Discretization of the Stokes Equations
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Proof of the Auxiliary Result. 1st Step
I Choose a pressure pT ∈ Y (T ) with ‖pT ‖ = 1.
I Due to the well-posedness of the Stokes problem, there is a

velocity u ∈ H1
0 (T )d with

|u|1 = 1 and

∫
Ω
pT divu ≥ β.

I RT u satisfies

|RT u|1 ≤ c1|u|1 = c1,∫
Ω
pT div(RT u) =

∫
Ω
pT divu +

∫
Ω
pT div(RT u− u)

≥ β +

∫
Ω
pT div(RT u− u).
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Stable Finite Element Pairs

Proof of the Auxiliary Result. 2nd Step

I Integration by parts and the properties of RT imply∫
Ω
pT div(RT u− u)

=
∑
K∈T

∫
K
∇pT · (u−RT u) +

∑
E∈E

∫
E

[pT ]E(RT u− u) · nE

≤ c2|pT |1,T |u|1.

I The last two estimates yield

sup
uT ∈X(T )\{0}

∫
Ω
pT divuT

|uT |1
≥ 1

c1

{
β − c2|pT |1,T

}
.
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Stable Finite Element Pairs

Proof of the Auxiliary Result. 3rd Step

I The previous estimate and the third assumption imply

sup
uT ∈X(T )\{0}

∫
Ω
pT divuT

|uT |1

≥ max
{
β̃|pT |1,T ,

1

c1

{
β − c2|pT |1,T

}}
≥ min

z≥0
max

{
β̃z,

1

c1

{
β − c2z

}}
=

ββ̃

c1β̃ + c2

.
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The Bernardi-Raugel Element

The following pair of finite element spaces is uniformly stable:

I T is any affine equivalent partition of a two or three
dimensional domain.

I X(T ) = S1,0
0 (T )d ⊕ span{ψEnE : E ∈ E} � -

?

6

× ×

××

I Y (T ) = S0,−1(T ) ∩ L2
0(Ω) •
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Stable Finite Element Pairs

Proof of the Stability of the Bernardi-Raugel
Element

I For pT ∈ Y (T ) set uT =
∑
E∈E

hE [pT ]EnE .

I Integration by parts element-wise and the properties of the
bubble-functions imply∫

Ω
pT divuT =

∑
E∈E

∫
E

[pT ]EuT · nE ≥ β̃|pT |21,T

and
|uT |1 ≤ c|pT |1,T .

I Hence, the auxiliary result proves the stability.
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Stable Finite Element Pairs

The Mini Element of Brezzi-Fortin

The following pair of finite element spaces is uniformly stable:

I T is any simplicial partition of a two or three dimensional
domain.

I X(T ) = S1,0
0 (T )d ⊕ span{ψK : K ∈ T }d

@
@
@× ×

×

×

I Y (T ) = S1,0(T ) ∩ L2
0(Ω)

@
@
@• •

•
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Stable Finite Element Pairs

Proof of the Stability of the Mini Element

I For pT ∈ Y (T ) set uT = −
∑
K∈T

h2
KψK∇pT .

I Integration by parts element-wise and the properties of the
bubble-functions imply∫

Ω
pT divuT = −

∑
K∈T

∫
K
∇pT · uT ≥ β̃|pT |21,T

and
|uT |1 ≤ c|pT |1,T .

I Hence, the auxiliary result proves the stability.
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Stable Finite Element Pairs

The Hood-Taylor Element

The following pair of finite element spaces is uniformly stable:

I T is any simplicial partition of a two or three dimensional
domain.

I X(T ) = S2,0
0 (T )d

@
@
@× ×

×

×
××

I Y (T ) = S1,0(T ) ∩ L2
0(Ω)

@
@
@• •

•
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Stable Finite Element Pairs

The Modified Hood-Taylor Element
The following pair of finite element spaces is uniformly stable:

I T is any simplicial partition of a two or three dimensional
domain.

I T /2 is obtained from T by uniform refinement connecting
the midpoints of edges.

I X(T ) = S1,0
0 (T /2)d

@
@
@@@× ×

×

×
××

I Y (T ) = S1,0(T ) ∩ L2
0(Ω)

@
@
@• •

•
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Discretization of the Stokes Equations

Stable Finite Element Pairs

Proof of the Stability of the Hood-Taylor and
Modified Hood-Taylor Elements

I For every pT ∈ Y (T ) there is a uT ∈ X(T ) such that uT
coincides with the tangential derivative of pT at the
midpoints of edges.

I Bercovier and Pironneau proved in 1979 that with this
choice of uT the third condition of the auxiliary result is
fulfilled.

I Hence, the auxiliary result proves the stability.
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Stable Finite Element Pairs

A Catalogue of Stable Elements

The previous arguments can be modified to prove that the
following pairs of spaces are uniformly stable on any affine
equivalent partition in Rd, d ≥ 2:

I X(T ) = Sk,00 (T )d ⊕ span{ϕψEnE : E ∈ E , ϕ ∈ Rk−1(E)}
⊕ span{ρψK : K ∈ T , ρ ∈ Rk−2(K)}d,
Y (T ) = Sk−1,−1(T ) ∩ L2

0(Ω), k ≥ 2

I X(T ) = Sk+d−1,0
0 (T )d, Y (T ) = Sk−1,−1(T ) ∩ L2

0(Ω), k ≥ 2

I X(T ) = Sk,00 (T )d, Y (T ) = Sk−1,0(T ) ∩ L2
0(Ω), k ≥ 3
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Petrov-Galerkin Methods

Properties of the Mini Element

I

∫
Ω
∇ψK · ∇ψK′ = 0 for all K 6= K ′

I

∫
Ω
∇ϕ · ∇ψK =

∫
K
∇ϕ · ∇ψK = −

∫
K

∆ϕψK = 0

for all ϕ ∈ S1,0(T ), K ∈ T
I Hence, the bubble part of the velocity of the mini element

can be eliminated by static condensation.

I The resulting system only incorporates linear velocities and
pressures.
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Petrov-Galerkin Methods

The Mini Element with Static Condensation
I Original system:A` 0 BT

`

0 Db BT
b

B` Bb 0

u`
ub
p

 =

f`
fb
0


I System with static condensation:(

A` BT
`

B` −BbD−1
b BT

b

)(
u`
p

)
=

(
f`

−BbD−1
b fb

)
I A straightforward calculation yields:(

BbD
−1
b BT

b

)
i,j
≈
∑
K∈T

h2
K

∫
K
∇λi · ∇λj
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Petrov-Galerkin Methods

Idea of Petrov-Galerkin Methods

I Try to obtain control on the pressure by adding

I element-wise terms of the form δKh
2
K

∫
K

∇pT · ∇qT ,

I face-wise terms of the form δEhE

∫
E

[pT ]E [qT ]E .

I The form of the scaling parameters is motivated by the
Mini element and the request that element and face
contributions should be of comparable size.

I The resulting problem should be coercive.

I Contrary to penalty methods, the additional terms should
be consistent with the variational problem, i.e. they should
vanish for the weak solution of the Stokes problem.

I Pressure-jumps are no problem.

I Test the momentum equation element-wise with δKh
2
K∇qT .
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Discretization of the Stokes Equations

Petrov-Galerkin Methods

General Form of Petrov-Galerkin Methods

Find uT ∈ X(T ), pT ∈ Y (T ) such that for all vT ∈ X(T ),
qT ∈ Y (T )∫

Ω
∇uT : ∇vT −

∫
Ω
pT divvT =

∫
Ω
f · vT∫

Ω
qT divuT

+
∑
K∈T

δKh
2
K

∫
K

(−∆uT +∇pT ) · ∇qT

+
∑
E∈ET

δEhE

∫
E

[pT ]E [qT ]E =
∑
K∈T

δKh
2
K

∫
K
f · ∇qT
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Petrov-Galerkin Methods

Choice of Stabilization Parameters

I Set

δmax = max{max
K∈T

δK , max
E∈ET

δE},

δmin =


min{min

K∈T
δK , min

E∈ET
δE} if pressures

are discontinuous,

min
K∈T

δK if pressures

are continuous.

I A reasonable choice of the stabilization parameters then is
determined by the condition

δmax ≈ δmin.
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Discretization of the Stokes Equations

Petrov-Galerkin Methods

Choice of Spaces

I Optimal with respect to error estimates versus degrees of
freedom:

X(T ) = Sk,00 (T )d

Y (T ) =

{
Sk−1,0(T ) ∩ L2

0(Ω) continuous pressure

Sk−1,−1(T ) ∩ L2
0(Ω) discontinuous pressure

I Equal order interpolation:

X(T ) = Sk,00 (T )d

Y (T ) =

{
Sk,0(T ) ∩ L2

0(Ω) continuous pressure

Sk,−1(T ) ∩ L2
0(Ω) discontinuous pressure
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Discretization of the Stokes Equations

Petrov-Galerkin Methods

Mesh-Dependent Norms and (Bi-)Linear Forms

I ‖|(uT , pT )‖|1,T =
{
|uT |21 + ‖pT ‖2 + |pT |21,T

} 1
2

I BT ((uT , pT ), (vT , qT ))

=

∫
Ω
∇uT : ∇vT −

∫
Ω
pT divvT +

∫
Ω
qT divuT

+
∑
K∈T

δKh
2
K

∫
K

(−∆uT +∇pT ) · ∇qT

+
∑
E∈E

δEhE

∫
E

[pT ]E [qT ]E

I `T ((vT , qT )) =

∫
Ω
f · vT +

∑
K∈T

δKh
2
K

∫
K
f · ∇qT
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Petrov-Galerkin Methods

Stability of the Petrov-Galerkin Discretization

I Assume that δmin > 0 and δmax < δ0 where δ0 only depends
on the shape parameter of T .

I Then there is a constant γ > 0 which does not depend on
T such that

inf
(uT ,pT )

sup
(vT ,qT )

BT ((uT , pT ), (vT , qT ))

‖|(uT , pT )‖|1,T ‖|(vT , qT )‖|1,T
≥ γ.
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Discretization of the Stokes Equations

Petrov-Galerkin Methods

Proof of the Stability

I Inverse estimates imply that

BT ((uT , pT ), (uT , pT )) ≥ 1

2
δmin

{
‖|(uT , pT )‖|21,T − ‖pT ‖2

}
I Due to the well-posedness of the Stokes problem, there is a

velocity v ∈ H1
0 (T )d with |v|1 = ‖pT ‖ and∫

Ω
pT divv ≥ β‖pT ‖2.

I The properties of RT imply that

BT ((uT , pT ), (RT v, 0)) ≥
(1

4
+ β2

)
‖pT ‖2 − β2‖|(uT , pT )‖|21,T ,

‖|(RT v, 0)‖|1,T ≤ cΩ‖pT ‖.

I Taking the maximum of both estimates proves the stability.
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Petrov-Galerkin Methods

Error Estimates

I There is a constant c ≈ δmaxγ
−1 such that

‖|(u− uT , p− pT )‖|1,T

≤ c inf
(vT ,qT )

{
‖|(u− vT , p− qT )‖|21,T

+
∑
K∈T

h2
K‖∆(u− vT )‖2K

} 1
2
.

I If u ∈ Hk+1(Ω)d ∩H1
0 (Ω)d, p ∈ Hk(Ω) ∩ L2

0(Ω),

Sk,00 (T )d ⊂ X(T ) and Sk−1,−1(T ) ∩ L2
0(Ω) ⊂ Y (T ) or

Sk−1,0(T ) ∩ L2
0(Ω) ⊂ Y (T ) then

‖|(u− uT , p− pT )‖|1,T ≤ c′hk
{
|u|k+1 + |p|k

}
.
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Petrov-Galerkin Methods

Proof of the Error Estimates
The stability and the definitions of BT and `T yield

I ‖|(u− uT , p− pT )‖|1,T
≤ ‖|(u− vT , p− qT )‖|1,T + ‖|(vT − uT , qT − pT )‖|1,T

I ‖|(vT − uT , qT − pT )‖|1,T

≤ 1

γ
sup

(wT ,rT )

BT ((vT − uT , qT − pT ), (wT , rT ))

‖|(wT , rT )‖|1,T
I BT ((vT − uT , qT − pT ), (wT , rT ))

= BT ((vT − u, qT − p), (wT , rT ))

≤ c′′
{
‖|(u− vT , p− qT )‖|21,T +

∑
K∈T

h2
K‖∆(u− vT )‖2K

} 1
2 ·

‖|(wT , rT )‖|1,T

102/ 300

Computational Fluid Dynamics

Discretization of the Stokes Equations

Non-Conforming Discretizations

The Basic Idea

I We want a fully conservative discretization, i.e. the discrete
solution has to satisfy divuT = 0.

I As a trade-off, we are willing to relax the conformity
condition X(T ) ⊂ H1

0 (Ω)d.
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Non-Conforming Discretizations

The Crouzeix-Raviart Element (d = 2)

I T a triangulation

I X(T ) = {vT : vT |K ∈ R1(K)2,
vT is continuous a midpoints of edges,
vT vanishes at midpoints of boundary edges}

I Y (T ) = S0,−1(T ) ∩ L2
0(Ω)

I All integrals are taken element-wise.

I Degrees of freedom:
@
@
@×
×× @

@
@

•
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Non-Conforming Discretizations

Properties of the Crouzeix-Raviart Element

I The Crouzeix-Raviart discretization admits a unique
solution uT , pT .

I The discretization is fully conservative, i.e. the continuity
equation divuT = 0 is satisfied element-wise.

I If Ω is convex, the following error estimates hold{∑
K∈T
|u− uT |21,K

} 1
2

+ ‖p− pT ‖ ≤ ch‖f‖,

‖u− uT ‖ ≤ ch2‖f‖.
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Non-Conforming Discretizations

Drawbacks of the Crouzeix-Raviart Element

I Its accuracy deteriorates drastically in the presence of
re-entrant corners.

I It has no higher order equivalent.

I It has no three-dimensional equivalent.
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Non-Conforming Discretizations

Construction of a Solenoidal Bases

I Denote by ϕE ∈ S1,−1(T ) the function which takes the
value 1 at the midpoint of E and vanishes at all other
midpoints of edges.

I Set wE = ϕEtE where tE is a unit vector tangential to E.

I Set wx =
∑
E∈Ex

1

|E|
ϕEnE,x. @

@
@

@
@
@
@
@
@

@
@
@6

�
��	

? - ���

I Then

V (T ) =
{
uT ∈ X(T ) : divuT = 0

}
= span

{
wx,wE : x ∈ NΩ, E ∈ EΩ

}
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Non-Conforming Discretizations

Solution of the Discrete Problem

I The velocity uT ∈ V (T ) is determined by the conditions∑
K∈T

∫
K
∇uT : ∇vT =

∑
K∈T

∫
K
f · vT

for all vT ∈ V (T ).

I The pressure pT is determined by the conditions∑
K∈T

∫
K
f · nEϕE −

∑
K∈T

∫
K
∇uT : (∇ϕE ⊗ nE) = −|E|[pT ]E

for all E ∈ EΩ.
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Non-Conforming Discretizations

Computation of the Velocity

The problem for the velocity

I is symmetric positive definite,

I corresponds to a Morley element discretization of the
biharmonic equation,

I has condition number O(h−4).
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Discretization of the Stokes Equations

Non-Conforming Discretizations

Computation of the Pressure

I Set F = ∅, M = ∅.
I Choose an element K ∈ T with an edge on the boundary.

I Set pT = 0 on K.
I Add K to M.

I While M 6= ∅ do:
I Choose an element K ∈M.
I For all elements K ′ which share an edge with K and which

are not contained in F do:
I On K′ set pT equal to the value of pT on K plus the jump

across the common edge.
I If K′ is not contained in M, add it to M.

I Remove K from M and add it to F .

I Compute the average of pT and subtract it from pT on
every element.
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Stream-Function Formulation

The curl Operators (d = 2)

I curlϕ =

(
− ∂ϕ
∂x2
∂ϕ
∂x1

)
I curlv = ∂v1

∂x2
− ∂v2

∂x1

I curl(curlϕ) = −∆ϕ

I curl(curlv) = −∆v +∇(divv)

I curl(∇ϕ) = 0

I divu = 0 if and only if there is a stream-function ψ with
ψ = 0 on Γ and u = curlψ in Ω
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Stream-Function Formulation

Stream-Function Formulation of the
Two-Dimensional Stokes Equations

Taking the curl of the momentum equation proves:

I u is a solution of the two-dimensional Stokes equations if
and only if

I u = curlψ and ψ solves the biharmonic equation

∆2ψ = curl f in Ω

ψ = 0 on Γ

∂ψ

∂n
= 0 on Γ
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Stream-Function Formulation

Drawbacks of the Stream-Function Formulation

I It is restricted to two dimensions.

I It gives no information on the pressure.

I A conforming discretization of the biharmonic equation
requires C1-elements.

I Low order non-conforming discretizations of the
biharmonic equation are equivalent to the Crouzeix-Raviart
discretization.

I Mixed formulations of the biharmonic equation using the
vorticity ω = curlu as additional variable are at least as
difficult to discretize as the original Stokes problem.

113/ 300

Computational Fluid Dynamics

Solution of the Discrete Problems

Solution of the Discrete Problems

I Motivation

I Uzawa Type Algorithms

I Multigrid Algorithms

I Subspace Decomposition Methods

I Conjugate Gradient Type Algorithms
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Motivation

Direct Solvers

I Typically require O(N2− 1
d ) storage for a discrete problem

with N unknowns.

I Typically require O(N3− 2
d ) operations.

I Yield the exact solution of the discrete problem up to
rounding errors.

I Yield an approximation for the differential equation with
an O(hα) = O(N−

α
d ) error (typically: α ∈ {1, 2}).
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Motivation

Iterative Solvers

I Typically require O(N) storage.

I Typically require O(N) operations per iteration.

I Their convergence rate deteriorates with an increasing
condition number of the discrete problem which typically is
O(h−2) = O(N

2
d ).

I In order to reduce an initial error by a factor 0.1 one
typically needs the following numbers of operations:

I O(N1+ 2
d ) with the Gauß-Seidel algorithm,

I O(N1+ 1
d ) with the conjugate gradient (CG-) algorithm,

I O(N1+ 1
2d ) with the CG-algorithm with Gauß-Seidel

preconditioning,
I O(N) with a multigrid (MG-) algorithm.
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Motivation

Nested Grids

I Often one has to solve a sequence of discrete problems
Lkuk = fk corresponding to increasingly more accurate
discretizations.

I Typically there is a natural interpolation operator Ik−1,k

which maps functions associated with the (k − 1)-st
discrete problem into those corresponding to the k-th
discrete problem.

I Then the interpolate of any reasonable approximate
solution of the (k − 1)-st discrete problem is a good initial
guess for any iterative solver applied to the k-th discrete
problem.

I Often it suffices to reduce the initial error by a factor 0.1.
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Motivation

Nested Iteration

I Compute
ũ0 = u0 = L−1

0 f0.

I For k = 1, . . . compute an approximate solution ũk for
uk = L−1

k fk by applying mk iterations of an iterative solver
for the problem

Lkuk = fk

with starting value Ik−1,kũk−1.

I mk is implicitly determined by the stopping criterion

‖fk − Lkũk‖ ≤ ε‖fk − Lk(Ik−1,kũk−1)‖.
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Uzawa Type Algorithms

Structure of Discrete Stokes Problems

Discrete Stokes problems have the form
(

A B
BT −δC

)
( u
p ) =

(
f
δg

)
with:

I δ = 0 for mixed methods,

I 0 < δ ≈ 1 for Petrov-Galerkin methods,

I a square, symmetric, positive definite nu × nu matrix A
with condition of O(h−2),

I a rectangular nu × np matrix B,

I a square, symmetric, positive definite np × np matrix C
with condition of O(1),

I a vector f of dimension nu discretizing the exterior force,

I a vector g of dimension np which equals 0 for mixed
methods.
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Uzawa Type Algorithms

Consequences

I The stiffness matrix
(

A B
BT −δC

)
is symmetric but indefinite,

i.e. it has positive and negative real eigenvalues.

I Hence, standard iterative methods such as the Gauß-Seidel
and CG-algorithms fail.
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Uzawa Type Algorithms

The Uzawa Algorithm
0. Given: an initial guess p0, a tolerance ε > 0 and a

relaxation parameter ω > 0.

1. Set i = 0.

2. Apply a few Gauß-Seidel iterations to the linear system

Au = f −Bpi
and denote the result by ui+1. Compute

pi+1 = pi + ω{BTui+1 − δg − δCpi}.

3. If

‖Aui+1 +Bpi+1 − f‖+ ‖BTui+1 − δCpi+1 − δg‖ ≤ ε

return ui+1 and pi+1 as approximate solution; stop.
Otherwise increase i by 1 and go to step 2.
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Uzawa Type Algorithms

Properties of the Uzawa Algorithm

I ω ∈ (1, 2), typically ω = 1.5.

I Typically ‖v‖ =
√

1
nu

v · v and ‖q‖ =
√

1
np
q · q.

I The problem Au = f −Bpi is a discrete version of d
Poisson equations for the components of the velocity field.

I The Uzawa algorithm falls into the class of pressure
correction schemes.

I The convergence rate of the Uzawa algorithm is 1−O(h2).
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Uzawa Type Algorithms

Idea for an Improvement of the Uzawa
Algorithm

I The problem
(

A B
BT −δC

)
( u
p ) =

(
f
δg

)
is equivalent to

u = A−1(f −Bp) and BTA−1(f −Bp)− δCp = δg.

I The matrix BTA−1B + δC is symmetric, positive definite
and has a condition of O(1).

I Hence, a standard CG-algorithm can be applied to the
pressure problem and has a uniform convergence rate
independently of any mesh-size.

I The evaluation of A−1g corresponds to the solution of d
discrete Poisson equations Au = g for the components of u.

I The discrete Poisson problems can efficiently be solved
with a MG-algorithm.
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Uzawa Type Algorithms

Properties of BTA−1B

I Identify vectors with corresponding finite element
functions.

I u = A−1Bp satisfies:

I

∫
Ω

∇u : ∇v =

∫
Ω

p divv for all v,

I |u|1 ≤
√
d‖p‖,

I |u|1 ≥ β‖p‖ (inf-sup condition).

I q = BTu = BTA−1Bp satisfies:

I

∫
Ω

qr =

∫
Ω

r divu for all r,

I ‖q‖ ≤
√
d|u|1 ≤ d‖p‖,

I β2‖p‖2 ≤ |u|21 =

∫
Ω

p divu =

∫
Ω

qp ≤ ‖q‖‖p‖.
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Solution of the Discrete Problems

Uzawa Type Algorithms

The Improved Uzawa Algorithm

0. Given: an initial guess p0 and a tolerance ε > 0.

1. Apply a MG-algorithm with starting value zero and
tolerance ε to Av = f −Bp0 and denote the result by u0.
Compute r0 = BTu0 − δg − δCp0, d0 = r0, γ0 = r0 · r0. Set
u0 = 0 and i = 0.

2. If γi < ε2 compute p = p0 + pi, apply a MG-algorithm with
starting value zero and tolerance ε to Av = f −Bp and
denote the result by u, stop.

3. Apply a MG-algorithm with starting value ui and tolerance
ε to Av = Bdi and denote the result by ui+1. Compute
si = BTui+1 + δCdi, αi = γi

di·si , pi+1 = pi + αidi,

ri+1 = ri − αisi, γi+1 = ri+1 · ri+1, βi = γi+1

γi
,

di+1 = ri+1 + βidi. Increase i by 1 and go to step 2.

125/ 300

Computational Fluid Dynamics

Solution of the Discrete Problems

Uzawa Type Algorithms

Properties of the Improved Uzawa Algorithm

I It is a nested iteration with MG-iterations in the inner
loops.

I Typically 2 to 4 MG-iterations suffice in the inner loops.

I It requires O(N) operations per iteration.

I Its convergence rate is uniformly less than 1 for all meshes.

I It yields an approximate solution with error less than ε
with O(N ln ε) operations.

I Numerical experiments yield convergence rates less than
0.5.

126/ 300

Computational Fluid Dynamics

Solution of the Discrete Problems

Uzawa Type Algorithms

Convergence Rate of the Improved Uzawa
Algorithm

I Denote by Mv the result of the MG-algorithm applied to a
problem with right-hand side v.

I The improved Uzawa algorithm then corresponds to a
CG-algorithm applied to the problem
BTM(f −Bp)− δCp = δg.

I Properties of the MG-algorithm imply that
I M is symmetric,
I M satisfies ‖Mv −A−1v‖ ≤ ε‖A−1v‖ for all v.

I Hence,
(1− ε)pTBTA−1Bp ≤ pTBTMBp ≤ (1 + ε)pTBTA−1Bp
for all p.

I Thus, BTMB is symmetric, positive definite and has a
condition of O(1) uniformly for all meshes.
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The Basic Idea

I Classical iterative methods such as the Gauß-Seidel
algorithm quickly reduce highly oscillatory error
components.

I Classical iterative methods such as the Gauß-Seidel
algorithm are very poor in reducing slowly oscillatory error
components.

I Slowly oscillating error components can well be resolved on
coarser meshes with fewer unknowns.

128/ 300



Computational Fluid Dynamics

Solution of the Discrete Problems

Multigrid Algorithms

The Basic Two-Grid Algorithm

I Perform several steps of a classical iterative method on the
current grid.

I Correct the current approximation as follows:
I Compute the current residual.
I Restrict the residual to the next coarser grid.
I Exactly solve the resulting problem on the coarse grid.
I Prolongate the coarse-grid solution to the next finer grid.

I Perform several steps of a classical iterative method on the
current grid.
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Schematic Form

Two-Grid

G−−−−→ G−−−−→

R
y xP

E−−−−→

Multigrid

G−−−−→ G−−−−→

R
y xP

G−−−−→ G−−−−→

R
y xP

E−−−−→
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Basic Ingredients

I A sequence Tk of increasingly refined meshes with
associated discrete problems Lkuk = fk.

I A smoothing operator Mk, which should be easy to
evaluate and which at the same time should give a
reasonable approximation to L−1

k .

I A restriction operator Rk,k−1, which maps functions on a
fine mesh Tk to the next coarser mesh Tk−1.

I A prolongation operator Ik−1,k, which maps functions from
a coarse mesh Tk−1 to the next finer mesh Tk.
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The Multigrid Algorithm

0. Given: the actual level k, parameters µ, ν1, and ν2, the
matrix Lk, the right-hand side fk, an initial guess uk.
Sought: improved approximate solution uk.

1. If k = 0 compute u0 = L−1
0 f0; stop.

2. (Pre-smoothing) Perform ν1 steps of the iterative
procedure uk 7→ uk +Mk(fk − Lkuk).

3. (Coarse grid correction)
3.1 Compute fk−1 = Rk,k−1(fk − Lkuk) and set uk−1 = 0.
3.2 Perform µ iterations of the MG-algorithm with parameters

k − 1, µ, ν1, ν2, Lk−1, fk−1, uk−1 and denote the result by
uk−1.

3.3 Update uk by uk 7→ uk + Ik−1,kuk−1.

4. (Post-smoothing) Perform ν2 steps of the iterative
procedure uk 7→ uk +Mk(fk − Lkuk).
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Typical Choices of Parameters

I µ = 1 V-cycle or

µ = 2 W-cycle

I ν1 = ν2 = ν or

ν1 = ν, ν2 = 0 or

ν1 = 0, ν2 = ν

I 1 ≤ ν ≤ 4.
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Prolongation and Restriction

I The prolongation is typically determined by the natural
inclusion of the finite element spaces, i.e. a finite element
function corresponding to a coarse mesh is expressed in
terms of the finite element bases functions corresponding to
the fine mesh.
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I The restriction is typically determined by inserting finite
element bases functions corresponding to the coarse mesh
in the variational form of the discrete problem
corresponding to the fine mesh.
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Smoothing (Positive Definite Problems)

I Gauß-Seidel iteration

I SSOR iteration:
I Perform a forward Gauß-Seidel sweep with over-relaxation

as pre-smoothing.
I Perform a backward Gauß-Seidel sweep with over-relaxation

as post-smoothing.

I ILU smoothing:
I Perform an incomplete lower upper decomposition of Lk by

suppressing all fill-in.
I The result is an approximate decomposition LkUk ≈ Lk.
I Compute vk = Mkuk by solving the system LkUkvk = uk.
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Smoothing (Stokes Problem)

I Squared Jacobi iteration:

I Mk = 1
ω2

(
A h−2

k B

h−2
k BT −h−4

k δC

)
I The factors h−2

k and h−4
k compensate the different order of

differentiation for the velocity and pressure.

I Vanka smoothers:
I Similarly to the Gauß-Seidel iteration, simultaneously

adjust all degrees of freedom for the velocity and pressure
corresponding to an element or to a patch of elements while
fixing the remaining degrees of freedom.

I Patches typically consist of two elements sharing a common
face or the elements sharing a given vertex.
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Number of Operations

I Assume that
I one smoothing step requires O(Nk) operations,
I the prolongation requires O(Nk) operations,
I the restriction requires O(Nk) operations,
I µ ≤ 2,
I Nk > µNk−1,

I then one iteration of the multigrid algorithm requires
O(Nk) operations.
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Convergence Rate (Positive Definite Problems)

I The convergence rate is uniformly less than 1 for all
meshes.

I The convergence rate is bounded by c
c+ν1+ν2

with a
constant which only depends on the shape parameter of the
meshes.

I Numerical experiments yield convergence rates less than
0.1.

138/ 300

Computational Fluid Dynamics

Solution of the Discrete Problems

Multigrid Algorithms

Convergence Rate (Stokes Problem)

I The convergence rate is uniformly less than 1 for all
meshes.

I The convergence rate is bounded by c√
ν1+ν2

with a constant

which only depends on the shape parameter of the meshes.

I Numerical experiments yield convergence rates less than
0.5.
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Techniques for Proving the Convergence of
Multigrid Algorithms

I Methods of linear algebra and discrete Fourier analysis
(Hackbusch)

I Spectral decomposition and scales of discrete Sobolev
spaces (Bank-DuPont and Braess-Hackbusch)

I Subspace decomposition methods (Bramble-Pasciak-Xu
and Wang)
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Convergence Proof à la Hackbusch

I The iteration matrix of the smoother is Nk = I −MkLk.

I The iteration matrix of the two-grid algorithm is
Ŝk = Nν2

k (I − Ik−1,kL
−1
k−1Rk,k−1)Nν1

k .

I The iteration matrix of the multigrid algorithm is
Sk = Ŝk +Nν2

k Ik−1,kS
µ
k−1L

−1
k−1Rk,k−1N

ν1
k .

I Prove the smoothing property LkN
ν
k ≤ η(ν)h−αk with

η(ν)→ 0 for ν →∞ and α ≥ 0.

I Prove the approximation property
‖|L−1

k − Ik−1,kL
−1
k−1Rk,k−1‖| ≤ chα.

I The smoothing and approximation property imply
‖|Ŝk‖| ≤ cη(ν1 + ν2).

I If µ ≥ 2 a perturbation argument yields
‖|Sk‖| ≤ 2cη(ν1 + ν2).
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Establishing the Smoothing and Approximation
Property

I The proof of the smoothing property is usually based on a
spectral decomposition of Lk and Nk.

I The proof of the approximation property is usually based
on arguments used in the proof of a priori error estimates.

I The crucial point is to correctly link both techniques.
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Convergence Proof à la Braess-Hackbusch

I Assume that Lk is symmetric, positive definite and set
‖|vk‖| = (vk, Lkvk)

1
2 .

I Denote by Qk = Ik−1,kL
−1
k−1Rk,k−1Lk the Ritz projection.

I Denote by Jk the iteration matrix of the Jacobi iteration

and set |vk| = ‖|J
1
2
k vk‖| and ρ(vk) = |vk|2

‖|vk‖|2
.

I Prove that
I ‖|Jνk vk‖| ≤ ρν‖|vk‖| with ρ = ρ(Jνk vk),
I ‖|vk −Qkvk‖| ≤ min{1, c

√
1− ρ(vk)}‖|vk‖|.

I Then the convergence rate δk of the multigrid algorithm
with µ = 1 and ν1 = ν2 = ν and Jacobi smoothing satisfies

δk ≤ max
0≤ρ≤1

{
ρ2ν
[
δk−1 + (1− δk−1) min{1, c(1− ρ)}

]}
.

I By induction this proves δk ≤ c
c+2ν .
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The Setting

I V a finite dimensional Hilbert space with inner product
(·, ·)

I Vi, 1 ≤ i ≤ N , subspaces of V with
∑

i Vi = V

The decomposition usually neither is direct nor orthogonal.

I Qi : V → Vi orthogonal projection w.r.t. to (·, ·)
I A : v → V a symmetric, positive definite operator

I Ai : Vi → Vi the restriction of A to Vi

I Ri : Vi → Vi an easy-to-evaluate, symmetric, positive
definite approximation to A−1

i
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The Subspace Decomposition Algorithm

I Given an initial guess u0 ∈ V .

I For n = 0, 1, . . . and j = 1, . . . , N compute

un+ j
N

= un+ j−1
N

+RjQj(f −Aun+ j−1
N

).
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Examples

I V = RN and Vi = span{ei} corresponds to the classical
Gauß-Seidel algorithm.

I V = Sk,00 (TN ), Vi = Sk,00 (Ti), R0 = A−1
0 and Ri = 1

ωi
I with

uniformly or locally refined nested meshes Ti corresponds
to the multigrid algorithm with Jacobi smoothing and
ν1 = 1, ν2 = 0.
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Convergence Rate

I Set ‖|v‖| = (Av, v)
1
2 .

I Set λ = mini λmax(RiAi) and Λ = maxi λmax(RiAi).

I Assume that Λ < 2.

I Assume that there are two constants K0 and K1 such that

I

{ N∑
i=1

‖|vi‖|2
} 1

2 ≤ K0‖|v‖| for all v =
∑
i vi,

I
∑

1≤i,j≤N

(Avi, wj) ≤ K1

{ N∑
i=1

‖|vi‖|2
} 1

2
{ N∑
j=1

‖|wj‖|2
} 1

2

for all vi ∈ Vi, wj ∈ Vj .
I Then the convergence rate of the subspace decomposition

algorithm w.r.t. ‖|·‖| is less than
[
1−

(
2
Λ − 1

)(
λ

ΛK0K1

)2] 1
2
.
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Proof of the Bound for the Convergence Rate

I Set Ti = RiQiA, E0 = I, Ej = (I − Tj) · . . . · (I − T1).

I For every j this gives −Ej + Ej−1 = TjEj−1 and

‖|Ej−1v‖|2 − ‖|Ejv‖|2 = (ATjEj−1v, (2I − Tj)Ej−1v) ≥
(2− Λ)(ATjEj−1v,Ej−1v).

I Summation yields
‖|v‖|2 − ‖|ENv‖|2 ≥ (2− Λ)

∑
j(ATjEj−1v,Ej−1v).

I The first assumption yields for v =
∑

i vi

‖|v‖|2 =
∑

i(A(RiAi)
−1Tiv, v) ≤ λ−1K0‖|v‖|

{∑
i‖|Tiv‖|2

} 1
2
.

I The second assumption implies∑
i‖|Tiv‖|2 ≤ Λ3K2

1

∑
j(ATjEj−1v,Ej−1v).

I Combining all estimates yields the bound for the
convergence rate.
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Verification of the Assumptions
I The condition Λ < 2 can be satisfied by a suitable scaling

of Ri.
I Since V =

∑
i Vi the mapping

V1 × . . .× VN 3 (v1, . . . , vN ) 7→
∑

i vi ∈ V is surjective. The
open mapping theorem therefore proves the first
assumption. The crucial point is to obtain an explicit
bound for K0 which does not depend on N . This requires
deep results concerning the characterization of Sobolev
spaces as approximation spaces.

I Due to the Cauchy-Schwarz inequality, the second
assumption is always satisfied with K1 ≤ N . If the
subspaces satisfy a strengthened Cauchy-Schwarz
inequality (Avi, wj) ≤ γ|i−j|‖|vi‖|‖|wj‖| with γ < 1, the
second assumption is satisfied with K1 ≤ 1

1−γ .
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CG-Type Algorithms for Non-Symmetric and
Indefinite Systems of Equations

I The classical CG-algorithm breaks down for non-symmetric
or indefinite systems of equations.

I A naive remedy is to apply the CG-algorithm to the system
LTLu = LT f of the normal equations.

I This approach cannot be recommended since passing to the
normal system squares the condition number.

I The following variants of the CG-algorithm are particularly
adapted to non-symmetric and indefinite problems:

I the stabilized bi-conjugate gradient algorithm (Bi-CG-stab
in short),

I the generalized minimal residual method (GMRES in short).
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The Idea of the Bi-CG-stab Algorithm

I The algorithm tries to simultaneously solve the original
problem Lu = f and its adjoint problem LT v = f .

I For both problems it performs a simultaneous three-term
recursion similar to the CG-iteration.

I It incorporates particular devices to detect possible
break-downs and to restart the iteration before breaking
down.

I It can be combined with preconditioning. Possible methods
for preconditioning are:

I the SSOR-iteration applied to the symmetric part of L,
I incomplete factorizations of L as used in the context of

ILU-smoothing.
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The Idea of the GMRES Algorithm

I It performs a three-term recursion to build increasingly
larger Krylov spaces Kn = span{u, Lu, . . . , Ln−1u}.

I For every Krylov space Kn it approximately solves the
minimization problem vn = argminw∈Kn‖Lw − f‖ using a
QR-method.
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A Posteriori Error Estimation and Adaptivity

I Motivation

I A Posteriori Error Estimates for the Stokes Problem

I Mesh Refinement, Coarsening and Smoothing
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Motivation

Drawbacks of A Priori Error Estimates

I They only yield information on the asymptotic behaviour
of the error.

I They require regularity properties of the solution which
often are not realistic.

I They give no information on the actual size of the error.

I They are not able to detect local singularities arising from
re-entrant corners or boundary or interior layers which
deteriorate the overall accuracy of the discretization.
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Motivation

Goal of A Posteriori Error Estimation and
Adaptivity

I We want to obtain explicit information about the error of
the discretization and its spatial (and temporal)
distribution.

I The information should a posteriori be extracted from the
computed numerical solution and the given data of the
problem.

I The cost for obtaining this information should be far less
than for the computation of the numerical solution.

I We want to obtain a numerical solution with a prescribed
tolerance using a (nearly) minimal number of grid-points.

I To this end we need reliable upper and lower bounds for
the true error in a user-specified norm.
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Motivation

General Adaptive Algorithm

0. Given: The data of a partial differential equation and a
tolerance ε.
Sought: A numerical solution with an error less than ε.

1. Construct an initial coarse mesh T0 representing sufficiently
well the geometry and data of the problem; set k = 0.

2. Solve the discrete problem on Tk.
3. For every element K in Tk compute an a posteriori error

indicator.

4. If the estimated global error is less than ε then stop.
Otherwise decide which elements have to be refined or
coarsened and construct the next mesh Tk+1. Replace k by
k + 1 and return to step 2.
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Motivation

Basic Ingredients

I An error indicator which furnishes the a posteriori error
estimate.

I A refinement strategy which determines which elements
have to be refined or coarsened and how this has to be
done.
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A Posteriori Error Estimates for the Stokes Problem

The Stokes Problem and its Discretization

I u ∈ H1
0 (Ω)d, p ∈ L2

0(Ω) weak solution of the Stokes
problem with no-slip boundary condition:

−∆u + grad p = f in Ω

divu = 0 in Ω

u = 0 on Γ

I uT ∈ X(T ), pT ∈ Y (T ) solution of a mixed or
Petrov-Galerkin discretization of the Stokes problem

I Assume that S1,0
0 (T )d ⊂ X(T )
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Residual

I Define two residuals Rm ∈ H−1(Ω)d and Rc ∈ L2(Ω)
associated with the momentum and continuity equation by

〈Rm,v〉 =

∫
Ω
f · v −

∫
Ω
∇uT : ∇v +

∫
Ω
pT divv

〈Rc, q〉 =

∫
Ω
q divuT

I Then the error u− uT , p− pT solves the Stokes problem∫
Ω
∇(u− uT ) : ∇v −

∫
Ω

(p− pT ) divv = 〈Rm,v〉∫
Ω
q div(u− uT ) = 〈Rc, q〉
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Equivalence of Error and Residual

I The well-posedness of the saddle-point formulation of the
Stokes problem implies

1

c∗

{
‖Rm‖−1 + ‖Rc‖

}
≤ |u− uT |1 + ‖p− pT ‖

≤ c∗
{
‖Rm‖−1 + ‖Rc‖

}
.

I c∗ and c∗ depend on the space dimension d.

I c∗ in addition depends on the constant in the inf-sup
condition for the Stokes problem.

I The above equivalence holds for every discretization be it
stable or not.
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Evaluation of ‖Rc‖

I The definition of Rc implies

‖Rc‖ = ‖divuT ‖.

I Hence, ‖Rc‖ can be evaluated easily and is a measure for
the lacking incompressibility of uT .
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Evaluation of ‖Rm‖−1

I The explicit evaluation of ‖Rm‖−1 would require the
solution of an infinite dimensional variational problem
which is as expensive as the solution of the original Stokes
problem.

I Hence, we must obtain estimates for ‖Rm‖−1 which at the
same time are as sharp as possible and easy to evaluate.

I Main tools for achieving this goal are:
I properties of the discrete problem,
I the Galerkin orthogonality of Rm,
I an L2-representation of Rm,
I approximation properties of the quasi-interpolation

operator RT ,
I inverse estimates for the bubble functions.
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The Discrete Problem Reviewed
uT , pT satisfies for every vT ∈ X(T ), qT ∈ Y (T )

0 = `T ((vT , qT ))−BT ((uT , pT ), (vT , qT ))

=

∫
Ω
f · vT −

∫
Ω
∇uT : ∇vT +

∫
Ω
pT divvT︸ ︷︷ ︸

=〈Rm,vT 〉

−
∫

Ω
qT divuT

+
∑
K∈T

δKh
2
K

∫
K
f · ∇qT

−
∑
K∈T

δKh
2
K

∫
K

(−∆uT +∇pT ) · ∇qT

−
∑
E∈E

δEhE

∫
E

[pT ]E [qT ]E
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Galerkin Orthogonality of Rm

The form of the discrete problem and the assumption
S1,0

0 (T )d ⊂ X(T ) imply the Galerkin orthogonality

〈Rm,vT 〉 = 0 ∀vT ∈ S1,0
0 (T )d.
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L2-Representation of Rm

Integration by parts element-wise yields for every v ∈ H1
0 (Ω)d

the L2-representation

〈Rm,v〉 =
∑
K∈T

∫
K

(
f + ∆uT −∇pT

)
· v

−
∑
E∈EΩ

∫
E

[
nE · (∇uT − pT I)

]
E
· v.
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Upper Bounds for ‖Rm‖−1

I The Galerkin orthogonality, the L2-representation and the
approximation properties of RT imply

〈Rm,v〉 = 〈Rm,v −RT v〉

≤
∑
K∈T

cA1hK‖f + ∆uT −∇pT ‖K |v|1,ω̃K

+
∑
E∈EΩ

cA2h
1
2
E‖[nE · (∇uT − pT I)]E‖E |v|1,ω̃E

I The Cauchy-Schwarz inequality therefore yields

‖Rm‖−1 ≤ c
{∑
K∈T

h2
K‖f + ∆uT −∇pT ‖2K

+
∑
E∈EΩ

hE‖[nE · (∇uT − pT I)]E‖2E
} 1

2
.
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Lower Bounds for ‖Rm‖−1

I Denote be fT any piece-wise polynomial approximation of
f .

I Inserting the functions ψK(fT + ∆uT −∇pT ) and
ψE [nE · (∇uT − pT I)]E in the definition of Rm and using
the inverse estimates for the bubble functions proves

hK‖fT + ∆uT −∇pT ‖K ≤ c
{
‖Rm‖−1,K + hK‖f − fT ‖K

}
h

1
2
E‖[nE · (∇uT − pT I)]E‖E ≤ c

{
‖Rm‖−1,ωE + hE‖f − fT ‖ωE

}
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Residual A Posteriori Error Estimates

I Define the residual a posteriori error indicator ηR,K by

ηR,K =
{
h2
K‖fT + ∆uT −∇pT ‖2K + ‖divuT ‖2K

+
1

2

∑
E∈EK,Ω

hE‖[nE · (∇uT − pT I)]E‖2E
} 1

2
.

I Then the error is bounded from above and from below by{
|u− uT |21 + ‖p− pT ‖2

} 1
2 ≤ c∗

{∑
K∈T

(
η2
R,K + h2

K‖f − fT ‖2K
)} 1

2

ηR,K ≤ c∗
{
|u− uT |21,ωK + ‖p− pT ‖2ωK + h2

K‖f − fT ‖2ωK
} 1

2
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Discussion of the A Posteriori Error Estimates I

I The constants c∗ and c∗ depend on the shape parameter of
T .

I The constant c∗ in addition depends on the polynomial
degrees of uT , pT , and fT .
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Discussion of the A Posteriori Error Estimates II

I The first term in ηR,K is related to the residual of uT , pT
with respect to the strong form of the momentum equation.

I The second term in ηR,K is related to the residual of uT
with respect to the strong form of the continuity equation.

I The third term in ηR,K is related to the boundary operator
which canonically links the strong and weak form of the
momentum equation.

I The third term in ηR,K is crucial for low order
discretizations.

I The different scalings of the three terms in ηR,K take into
account the different order of the differential operators.
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A Posteriori Error Estimates for the Stokes Problem

Discussion of the A Posteriori Error Estimates
III

I The upper bound is global.

I This is due to the fact that it is based on the norm of the
inverse of the Stokes operator which is a global operator.
(local force −→ global flow)

I The lower bound is local.

I This is due to the fact that it is based on the norm of the
Stokes operator itself which is a local operator.
(local flow −→ local force)
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Auxiliary Discrete Stokes Problems
I With every element K ∈ T associate

I a patch TK ⊂ T containing K,
I finite element spaces X(TK), Y (TK) on TK .

I Find uK ∈ X(TK), pK ∈ Y (TK) such that for all
vK ∈ X(TK), qK ∈ Y (TK)∫

K
∇uK : ∇vK −

∫
K
pK divvK +

∫
K
qK divuK

=

∫
K
{f + ∆uT −∇pT } · vK +

∫
∂K

[nK · (∇uT − pT I)]∂K · vK

+

∫
K
qK divuT .

I Set ηN,K =
{
|uK |21,TK + ‖pK‖2TK

} 1
2
.
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Choice of Patches and Spaces

I Patches typically consist of:
I the element itself: TK = K,
I all elements sharing a face with K: TK = ωK ,
I all elements sharing a vertex with K: TK = ω̃K .

I The spaces X(TK), Y (TK) typically consist of finite
element functions of a sufficiently high degree, e.g.

X(TK) = span{ψK′v , ψE′w : v ∈ RkT (K ′)d , w ∈ RkE (E
′)d ,

K ′ ∈ TK , E′ ∈ ETK ,Ω},
Y (TK) = span{ψK′q : q ∈ Rku−1(K ′) , K ′ ∈ TK}.

with kT = max{ku + d, kp − 1}, kE = max{ku − 1, kp}.

173/ 300

Computational Fluid Dynamics

A Posteriori Error Estimation and Adaptivity

A Posteriori Error Estimates for the Stokes Problem

Comparison of the Error Indicators

I Both indicators yield global upper and local lower bounds
for the error.

I Each indicator can be bounded from above and from below
by the other one.

I Both indicators well predict the spatial distribution of the
error.

I Both indicators are well suited for adaptive mesh
refinement.

I The evaluation of the residual indicator is less expensive.

I The indicator based on the auxiliary Stokes problems more
precisely predicts the size of the error.
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Overview
I The mesh refinement requires two key-ingredients:

I a marking strategy that decides which elements should be
refined,

I refinement rules which determine the actual subdivision of a
single element.

I To maintain the admissibility of the partitions, i.e. to avoid
hanging nodes, the refinement process proceeds in two
stages:

I Firstly refine all those elements that are marked due to a
too large value of ηK (regular refinement).

I Secondly refine additional elements in order to eliminate the
hanging nodes which are eventually created during the first
stage (irregular refinement).

I The mesh refinement may eventually be combined with
mesh coarsening and mesh smoothing.
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Maximum Strategy for Marking

0. Given: A partition T , error estimates ηK for the elements
K ∈ T , and a threshold θ ∈ (0, 1).
Sought: A subset T̃ of marked elements that should be
refined.

1. Compute ηT ,max = max
K∈T

ηK .

2. If ηK ≥ θηT ,max mark K by putting it into T̃ .
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Equilibration Strategy for Marking
(Bulk Chasing or Dörfler Marking)

0. Given: A partition T , error estimates ηK for the elements
K ∈ T , and a threshold θ ∈ (0, 1).
Sought: A subset T̃ of marked elements that should be
refined.

1. Compute ΘT =
∑
K∈T

η2
K . Set ΣT = 0 and T̃ = ∅.

2. If ΣT ≥ θΘT return T̃ ; stop. Otherwise go to step 3.

3. Compute η̃T ,max = max
K∈T \T̃

ηK .

4. For all elements K ∈ T \T̃ check whether ηK = η̃T ,max. If

this is the case, mark K by putting it into T̃ and add η2
K

to ΣT . Otherwise skip K. When all elements have been
checked, return to step 2.
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Comparison of the Marking Strategies

I The maximum strategy is cheaper.

I At the end of the equilibration strategy the set T̃ satisfies∑
K∈T̃

η2
K ≥ θ

∑
K∈T

η2
K .

I Convergence proofs for adaptive finite element methods are
often based on this property.
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Ensuring a Sufficient Refinement

I Sometimes very few elements have an extremely large
estimated error, whereas the remaining ones split into the
vast majority with an extremely small estimated error and
a third group of medium size consisting of elements with an
estimated error of medium size.

I Then the marking strategies only refine the elements of the
first group.

I This deteriorates the performance of the adaptive
algorithm.

I This can be avoided by the following modification:

Given a small percentage ε, first mark the ε% elements
with largest estimated error for refinement and then apply
the marking strategies to the remaining elements.
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Regular Refinement

I Elements are subdivided by joining the midpoints of their
edges.
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I This preserves the shape parameter.
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Hanging Nodes

I Hanging nodes destroy the admissibility of the partition.

��
�
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HHH• • •
•
•

I Therefore
I either the continuity of the finite element spaces must be

enforced at hanging nodes
I or an additional irregular refinement must be performed.

I Enforcing the continuity at hanging nodes may counteract
the refinement.
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Irregular Refinement

I Triangles
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I Quadrilaterals
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Marked Edge Bisection

I The first mesh is constructed such that the longest edge of
an element is also the longest edge of its neighbour.

I The longest edges in the first mesh are marked.

I An element is refined by joining the midpoint of its marked
edge with the vertex opposite to this edge (bisection).

I When bisecting the edge of an element, its two remaining
edges become the marked edges of the resulting triangles.
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Mesh Coarsening

I The coarsening of meshes is needed
I to ensure the optimality of the adaptive process, i.e. to

obtain a given accuracy with a minimal amount of
unknowns,

I to resolve moving singularities.

I The basic idea is to cluster elements with too small an
error.

I This is achieved by
I either by going back in the grid hierarchy
I or by removing resolvable vertices.
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Going Back in the Grid Hierarchy

0. Given: A hierarchy T0, . . ., Tk of adaptively refined
partitions, error indicators ηK for the elements K of Tk,
and parameters 1 ≤ m ≤ k and n > m.
Sought: A new partition Tk−m+n.

1. For every element K ∈ Tk−m set η̃K = 0.

2. For every element K ∈ Tk determine its ancestor
K ′ ∈ Tk−m and add η2

K to η̃2
K′ .

3. Successively apply the maximum or equilibration strategy
n times with η̃ as error indicator. In this process, equally
distribute η̃K over the descendants of K once an element K
is subdivided.
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Resolvable Vertices

I An element K of the current partition T has refinement
level ` if it is obtained by subdividing ` times an element of
the coarsest partition.

I Given a triangle K of the current partition T which is
obtained by bisecting a parent triangle K ′, the vertex of K
which is not a vertex of K ′ is called the refinement vertex
of K.

I A vertex z ∈ N of the current partition T and the
corresponding patch ωz are called resolvable if

I z is the refinement vertex of all elements contained in ωz,
I all elements contained in ωz have the same refinement level.

resolvable vertex @
@@�
��• non-resolvable vertex @

@@�
��

��
��•
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Removing Resolvable Vertices

0. Given: A partition T , error indicators ηK for all elements
K of T , and parameters 0 < θ1 < θ2 < 1.
Sought: Subsets Tc and Tr of elements that should be
coarsened and refined, respectively.

1. Set Tc = ∅, Tr = ∅ and compute ηT ,max = max
K∈T

ηK .

2. For all K ∈ T check whether ηK ≥ θ2ηT ,max. If this is the
case, put K into Tr.

3. For all vertices z ∈ N check whether z is resolvable. If this
is the case and if max

K⊂ωz
ηK ≤ θ1ηT ,max, put all elements

contained in ωz into Tc.
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Mesh Smoothing

I Improve the quality of a given partition T by moving its
vertices while retaining the adjacency of the elements.

I The quality is measured by a a quality function q such that
a larger value of q indicates a better quality.

I The quality is improved by sweeping through the vertices
with a Gauß-Seidel type smoothing procedure:

For every vertex z in T , fix the vertices of ∂ωz and find a
new vertex z̃ inside ωz such that

min
K̃⊂ωz̃

q(K̃) > min
K⊂ωz

q(K).
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Quality Functions
I Based on geometric criteria:

q(K) =
4
√

3µ2(K)

µ1(E0)2 + µ1(E1)2 + µ1(E2)2

I Based on interpolation:

q(K) = ‖∇(uQ − uL)‖2K
with linear and quadratic interpolants of u

I Based on an error indicator:

q(K) =

∫
K

∣∣∣ 2∑
i=0

ei∇ψEi
∣∣∣2

with ei = h
1
2
Ei

[nEi · ∇uT ]Ei
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Stationary Incompressible Navier-Stokes
Equations

I Variational Formulation

I Discretization

I Solution of the Discrete Problems

I A Posteriori Error Estimates
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Variational Formulation

Strong Form

I Stationary incompressible Navier-Stokes equations in
dimensionless form with no-slip boundary condition

−∆u +Re(u · ∇)u + grad p = f in Ω

divu = 0 in Ω

u = 0 on Γ

I For the variational formulation, we want to multiply the
momentum equation with a test function v ∈ H1

0 (Ω)d and
integrate the result over Ω.

I This is possible if u ∈ H1
0 (Ω)d implies (u · ∇)u ∈ H−1(Ω)d.
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Properties of the Non-Linear Term
I Hölder’s inequality yields for v ∈ H1

0 (Ω)d, u,w ∈ L4(Ω)d∫
Ω

[
(u · ∇)v

]
·w ≤ ‖u‖L4(Ω)|v|1‖w‖L4(Ω).

I Since H1
0 (Ω) is continuously embedded in L4(Ω) for d ≤ 4

(compactly for d ≤ 3), this proves that[
H1

0 (Ω)d
]3 3 (u,v,w) 7→

∫
Ω

[
(u · ∇)v

]
·w is a continuous

trilinear form.
I Integration by parts yields for all u,v,w ∈ H1

0 (Ω)d with
divu = 0∫

Ω

[
(u · ∇)v

]
·w = −

∫
Ω

[
(u · ∇)w

]
· v,

∫
Ω

[
(u ·∇)v

]
·v = 0.
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Variational Form

I Find u ∈ H1
0 (Ω)d, p ∈ L2

0(Ω) such that for all v ∈ H1
0 (Ω)d,

q ∈ L2
0(Ω)∫

Ω
∇u : ∇v −

∫
Ω
p divv +

∫
Ω
Re[(u · ∇)u] · v =

∫
Ω
f · v∫

Ω
q divu = 0

I Equivalent form:

Find u ∈ V such that for all v ∈ V∫
Ω
∇u : ∇v +

∫
Ω
Re[(u · ∇)u] · v =

∫
Ω
f · v
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Fixed-Point Formulation

I Denote by T : H−1(Ω)d → V the Stokes operator which
associates with g ∈ H−1(Ω)d the weak solution Tg = v of
the Stokes problem with right-hand side g, i.e.∫

Ω
∇v : ∇w =

∫
Ω
g ·w ∀w ∈ V.

I Then the variational formulation of the Navier-Stokes
equations is equivalent to

u = T
(
f −Re(u · ∇)u

)
.
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Variational Formulation

Properties of the Variational Problem

I Every solution satisfies the a priori bound
|u|1 ≤ cF diam(Ω)‖f‖, where cF is the constant in the
Friedrichs inequality.

I If Re 2
d−1

2

[
cF diam(Ω)

]3− d
2 ‖f‖ < 1, there is at most one

solution.

I For every Reynolds’ number Re there exists at least one
solution.

I Every solution has the same regularity as the solution of
the corresponding Stokes problem.

I Every solution belongs to a differentiable branch Re 7→ uRe
of solutions which has at most a countable number of
turning or bifurcation points.
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A Priori Bound

Every solution u of the variational problem satisfies

|u|21 =

∫
Ω
∇u : ∇u

=

∫
Ω
∇u : ∇u +Re

∫
Ω

[
(u · ∇)u

]
· u

=

∫
Ω
f · u

≤ ‖f‖‖u‖
≤ ‖f‖cF diam(Ω)|u|1.
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Variational Formulation

Uniqueness

I The difference v = u1 − u2 of any two solutions satisfies

|v|21 = −Re
∫

Ω

[
(u1 · ∇)u1

]
· v +Re

∫
Ω

[
(u2 · ∇)u2

]
· v

= −Re
∫

Ω

[
(u1 · ∇)v

]
· v −Re

∫
Ω

[
(v · ∇)u2

]
· v

= −Re
∫

Ω

[
(v · ∇)u2

]
· v

≤ Re‖v‖2L4(Ω)|u2|1.

I Combined with the a priori bound, the estimate

‖v‖L4(Ω) ≤ 2
d−1

4 ‖v‖1−
d
4 |v|

d
4
1 and the Friedrichs inequality

this proves the uniqueness.
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Existence
I V is separable, i.e. there is as sequence of nested finite

dimensional subspaces Vm such that
⋃
m Vm is dense in V .

I Denote by Tm the Stokes operator corresponding to Vm.
I The properties of the non-linear term and Schauder’s

fixed-point theorem imply that for every m there is a
um ∈ Vm with um = Tm

(
f −Re(um · ∇)um

)
.

I The arguments used to prove the a priori bound imply that
the sequence um is bounded in H1.

I The compact embedding of H1 in L4 and the properties of
the non-linear term imply that the um converge weakly to
an u ∈ H1

0 (Ω)d which solves the variational problem with
V replaced by anyone of the Vm.

I The density of
⋃
m Vm in V proves that u solves the

variational problem.
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Regularity

The regularity is proved by a bootstrap-argument using the
fixed-point equation u = T

(
f −Re(u · ∇)u

)
and the regularity

of the Stokes problem:

u ∈ H1 =⇒ u ∈ L6 =⇒ (u · ∇)u ∈ L
5
3

=⇒ (u · ∇)u ∈ H−
3
10 =⇒u ∈ H1+ 7

10

=⇒ u ∈ L∞ =⇒ (u · ∇)u ∈ L2

=⇒u ∈ H2
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Branches of Solutions

I The fixed-point formulation implies that there are no
isolated solutions and that every solution depends in a
differentiable way on Re.

I Differentiation of the fixed-point equation yields that v,
the derivative w.r.t. Re of any solution u, satisfies

v = −ReT
(
(u · ∇)v + (v · ∇)u

)
− T

(
(u · ∇)u

)
.

I The compact embedding of H1 in L4 implies that the
operator w 7→ T

(
(u · ∇)w + (w · ∇)u

)
is compact.

I The statement concerning limit and bifurcation points
therefore follows from properties of the spectra of compact
operators, the Fredholm alternative and the a priori bound.
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Discretization

Basic Idea

I Replace H1
0 (Ω)d, L2

0(Ω) by a pair X(T ), Y (T ) of finite
element spaces which is uniformly stable for the Stokes
problem.

I Denote by V (T ) the corresponding approximation of V .

I Since V (T ) 6⊂ V the anti-symmetry of the non-linear term
is lost.

I To recover the anti-symmetry replace the non-linear term
by

Ñ(u,v,w) =
1

2

∫
Ω

[
(u · ∇)v

]
·w − 1

2

∫
Ω

[
(u · ∇)w

]
· v.
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Discrete Problem

I Find uT ∈ X(T ), pT ∈ Y (T ) such that for all vT ∈ X(T ),
qT ∈ Y (T )∫

Ω
∇uT : ∇vT −

∫
Ω
pT divvT +Re Ñ(uT ,uT ,vT ) =

∫
Ω
f · vT∫

Ω
qT divuT = 0

I Equivalent form:

Find uT ∈ V (T ) such that for all vT ∈ V (T )∫
Ω
∇uT : ∇vT +Re Ñ(uT ,uT ,vT ) =

∫
Ω
f · vT
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Discretization

Fixed-Point Formulation of the Discrete Problem

I Denote by TT : H−1(Ω)d → V (T ) the discrete Stokes
operator which associates with g ∈ H−1(Ω)d the weak
solution TT g = vT of the Stokes problem with right-hand
side g, i.e.∫

Ω
∇vT : ∇wT =

∫
Ω
g ·wT ∀wT ∈ V (T ).

I Then the discrete problem is equivalent to

uT = TT
(
f −Re Ñ(uT ,uT , ·)

)
.
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Discretization

Properties of the Discrete Problem

I Every solution satisfies the a priori bound
|uT |1 ≤ cF diam(Ω)‖f‖.

I If Re 2
d−1

2

[
cF diam(Ω)

]3− d
2 ‖f‖ < 1, there is at most one

solution.

I For every Reynolds’ number Re there exists at least one
solution.

I Every solution belongs to a differentiable branch
Re 7→ uT ,Re of solutions which has at most a finite number
of turning or bifurcation points.
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Discretization

Error Estimates
I Assume that:

I Λ ⊂ (0,∞) is a compact, non empty interval.
I Λ 3 Re 7→ uRe is a regular branch of solutions of the

Navier-Stokes equations.
I uRe ∈ Hk+1(Ω)d, pRe ∈ Hk(Ω) for all Re ∈ Λ with k ≥ 1.
I Sk,00 (T )d ⊂ X(T ) and Sk−1,−1(T ) ∩ L2

0(Ω) ⊂ Y (T ) or
Smax{k−1,1},0(T ) ∩ L2

0(Ω) ⊂ Y (T ).

I Then there is a maximal mesh-size h0 = h0(Λ, f ,uRe) > 0
such that for every partition T with hT ≤ h0 the discrete
problem has a solution uT ,Re ∈ X(T ), pT ,Re ∈ Y (T ) with

|uRe − uT ,Re|1 + ‖pRe − pT ,Re‖ ≤ chkT sup
Re∈Λ

|uRe|2k+1.

I ‖uRe − uT ,Re‖ ≤ chT |uRe − uT ,Re|1 if Ω is convex.
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Discretization

Proof of the Error Estimates. The Basic Steps

I The continuous and discrete problem can be written as
F (Re,uRe) = 0 and FT (Re,uT ,Re) = 0.

I FT evaluated at the H1-projection of uRe is small.

I The derivative of FT evaluated at the H1-projection of uRe
is close to the derivative of F evaluated at uRe.

I The derivative of FT evaluated at the H1-projection of uRe
is invertible.

I The derivative of FT is Lipschitz-continuous.

I The discrete problem has a solution in a neighbourhood of
the H1-projection of uRe.

I Compare the obtained solution with the solution of the
Stokes problem with right-hand side f −Re (uRe · ∇)uRe.
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Discretization

Proof of the Error Estimates. 1st Step
Auxiliary quantities

I Define G, G̃ ∈ C∞(H1
0 (Ω)d, H−1(Ω)d) by

〈G(v),w〉 =

∫
Ω

[
(v · ∇)v

]
·w, 〈G̃(v),w〉 = Ñ(v,v,w).

I Define F , FT ∈ C∞((0,∞)×H1
0 (Ω)d, H1

0 (Ω)d) by

F (Re,v) = v +ReTG(v)− T f ,

FT (Re,v) = v +ReTT G̃(v)− TT f .

I Note that F (Re,uRe) = 0 and FT (Re,uT ,Re) = 0.
I Denote by ûT ,Re the H1-projection of uRe on V (T ) and set

εT (Re) = |FT (Re, ûT ,Re)|1.
207/ 300

Computational Fluid Dynamics

Stationary Incompressible Navier-Stokes Equations

Discretization

Proof of the Error Estimates. 2nd Step

εT (Re) ≤ chkT sup
Re∈Λ

|uRe|2k+1

I εT (Re) = |FT (Re, ûT ,Re)−F (Re,uRe)|1
≤ |uRe − ûT ,Re|1 +Re |TT (G̃(ûT ,Re)− G̃(uRe))|1

+Re |(TT − T )G(uRe)|1 + |(T − TT )f |1
I |uRe − ûT ,Re|1 ≤ chkT |uRe|k+1

I |TT (G̃(ûT ,Re)− G̃(uRe))|1 ≤ ‖G̃(ûT ,Re)− G̃(uRe)‖−1

≤ c|uRe|1|uRe − ûT ,Re|1
I |(TT − T )G(uRe)|1 ≤ chkT ‖G(uRe)‖k−1 ≤ chkT |uRe|2k+1

I |(T − TT )f |1 ≤ chkT ‖f‖k−1 ≤ chT |uRe|k+1
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Discretization

Proof of the Error Estimates. 3rd Step

‖|DvFT (Re, ûT ,Re)−DvF (Re,uRe)‖| ≤ ch|uRe|2
I DvFT (Re, ûT ,Re)w −DvF (Re,uRe)w

= ReTT (DG̃(ûT ,Re)w −DG̃(uRe)w)

+Re (TT − T )DG̃(uRe)w

I |TT (DG̃(ûT ,Re)w −DG̃(uRe)w)|1
≤ ‖DG̃(ûT ,Re)w −DG̃(uRe)w‖−1

≤ chT |uRe|2|w|1
I |(TT − T )DG̃(uRe)w|1 ≤ chT ‖DG̃(uRe)w‖

≤ chT |uRe|2|w|1
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Discretization

Proof of the Error Estimates. 4th Step

‖|DvFT (Re, ûT ,Re)
−1‖| ≤ 2‖|DvF (Re,uRe)

−1‖| for sufficiently
small hT

I ‖|A‖| ≤ 1
2 implies that (I −A) is invertible and satisfies

‖|(I −A)−1‖| ≤ 2

I DvFT (Re, ûT ,Re)
= DvF (Re,uRe)− [DvF (Re,uRe)−DvFT (Re, ûT ,Re)]
= DvF (Re,uRe)[I−

DvF (Re,uRe)
−1(DvF (Re,uRe)−DvFT (Re, ûT ,Re)]
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Proof of the Error Estimates. 5th Step

‖|DvFT (Re,v1)−DvFT (Re,v2)‖| ≤ cRe |v1 − v2|1
I DvFT (Re,v1)w −DvFT (Re,v2)w

= ReTT (DG̃(v1)w −DG̃(v2)w)

I |TT (DG̃(v1)w −DG̃(v2)w)|1
≤ ‖DG̃(v1)w −DG̃(v2)w‖−1

≤ c|v1 − v2|1|w|1
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Proof of the Error Estimates. 6th Step

The discrete problem has a solution uT ,Re with
|ûT ,Re − uT ,Re|1 ≤ 4‖|DvF (Re,uRe)

−1‖|εT (Re)

I Thanks to the fourth step we can define a mapping Φ by

Φ(v) = v −DvFT (Re, ûT ,Re)
−1FT (Re,v).

I Then uT ,Re is a solution of the discrete problem if and only
if it is a fixed-point of Φ.

I The fourth and fifth step imply that Φ is a contraction on
the ball B in H1 with centre ûT ,Re and radius
4‖|DvF (Re,uRe)

−1‖|εT (Re).
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Discretization

Proof of the Error Estimates. 7th Step

Proof of the error estimate

I The sixth step implies that
|uRe − uT ,Re|1 ≤

(
1 + 4‖|DvF (Re,uRe)

−1‖|
)
εT (Re).

I Set ũT ,Re = TT (f − G̃(uRe)) and denote by p̃T ,Re the
corresponding pressure.

I The stability of the discretization implies
|uT ,Re − ũT ,Re|1 + ‖pT ,Re − p̃T ,Re‖
≤ cRe ‖G̃(uRe)− G̃(uT ,Re)‖−1

≤ cRe
(
|uRe|1 + |uT ,Re|1

)
|uRe − uT ,Re|1.

I The error estimates for the Stokes problem with right-hand
side f −Re (uRe · ∇)uRe yield
|ũT ,Re − uRe|1 + ‖p̃T ,Re − pRe‖ ≤ chkT |uRe|k+1.
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A Warning Example
I Consider the two-point boundary value problem
−u′′ +Reuu′ = 0 in (−1, 1) with boundary conditions
u(−1) = 1, u(1) = −1.

I The solution is u(x) = − tanh(αRex)
tanh(αRe)

where the parameter

αRe is determined by the relation 2αRe tanh(αRe) = Re.
I The solution exhibits a strong interior layer at x = 0.
I Explicitly solving the difference equations shows that:

I central differences are unstable,

I one-sided differences with a constant
orientation on the whole interval are
unstable,

I one-sided differences with their
orientation depending on the sign of
u are stable.
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Conclusion

I We must stabilize the convective derivative.

I This can be achieved by
I upwind schemes or
I adding an artificial consistent viscosity in the direction of

the streamlines (streamline diffusion method or SDFEM in
short).
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An Upwind Scheme

I Approximate the integral involving the convective
derivative by a one-point quadrature rule∫

Ω
[(uT ·∇)uT ]·vT ≈

∑
K∈T
|K|[(uT (xK)·∇)uT (xK)]·vT (xK).

I Replace the convective derivative by an up-wind difference

(uT (xK) · ∇)uT (xK) ≈ |uT (xK)|
|xK − yK |

(uT (xK)− uT (yK)).

I Replace uT (yK) by IT uT (yK), the linear interpolate of uT
in the vertices of the face of K which contains yK .

���
���

yK
b

a

xK
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Discretization

Drawbacks of the Upwind Scheme

I It does not fit well into the framework of variational
methods.

I The discrete problem is no longer differentiable.
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The Streamline Diffusion Method
Find uT ∈ X(T ) and pT ∈ Y (T ) such that for all vT , qT∫

Ω
∇uT : ∇vT dx−

∫
Ω
pT divvT +

∫
Ω
Re[(uT · ∇)uT ] · vT

+
∑
K∈T

δKh
2
K

∫
K
Re[−f −∆uT +∇pT +Re(uT · ∇)uT ]·

· [(uT · ∇)vT ]

+
∑
K∈T

αKδK

∫
K

divuT divvT =

∫
Ω
f · vT∫

Ω
qT divuT +

∑
E∈E

δEhE

∫
E

[pT ]E [qT ]E

+
∑
K∈T

δKh
2
K

∫
K

[−f −∆uT +∇pT +Re(uT · ∇)uT ] · ∇qT = 0
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Properties of the Streamline Diffusion Method

I It is able to simultaneously stabilize the effects of the
convection and of the divergence constraint.

I It gives rise to a differentiable discrete problem.

I Up to more technical arguments, its error analysis proceeds
along the lines indicated before.

I It yields the same error estimates as before without the
stability condition for the finite element spaces.

I In a mesh-dependent norm, it in addition gives control on
(uRe · ∇)(uRe − uT ,Re), the convective derivative of the
error.
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Potential Algorithms I

I Fixed-point iteration:
I Requires the solution of Stokes problems.
I Converges for sufficiently small Re.

I Newton iteration:
I Requires the solution of linear Oseen problems with

potentially large convection.
I Converges quadratically if the starting value is sufficiently

close to the solution.
I May be combined with path-tracking.

I Path tracking:
I Requires the solution of linear Oseen problems with

potentially large convection.
I May yield reasonable starting values for the Newton

iteration.
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Potential Algorithms II

I Non-linear CG-algorithm of Polak-Ribière:
I Minimizes 1

2 |u− T (f −Re(u · ∇)u)|21.
I Requires the solution of Stokes problems.

I Operator splitting:
I Decouples the non-linearity and the incompressibility.
I Requires the solution of Stokes problems and of non-linear

Poisson equations for the components of the velocity.

I Multigrid algorithms:
I May either be applied to the linear problems in an inner

iteration or be used as an outer iteration with one of the
above methods as smoothing method.
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Fixed-Point Iteration

For i = 0, 1, . . . do:

I Solve the Stokes equations

−∆ui+1 +∇pi+1 = {f −Re(ui · ∇)ui} in Ω

divui+1 = 0 in Ω

ui+1 = 0 on Γ.

I If |ui+1 − ui|1 ≤ ε return ui+1, pi+1 as approximate
solution; stop.
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Newton Iteration

For i = 0, 1, . . . do:

I Solve the Oseen equations

−∆ui+1 +∇pi+1+Re(ui · ∇)ui+1

+Re(ui+1 · ∇)ui = {f +Re(ui · ∇)ui} in Ω

divui+1 = 0 in Ω

ui+1 = 0 on Γ.

I If |ui+1 − ui|1 ≤ ε return ui+1, pi+1 as approximate
solution; stop.
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Path Tracking

Given a Reynolds’ number λ, an increment ∆λ > 0 and an
approximate solution uλ for the Navier-Stokes equations with
Re = λ.

I Solve the Oseen equations

−∆vλ +∇qλ + λ(uλ · ∇)vλ

+λ(vλ · ∇)uλ = {f − λ(uλ · ∇)uλ} in Ω

divvλ = 0 in Ω

vλ = 0 on Γ.

I Return uλ + ∆λvλ as approximate solution of the
Navier-Stokes equations with Re = λ+ ∆λ.

224/ 300



Computational Fluid Dynamics

Stationary Incompressible Navier-Stokes Equations

Solution of the Discrete Problems

Operator Splitting
For i = 0, 1, . . . do:

I Solve the Stokes equations with no-slip boundary condition

2ωui+
1
4 −∆ui+

1
4 +∇pi+

1
4 = 2ωui + f −Re(ui · ∇)ui

divui+
1
4 = 0.

I Solve the non-linear Poisson equations with homogeneous
boundary condition

ωui+
3
4 −∆ui+

3
4 +Re(ui+

3
4 · ∇)ui+

3
4 = ωui+

1
4 + f −∇pi+

1
4 .

I Solve the Stokes equations with no-slip boundary condition

2ωui+1 −∆ui+1 +∇pi+1 = 2ωui+
3
4 + f −Re(ui+

3
4 · ∇)ui+

3
4

divui+1 = 0.

I If |ui+1 − ui|1 ≤ ε return ui+1, pi+1; stop.
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Basic Idea

I For regular branches of solutions, a quantitative form of
the implicit function theorem implies that error and
residual are equivalent, i.e. the norm of the error can be
bounded from above and from below by constant multiples
of the dual norm of the residual.

I The dual norm of the residual can be estimated as for
linear problems by

I either evaluating element-wise the residual with respect to
the strong form of the differential equation and suitable
inter-element jumps

I or solving auxiliary local discrete linear problems.

I Limit and bifurcation points can be treated by suitably
augmenting the residual.
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Equivalence of Error and Residual
I Assume that:

I (X, ‖·‖X), (Y, ‖·‖Y ) are Banach spaces.
I F ∈ C1(X,Y ∗)
I F (ϕ0) = 0
I DF (ϕ0) is an isomorphism of X onto Y ∗.
I ‖|DF (ϕ)−DF (ψ)‖| ≤ γ‖ϕ− ψ‖X for all ϕ, ψ in a ball with

centre ϕ0 and radius R0.

I Set R = min
{
R0, γ

−1‖|DF (ϕ0)−1‖|−1, 2γ−1‖|DF (ϕ0)‖|
}

.

I Then, the following error estimates hold for all ϕ in a ball
with centre ϕ0 and radius R:

1

2
‖|DF (ϕ0)‖|−1‖F (ϕ)‖Y ∗ ≤ ‖ϕ− ϕ0‖X

≤ 2‖|DF (ϕ0)−1‖|‖F (ϕ)‖Y ∗ .
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Proof of the Equivalence
I The upper bound for ‖ϕ− ϕ0‖X follows from

ϕ− ϕ0

= DF (ϕ0)−1
{
DF (ϕ0)(ϕ− ϕ0) + F (ϕ)− F (ϕ) + F (ϕ0)

}
= DF (ϕ0)−1

{
F (ϕ)

+

∫ 1

0

[
DF (ϕ0)−DF (ϕ0 + t(ϕ− ϕ0))

]
(ϕ− ϕ0)dt

}
.

I The lower bound for ‖ϕ− ϕ0‖X follows from

F (ϕ) = DF (ϕ0)(ϕ− ϕ0)

+

∫ 1

0

[
DF (ϕ0 + t(ϕ− ϕ0))−DF (ϕ0)

]
(ϕ− ϕ0)dt.
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Residual A Posteriori Error Estimates

I Residual a posteriori error indicator:

ηR,K =
{
h2
K‖fT + ∆uT −Re (uT · ∇)uT −∇pT ‖2K

+ ‖divuT ‖2K

+
1

2

∑
E∈EK,Ω

hE‖
[
nE · (∇uT − pT I)

]
E
‖2E
} 1

2

I Upper bound:{
|u−uT |21 +‖p−pT ‖2

} 1
2 ≤ c∗

{∑
K∈T

(
η2
R,K+h2

K‖f−fT ‖2K
)} 1

2

I Lower bound:
ηR,K ≤ c∗

{
|u− uT |21,ωK + ‖p− pT ‖2ωK + h2

K‖f − fT ‖2ωK
} 1

2
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Non-Stationary Incompressible Navier-Stokes
Equations

I Variational Formulation

I Finite Element Discretization

I Solution of the Discrete Problems

I A Posteriori Error Estimation and Adaptivity
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Strong Form

I Non-stationary incompressible Navier-Stokes equations in
dimensionless form with no-slip boundary condition

∂u

∂t
−∆u +Re (u · ∇)u− grad p = f in Ω× (0, T )

divu = 0 in Ω× (0, T )

u = 0 on Γ× (0, T )

u(·, 0) = u0 in Ω

I We want to multiply the momentum equation with a
suitable test function v and integrate over Ω× (0, T ).

I We need appropriate spaces of univariate functions with
values in suitable Sobolev spaces.
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Function Spaces for Parabolic Problems
I (U, ‖·‖U ), (W, ‖·‖W ) Banach spaces, U ↪→W , 1 ≤ p ≤ ∞
I Lp(a, b;U) all measurable functions u : (a, b)→ U such that
t 7→ ‖u(·, t)‖U is in Lp((a, b))

‖u‖Lp(a,b;U) =


{∫ b

a
‖u(·, t)‖pUdt

} 1
p
, if p <∞

ess. sup
t∈(a,b)

‖u(·, t)‖U , if p =∞

I W p(a, b;U,W ) =
{
u ∈ Lp(a, b;U) : ∂tu ∈ Lp(a, b;W )

}
‖u‖W p(a,b;U,W ) =


{∫ b

a
‖u(·, t)‖pUdt+

∫ b

a
‖∂u
∂t

(·, t)‖pWdt
} 1
p

ess. sup
t∈(a,b)

max
{
‖u(·, t)‖U , ‖

∂u

∂t
(·, t)‖W

}
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Properties of the Function Spaces

I Lp(a, b;U), W p(a, b;U,W ) are Banach spaces.

I ∂u
∂t is defined in the distributional sense.

I Functions in W p(a, b;U,W ) have traces u(·, a), u(·, b) in W
if p > 1.

233/ 300

Computational Fluid Dynamics

Non-Stationary Incompressible Navier-Stokes Equations

Variational Formulation

Variational Form

Find u ∈ L2(0, T ;H1
0 (Ω)d), p ∈ L2(0, T ;L2

0(Ω)) such that for all
v ∈W∞(0, T ;H1

0 (Ω)d, L2(Ω)d), q ∈ L∞(L2
0(Ω))∫ T

0

∫
Ω

{
−u · ∂v

∂t
+∇u : ∇v +Re [(u · ∇)u] · v − p divv

}
=

∫ T

0

∫
Ω
f · v+

∫
Ω
u0 · v(·, 0)∫ T

0

∫
Ω
q divu = 0
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Equivalent Variational Form

Find u ∈ L2(0, T ;V ) such that for all v ∈W∞(0, T ;V,L2(Ω)d)∫ T

0

∫
Ω

{
−u · ∂v

∂t
+∇u : ∇v +Re [(u · ∇)u] · v

=

∫ T

0

∫
Ω
f · v+

∫
Ω
u0 · v(·, 0)
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Properties of the Variational Problem

I For every Reynolds’ number Re, every right-hand side
f ∈ L2(0, T ;V ∗) and every initial value u0 ∈ L2(Ω)d with
divu0 = 0, there exists at least one solution. It satisfies
∂u
∂t ∈ L

1(0, T ;V ∗).

I If d = 2, there exists at most one solution. It satisfies
∂u
∂t ∈ L

2(0, T ;V ∗) and u ∈ C([0, T ], L2(Ω)2).

I If d = 3, every solution satisfies ∂u
∂t ∈ L

4
3 (0, T ;V ∗) and

u ∈ L
8
3 (0, T ;L4(Ω)3). There is at most one solution in

L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)3) ∩ L8(0, T ;L4(Ω)3). Every
such solution satisfies u ∈ C([0, T ], L2(Ω)3).
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Existence. 1st Step

I V is separable, i.e. there is as sequence of nested finite
dimensional subspaces Vm such that

⋃
m Vm is dense in V .

I Denote by u0,m the L2-projection of u0 onto Vm.

I Recall that
[
H1

0 (Ω)d
]3 3 (u,v,w) 7→

∫
Ω

[
(u · ∇)v

]
·w is a

continuous anti-symmetric trilinear form.
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Existence. 2nd Step
I The theorem of Picard-Lindelöf implies that for every m

there is a maximal tm ∈ (0, T ] and a vm ∈ C1([0, tm], Vm)
with vm(·, 0) = u0,m such that for all wm ∈ Vm∫

Ω

{∂vm
∂t
·wm+∇vm : ∇wm +Re [(vm · ∇)vm] ·wm

}
=

∫
Ω
f ·wm.

I Inserting wm = vm yields

1

2

d

dt
‖vm‖2 + |vm|21 =

∫
Ω

∂vm
∂t
· vm + |vm|21

=

∫
Ω
f · vm ≤

1

2
|vm|21 +

1

2
|f |2−1.
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Existence. 3rd Step

I This implies lim sup
t→tm

‖vm(·, t)‖ <∞.

I Hence, tm = T and (vm) is contained in a bounded subset
of L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;V ).

I A compactness theorem implies that there is a
u ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;V ) such that vm → u

I weak in L2(0, T ;V ),
I weak∗ in L∞(0, T ;L2(Ω)d),
I strong in L2(0, T ;L2(Ω)d).

I The convergence allows to take the limit in the defining
equation for the vm.

I Since
⋃
Vm is dense in V , this proves the existence.
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Uniqueness. 1st Step

I Define operators A, N on L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;V )
by

〈Au,v〉 =

∫
Ω
∇u : ∇v, 〈N(u),v〉 =

∫
Ω

[
(u · ∇)u

]
· v.

I Then |N(u)|−1 ≤ ‖u‖2L4(Ω).

I Recall that ‖u‖L4(Ω) ≤ 2
d−1

4 ‖u‖1−
d
4 |u|

d
4
1 .

I Every solution of the variational problem satisfies

∂u

∂t
+Au +N(u) = f in V ∗.
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Uniqueness. 2nd Step (d = 2)
I Since |N(u)|−1 ≤

√
2‖u‖|u|1, this proves that Au, N(u),

and ∂u
∂t are all in L2(0, T ;V ∗).

I Embedding theorems yield the remaining regularity results.
I The difference w = u1 − u2 of any two solutions satisfies

1

2

d

dt
‖w(·, t)‖2 + |w|21 = 〈N(u1),w〉 − 〈N(u2),w〉

=

∫
Ω

[
(w · ∇)u1

]
·w ≤

√
2|w|1‖w‖|u1|1

⇒ d

dt
‖w(·, t)‖2 ≤ |u1(·, t)|21‖w(·, t)‖2

⇒ d

dt

{
‖w(·, t)‖2 exp

[
−
∫ t

0
|u1(·, s)|21ds

]}
≤ 0.

I Since u1 ∈ L2(0, T ;V ) and w(·, 0) = 0, this proves w = 0.
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Uniqueness. 3rd Step (d = 3)

I Since now |N(u)|−1 ≤ ‖u‖2L4(Ω) ≤ 2‖u‖
1
2 |u|

3
2
1 , we have

Au ∈ L2(0, T ;V ∗) and N(u), ∂u
∂t in L

4
3 (0, T ;V ∗).

I Embedding theorems yield the remaining regularity results.
I The difference w = u1 − u2 of any two solutions now

satisfies

1

2

d

dt
‖w(·, t)‖2 + |w|21 =

∫
Ω

[
(w · ∇)u1

]
·w

= −
∫

Ω

[
(w · ∇)w

]
· u1 ≤ 2|w|

7
4
1 ‖w‖

1
4 ‖u1‖L4(Ω)

⇒ d

dt
‖w(·, t)‖2 ≤ 1

2

(7

4

)7‖u1(·, t)‖8L4(Ω)‖w(·, t)‖2

I Since u1 ∈ L8(0, T ;L4(Ω)3) and w(·, 0) = 0, this proves
w = 0.
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Regularity of Solutions

I Assume that
I d = 2,
I Γ ∈ C2,
I f ∈ L∞(0, T ;L2(Ω)2), ∂f

∂t ∈ L
2(0, T ;V ∗), div f = 0,

I u0 ∈ H2(Ω)2 ∩ V ,

I then the solution is in L∞(0, T ;H2(Ω)2).

I Assume that
I d = 3,
I Γ ∈ C∞,
I f ∈ L∞(0, T ;L2(Ω)3), ∂f

∂t ∈ L
1(0, T ;L2(Ω)3), div f = 0,

I u0 ∈ H2(Ω)3 ∩ V ,
I ‖f(·, 0)‖, ‖f‖L∞(0,T ;V ∗) and ‖u0‖2 are sufficiently small,

I then the there is a unique solution with
u ∈ L∞(0, T ;H2(Ω)3), ∂u∂t ∈ L

2(0, T ;V )∩L∞(0, T ;L2(Ω)3).
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Variational Formulation

Further Regularity of Solutions
I The above regularity results do not suffice to prove second

order error estimates w.r.t. time.
I In order to obtain such estimates, the quantities

|∂u
∂t

(·, t)|1,
∫ T

t
‖∂u
∂t

(·, s)‖22ds,
∫ T

t
‖∂

2u

∂t2
(·, s)‖2ds

must remain bounded for t→ 0.
I If any of these quantities remains bounded, the following

overdetermined Neumann problem admits a unique
solution:

∆ϕ = div
(
f(·, 0)− (u0∇)u0

)
in Ω

∇ϕ = ∆u0 + f(·, 0)− (u0∇)u0 on Γ.

I This is a non-local compatibility condition.
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Finite Element Discretization

Discretization of Parabolic Problems

I There are three main approaches for the discretization of
parabolic problems:

I Method of lines,
I Rothe’s method,
I Space-Time Finite Elements.

I For classical non-adaptive discretizations all approaches
often yield the same discrete solution.

I The method of lines is very inflexible w.r.t. to adaptivity.

I The error analysis of Rothe’s method is very intricate since
it requires regularity results w.r.t. time which often are not
available.

I Space-time finite elements are well amenable to a posteriori
error estimation and space and time adaptivity.
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Finite Element Discretization

Basic Idea of the Method of Lines

I Choose a fixed spatial mesh and associated finite element
spaces.

I Apply a standard ODE-solver (e.g. implicit Euler,
Crank-Nicolson, Runge-Kutta, . . .) to the resulting system
of ordinary differential equations.
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Finite Element Discretization

Discretization of the Navier-Stokes Equations
with the Method of Lines

I Choose a spatial mesh T and associated finite element
spaces X(T ), Y (T ) which are uniformly stable for the
Stokes problem.

I Denote by AT , BT and NT (uT ) the associated stiffness
matrices.

I Then the spatial discretization yields the following system
of differential-algebraic equations:

duT
dt

= fT − νAT uT −BT pT −NT (uT )

BT
T uT = 0.
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Temporal Discretization with the θ-Scheme

I Applying the θ-scheme to the above system requires to
compute an appropriate interpolate u0

T = RT u0 of the
initial value and, for n = 1, 2, . . ., to solve the discrete
stationary Navier-Stokes problems

unT − un−1
T

τn
= −BT pnT + θ {fnT − νAT unT −NT (unT )}

+ (1− θ)
{
fn−1
T − νAT un−1

T −NT (un−1
T )

}
BT
T u

n
T = 0

I The choice θ = 1
2 corresponds to the Crank-Nicolson

scheme, θ = 1 to the implicit Euler scheme.
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Finite Element Discretization

Basic Idea of Rothe’s Method

I Interpret the parabolic problem as an ordinary differential
equation in a suitable infinite dimensional Banach space
and apply a standard ODE-solver (e.g. implicit Euler,
Crank-Nicolson, Runge-Kutta, . . .).

I Every time-step then requires the solution of a stationary
elliptic equation which is achieved by applying a standard
finite element discretization.
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Rothe’s Method for the Navier-Stokes Equations
I Rothe’s method in form of the θ-scheme requires to solve

the following stationary non-linear elliptic equations for
n = 1, 2, . . .

1

τn
un − θ∆un + θRe (un · ∇)un − grad pn

= θf(·, tn) +
1

τn
un−1 + (1− θ){f(·, tn−1)−∆un−1

+Re (un−1 · ∇)un−1} in Ω

divun = 0 in Ω

un = 0 on Γ.

I θ = 1
2 corresponds to the Crank-Nicolson scheme, θ = 1 to

the implicit Euler scheme.
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Finite Element Discretization

Spatial Discretization of the Stationary
Problems

I The stationary problems only differ by the reaction term
1
τn
un from the standard stationary Navier-Stokes equations.

I They can be discretized and solved as the standard
Navier-Stokes equations.
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Finite Element Discretization

Basic Idea of Space-Time Finite Element
Methods

I Construct a space-time mesh for the space-time cylinder.

I In the variational formulation of the parabolic problem,
replace the infinite dimensional spaces by finite dimensional
approximations which consist of piece-wise polynomial
functions w.r.t. time with values in spatial finite element
spaces.
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Finite Element Discretization

Space-Time Meshes

-

6

t0
t1

t2

...

tNI

T0

TNI

I Choose a partition I =
{[tn−1, tn] : 1 ≤ n ≤ NI} of
the time-interval [0, T ] with
0 = t0 < . . . < tNI = T .

I Set τn = tn − tn−1.

I With every tn associate an
admissible, affine
equivalent, shape regular
partition Tn of Ω and finite
element spaces
Xn = X(Tn), Yn = Y (Tn)
for the velocity and
pressure.
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Finite Element Discretization

Conditions

I Non-Degeneracy: τn > 0 for all n and I.

I Transition Condition: For every n there is an affine
equivalent, admissible, and shape-regular partition T̃n such
that it is a refinement of both Tn and Tn−1 and such that

sup
1≤n≤NI

sup
K∈T̃n

sup
K′∈Tn
K⊂K′

hK′

hK
<∞

uniformly with respect to all partitions I.

I Degree Condition: The polynomial degrees of the functions
in Xn, Yn are bounded uniformly w.r.t. all partitions Tn
and I.

254/ 300

Computational Fluid Dynamics

Non-Stationary Incompressible Navier-Stokes Equations

Finite Element Discretization

Effect of the Transition Condition

I It restricts mesh-coarsening: It must not be too abrupt nor
too strong.

I The method of characteristics below additionally requires a
transition condition with reversed roles of Tn−1 and Tn.

I This restricts mesh-refinement: It must not be too abrupt
nor too strong.

I Both restrictions are satisfied by the refinement and
coarsening methods used in practice.
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Space-Time Finite Element Discretization
Set u0

T0 = RT0u0 and successively determine unTn ∈ Xn, pnTn ∈ Yn
such that for all vnTn ∈ Xn, qnTn ∈ Yn

1

τn

∫
Ω
unTn · v

n
Tn + θ

∫
Ω
∇unTn : ∇vnTn −

∫
Ω
pnTn divvnTn

+ ΘRe

∫
Ω

[(unTn · ∇)unTn ] · vnTn

=
1

τn

∫
Ω
un−1
Tn−1

· vnTn + θ

∫
Ω
f(·, tn) · vnTn

+ (1− θ)
∫

Ω
f(·, tn−1) · vnTn + (1− θ)

∫
Ω
∇un−1
Tn−1

: ∇vnTn

+ (1−Θ)Re

∫
Ω

[(un−1
Tn−1

· ∇)un−1
Tn−1

] · vnTn

0 =

∫
Ω
qnTn divunTn
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Finite Element Discretization

Choice of Parameters

I θ = 1
2 corresponds to the Crank-Nicolson scheme.

I θ = 1 corresponds to the implicit Euler scheme.

I Due to the poor regularity for t→ 0, one usually uses the
implicit Euler scheme for the first few time-steps.

I Θ = 1 corresponds to a fully implicit treatment of the
non-linear term. This requires the solution of discrete
stationary Navier-Stokes equations in each time-step.

I Θ = 0 corresponds to a fully explicit treatment of the
non-linear term. This requires the solution of discrete
Stokes equations in each time-step. As a compensation the
size of the time-steps must be reduced drastically.

I The divergence constraint and the non-linear term may be
stabilized as for stationary problems.
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Solution of the Discrete Problems

Overview

I All discretizations considered so far require the solution of
a sequence of discrete stationary Navier-Stokes equations.

I At the expense of a drastically reduced time-step, the
non-linear problems can be replaced by discrete Stokes
problems.

I The method of characteristics, alias transport-diffusion
algorithm, is particularly suited for the discretization of
parabolic problems with a large convection term.

I It decouples the discretization of the temporal derivative
and of the convection from the discretization of the
diffusion terms.

I It requires the solution of a sequence of ODEs and of linear
elliptic problems.
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Solution of the Discrete Problems

Basic Idea of the Method of Characteristics
I For every v ∈ V and every (x∗, t∗) ∈ Ω× (0, T ] the

following characteristic equation admits a maximal solution
which exists for all t ∈ (0, t∗)

d

dt
x(t;x∗, t∗) = Rev(x(t;x∗, t∗), t), x(t∗;x∗, t∗) = x∗.

I U(x∗, t) = u(x(t;x∗, t∗), t) satisfies

dU

dt
=
∂u

∂t
+Re (v · ∇)u.

I The momentum equation therefore takes the form

dU

dt
−∆u + grad p = f .
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Re-Interpolation

z•

•
xn−1
z

z•

•
xn−1
z

I Assume that every function
in Xn is determined by its
values at a set Vn of nodes
(Lagrange condition).

I For every n and z ∈ Vn,Ω
apply a classical
ODE-solver to the
characteristic equation
associated with
(x∗, t∗) = (z, tn) and denote
by xn−1

z the resulting
approximation for
x(tn−1; z, tn).
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The Method of Characteristics

I Determine ũn−1
Tn ∈ Xn such that ũn−1

Tn (z) = un−1
Tn−1

(xn−1
z ) for

all z ∈ Vn,Ω.

I Find unTn ∈ Xn, pnTn ∈ Yn such that for all vnTn ∈ Xn,
qnTn ∈ Yn

1

τn

∫
Ω
unTn · v

n
Tn +

∫
Ω
∇unTn : ∇vnTn −

∫
Ω
pnTn divvnTn

=
1

τn

∫
Ω
ũn−1
Tn · v

n
Tn +

∫
Ω
f(·, tn) · vnTn∫

Ω
qnTn divunTn = 0
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Solution of the Discrete Problems

Properties

I Every time-step requires the solution of
I an ODE for every node associated with Xn,
I a discrete Stokes problem.

I The Stokes problems can be stabilized in the usual way.
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A Posteriori Error Estimation and Adaptivity

Basic Steps of A Posteriori Error Estimation
I Use a parabolic energy estimate to prove that a suitable

norm of the error can be bounded from above and from
below by constant multiples of the corresponding dual
norm of the residual.

I Appropriately split the residual in a contribution
associated with the corresponding stationary problem and
a complement which is associated with the temporal
discretization.

I Prove that the norm of the residual can be bounded from
above and from below by the sum of the norms of the two
contributions.

I Bound the norms of the contributions separately using
standard elliptic techniques for the part corresponding to
the stationary problem.
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A Posteriori Error Estimation and Adaptivity

Difficulty with the Navier-Stokes Equations

I There is no appropriate parabolic energy estimate available.

I This is due to the fact that the non-linear convection is too
“strong” compared with the linear diffusion.

I This is reflected by the unsatisfactory regularity and
uniqueness results for the the Navier-Stokes equations.

I For the non-stationary Stokes equations a suitable energy
estimate is available. Then the main (technical) difficulty
lies in the non-conformity V (T ) 6⊂ V .
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A Residual Error Indicator for the
Non-Stationary Stokes Equations

I Spatial error indicator

ηnh =
{ ∑
K∈Tn

h2
K‖f(·, tn)− 1

τn
(unTn − un−1

Tn−1
) + ∆unTn −∇p

n
Tn‖

2
K

+
∑

E∈En,Ω

hE‖[nE · (∇unTn − p
n
TnI)]E‖

2
E

+
∑
K∈Tn

‖divunTn‖
2
K

} 1
2

I Temporal error indicator

ηnτ =
{
‖∇(unTn − un−1

Tn−1
)‖2 + ‖div(unTn − un−1

Tn−1
)‖2
} 1

2
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A Posteriori Error Estimates for the
Non-Stationary Stokes Equations

I Denote by uI the continuous, temporally piece-wise affine
function which coincides with unTn at time tn and by pI the
temporally piece-wise constant function which coincides
with pnTn on (tn−1, tn].

I Then{
‖∂t(u− uI) +∇(p− pI)‖2L2(0,T ;H−1(Ω)d)

+ ‖u− uI‖2L∞(0,T ;L2(Ω)d) + ‖u− uI‖2L2(0,T ;H1
0 (Ω)d)

} 1
2

≈
{
‖u0
T0 − u0‖2 +

NI∑
n=1

τn
[(
ηnh
)2

+
(
ηnτ
)2]} 1

2
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Modifications for the Navier-Stokes Equations

I Add the non-linear term Re (unTn · ∇)unTn to the element
residuals in ηnh .

I For every n determine ũnTn ∈ S
1,0
0 (Tn)d such that for all

vnTn ∈ S
1,0
0 (Tn)d∫
Ω
∇ũnTn : ∇vnTn = Re

∫
Ω

[
(unTn · ∇)unTn

]
· vnTn .

I Augment
(
ηnτ
)2

by

|ũnTn |
2
1 +

∑
K∈Tn

h2
K‖∆ũnTn +Re (unTn · ∇)(unTn − un−1

Tn−1
)‖2K .
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An Algorithm for Space-Time Adaptivity

0. Given a tolerance ε, an initial mesh T0 and an initial
time-step τ1.

1. Refine T0 until ‖RT0u0 − u0‖ ≤ ε√
2
, set n = 1, t1 = τ1.

2. Solve the discrete problem on time-level n and determine
the error indicators ηnh and ηnτ .

3. If ηnτ >
ε

2
√
T

, replace tn by 1
2(tn−1 + tn) and return to 2.

4. Apply a standard mesh-refinement and coarsening
algorithm to the discrete problem on time-level n with the
current time-step τn until ηnh ≤

ε
2
√
T

. If ηnτ <
ε

4
√
T

, replace

τn by 2τn.

5. If tn = T , stop. Otherwise set tn+1 = min{T, tn + τn},
increment n by 1 and return to 2.
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Compressible and Inviscid Problems

I Systems in Divergence Form

I Discretization
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Systems in Divergence Form

The Setting
I Domain: Ω ⊂ Rd
I Source: g : Rm × Ω× (0,∞)→ Rm
I Mass: M : Rm → Rm
I Flux: F : Rm → Rm×d
I Initial value: U0 : Ω→ Rm
I Problem: Find U : Ω× (0,∞)→ Rm such that under

appropriate boundary conditions

∂M(U)

∂t
+ divF(U) = g(U, x, t) in Ω× (0,∞)

U(·, 0) = U0 in Ω

I divF(U) =
( d∑
j=1

∂F(U)i,j
∂xj

)
1≤i≤m
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Systems in Divergence Form

Advective and Viscous Fluxes

I The flux F splits into two contributions F = Fadv + Fvisc.

I Fadv is called advective flux and contains no derivatives.

I Fvisc is called viscous flux and contains spatial derivatives.

I The advective flux stems from the transport theorem and
models transport or convection phenomena.

I The viscous flux models viscosity or diffusion phenomena.
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Systems in Divergence Form

Euler Equations

m = d+ 2 U =

ρv
e


M(U) =

 ρ
ρv
e

 g =

 0
ρf
f · v


Fadv(U) =

 ρv
ρv ⊗ v + pI
ev + pv


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Systems in Divergence Form

Compressible Navier-Stokes Equations in
Conservative Form

m = d+ 2 U =

ρv
e


M(U) =

 ρ
ρv
e

 g =

 0
ρf
f · v


Fadv(U) =

 ρv
ρv ⊗ v + pI
ev + pv

 Fvisc(U) =

 0
T + pI

(T + pI) · v + σ


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Systems in Divergence Form

An Existence and Uniqueness Result
I Assume that

I the boundary Γ is sufficiently smooth,
I the exterior forces are sufficiently smooth,
I the initial data ρ0, u0, p0 and the exterior forces satisfy

appropriate compatibility conditions of the form

u0 · n = 0 on Γ

∂u0

∂t
· n = 0 on Γ(∂f

∂t
− (

∂u0

∂t
· ∇)u0 − (u0 · ∇)

∂u0

∂t

+∇
(
ρ−1

0 p0 div(ρ0u0)
))
· n = 0 on Γ.

I Then the compressible Navier-Stokes and Euler equations
admit a unique solution on a small time interval.
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Systems in Divergence Form

Remarks

I The previous result is proved by a fixed-point argument.

I Long-time existence results require conditions of the form
“initial data and exterior forces sufficiently small”.

I Existence results under weaker assumptions can be proved
using the concept of compensated compactness.

I Uniqueness results typically require some sort of entropy
condition.
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Most Popular Methods

I Finite Volume Methods

Discretize the integral form of the system using piece-wise
constant approximations on a mesh consisting of
polyhedral cells combined with suitable numerical
approximations for the fluxes across the cells’ boundaries.

I Discontinuous Galerkin Methods

Discretize a suitable weak formulation of the system using
discontinuous piece-wise polynomial approximations
combined with appropriate stabilization terms.
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Discretization

Finite Volume Discretization. 1st Step

I Choose a time-step τ > 0.

I Choose a partition T of the domain Ω consisting of
arbitrary non-overlapping polyhedra.

I Fix n ∈ N∗ and K ∈ T .

I Integrate the system over K × [(n− 1)τ, nτ ]:∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
+

∫ nτ

(n−1)τ

∫
K

divF(U)

=

∫ nτ

(n−1)τ

∫
K
g(U, x, t)
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Discretization

Finite Volume Discretization. 2nd Step

Use integration by parts for the terms on the left-hand side:∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
=

∫
K
M(U(x, nτ))

−
∫
K
M(U(x, (n− 1)τ))∫ nτ

(n−1)τ

∫
K

divF(U) =

∫ nτ

(n−1)τ

∫
∂K

F(U) · nK
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Finite Volume Discretization. 3rd Step

I Assume that U is piecewise constant with respect to space
and time.

I Denote by Un
K and Un−1

K its constant values on K at times
nτ and (n− 1)τ respectively:∫

K
M(U(x, nτ)) ≈ |K|M(Un

K)∫
K
M(U(x, (n− 1)τ)) ≈ |K|M(Un−1

K )∫ nτ

(n−1)τ

∫
∂K

F(U) · nK ≈ τ
∫
∂K

F(Un−1
K ) · nK∫ nτ

(n−1)τ

∫
K
g(U, x, t) ≈ τ |K|g(Un−1

K , xK , (n− 1)τ)
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Finite Volume Discretization. 4th Step

Approximate the boundary integral for the flux by a numerical
flux:

τ

∫
∂K

F(Un−1
K ) · nK ≈ τ

∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|FT (Un−1
K ,Un−1

K′ )
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Discretization

A Simple Finite Volume Scheme

I For every element K ∈ T compute

U0
K =

1

|K|

∫
K
U0(x).

I For n = 1, 2, . . . successively compute for all elements
K ∈ T

M(Un
K) = M(Un−1

K )

−τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|
|K|

FT (Un−1
K ,Un−1

K′ )

+τg(Un−1
K , xK , (n− 1)τ).
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Discretization

Possible Modifications

I The time-step may not be constant.

I The spatial mesh may vary with time.

I The approximation Un
K may not be constant.
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Discretization

Open Tasks

I Construct the partition T .

I Determine the numerical flux FT .

I Handle boundary conditions.
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Discretization

Dual Meshes

I Often the finite volume mesh T is constructed as a dual
mesh departing from an admissible primal finite element
mesh T̃ .

I In two dimensions there are basically two approaches for
the construction of dual meshes:

I for every element K̃ ∈ T̃ draw the perpendicular bisectors
at the midpoints of its edges,

I for every element K̃ ∈ T̃ connect its barycentre with the
midpoints of its edges.
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Discretization

Perpendicular Bisectors and Barycentres

Perpendicular bisectors
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Properties of Dual Meshes

I Every element in
K ∈ T can be
associated with a
vertex in xK of T̃ and
vice versa.

I With every edge E of
T one may associate
two vertices xE,1, xE,2
of T̃ such that the line
xE,1 xE,2 intersects E.
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Advantages and Disadvantages of Perpendicular
Bisectors

I The intersection of xE,1 xE,2 with E is perpendicular.

I The perpendicular bisectors of a triangle may intersect in a
point outside the triangle. The intersection point is within
the triangle only if its largest angle is at most a right one.

I The perpendicular bisectors of a quadrilateral may not
intersect at all. They intersect in a common point inside
the quadrilateral only if it is a rectangle.

I The construction with perpendicular bisectors has no three
dimensional analogue.
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Construction of Numerical Fluxes. Notations
and Assumptions

I Assume that T is a dual mesh corresponding to a primal
finite element mesh T̃ .

I For every straight edge or face E of T denote by
I K1 and K2 the adjacent volumes,
I U1, U2 the values Un−1

K1
and Un−1

K2
,

I x1, x2 the vertices of T̃ such that the line x1 x2 intersects E.

I Split the numerical flux FT (U1,U2) into a viscous
numerical flux FT ,visc(U1,U2) and an advective numerical
flux FT ,adv(U1,U2).
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Approximation of Viscous Fluxes

I Introduce a local coordinate system η1, . . . , ηd such that the
direction η1 is parallel to the direction x1 x2 and such that
the other directions are tangential to E.

�
�
�
��

•

•
η1

η2
���6

I Express all derivatives in Fvisc in terms of the new
coordinate system.

I Suppress all derivatives not involving η1.

I Approximate derivatives with respect to η1 by difference
quotients of the form ϕ1−ϕ2

|x1−x2| .
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Spectral Decomposition of Advective Fluxes

I Denote by C(V) = D(Fadv(V) · nK1) ∈ Rm×m the
derivative of Fadv(V) · nK1 with respect to V.

I Assume that this matrix can be diagonalized (satisfied for
Euler and compressible Navier-Stokes equations):

Q(V)−1C(V)Q(V) = ∆(V)

with Q(V) ∈ Rm×m invertible and ∆(V) ∈ Rm×m diagonal.

I Set z+ = max{z, 0}, z− = min{z, 0} and

∆(V)± = diag
(
∆(V)±11, . . . ,∆(V)±mm

)
,

C(V)± = Q(V)∆(V)±Q(V)−1.
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Approximation of Advective Fluxes

I Steger-Warming

FT ,adv(U1,U2) = C(U1)+U1 + C(U2)−U2

I van Leer

FT ,adv(U1,U2)

=
[
C(U1) + C(

1

2
(U1 + U2))+ − C(

1

2
(U1 + U2))−

]
U1

+
[
C(U2)− C(

1

2
(U1 + U2))+ + C(

1

2
(U1 + U2))−

]
U2
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Properties

I Both schemes require the computation of DFadv(V) · nK1

and of its eigenvalues and eigenvectors for suitable values of
V.

I The van Leer approximation in general is more costly than
the Steger-Warming approximation since it requires three
evaluations of C(V) instead of two.

I For the compressible Navier-Stokes and Euler equations,
however, this can be reduced to one evaluation since for
these equations Fadv(V) · nK1 = C(V)V holds for all V.
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A One-Dimensional Example

I Burger’s equation:
∂u

∂t
+ u

∂u

∂x
= 0

I Fadv(u) = 1
2u

2, C(u) = u, C(u)± = u±

I Steger-Warming:

FT ,adv(u1, u2) =


u2

1 if u1 ≥ 0, u2 ≥ 0

u2
1 + u2

2 if u1 ≥ 0, u2 ≤ 0

u2
2 if u1 ≤ 0, u2 ≤ 0

0 if u1 ≤ 0, u2 ≥ 0

I van Leer:

FT ,adv(u1, u2) =

{
u2

1 if u1 ≥ −u2

u2
2 if u1 ≤ −u2
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TVD and ENO Schemes

I The convergence analysis of finite volume methods is based
on compactness arguments, in particular the concept of
compensated compactness.

I This requires to bound the total variation of the numerical
approximation and to avoid unphysical oscillations.

I This leads to the concept of total variation diminishing
TVD and essentially non-oscillating ENO schemes.

I Corresponding material may be found under the names of
Enquvist, LeVeque, Osher, Roe, Tadmor, . . ..
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Relation to Finite Element Methods

I Assume that T is a dual mesh corresponding to a primal
finite element mesh T̃ .

I There is a natural one-to-one correspondence between
piece-wise constant functions on T and continuous
piece-wise linear functions on T̃ :

S0,−1(T )m 3 UT ↔ ŨT̃ ∈ S
1,0(T̃ )m

UT |K = ŨT̃ (xK) ∀K ∈ T .
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A Simple Adaptive Algorithm

0. Given the solution UT of the finite volume scheme
compute the corresponding finite element function ŨT̃ .

1. Apply a standard a posteriori error estimator to ŨT̃ .

2. Given the error estimator apply a standard mesh
refinement and coarsening strategy to the finite element
mesh T̃ and thus construct a new, locally refined and
coarsened partition T̂ .

3. Use T̂ to construct a new dual mesh T ′. This is the
refinement of T .

296/ 300



Computational Fluid Dynamics

Compressible and Inviscid Problems

Discretization

Idea of Discontinuous Galerkin Methods

I Approximate U by discontinuous functions which are
polynomials w.r.t. space and time on small space-time
cylinders of the form K × [(n− 1)τ, nτ ] with K ∈ T .

I For every such cylinder multiply the differential equation
by a corresponding test-polynomial and integrate the result
over the cylinder.

I Use integration by parts for the flux term.

I Accumulate the contributions of all elements in T .

I Compensate for the illegal partial integration by adding
appropriate jump-terms across the element boundaries.

I Stabilize the scheme in a Petrov-Galerkin way by adding
suitable element residuals.
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A Simple Discontinuous Galerkin Scheme
I Compute U0

T , the L2-projection of U0 onto Sk,−1(T ).
I For n ≥ 1 find Un

T ∈ Sk,−1(T ) such that for all VT∑
K∈T

1

τ

∫
K
M(Un

T ) ·VT −
∑
K∈T

∫
K
F(Un

T ) : ∇VT

+
∑
E∈E

δEhE

∫
E

[
nE · F(Un

T )VT
]
E

+
∑
K∈T

δKh
2
K

∫
K

divF(Un
T ) · divF(VT )

=
∑
K∈T

1

τ

∫
K
M(Un−1

T ) ·VT +
∑
K∈T

∫
K
g(·, nτ) ·VT

+
∑
K∈T

δKh
2
K

∫
K
g(·, nτ) · divF(VT )
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Possible Modifications

I The jump and stabilization terms can be chosen more
judiciously.

I The time-step may not be constant.

I The spatial mesh may depend on time.

I The functions UT and VT may be piece-wise polynomials
of higher order w.r.t. to time. Then the term∑
K∈T

∫ nτ

(n−1)τ

∫
K

∂M(UT )

∂t
·VT must be added on the

left-hand side and terms of the form
∂M(UT )

∂t
·VT must

be added to the element residuals.
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