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Abstract

In this thesis we study Faltings’ delta invariant of compact and connected
Riemann surfaces. This invariant plays a crucial role in Arakelov theory
of arithmetic surfaces. For example, it appears in the arithmetic Noether
formula. We give new explicit formulas for the delta invariant in terms of
integrals of theta functions, and we deduce an explicit lower bound for it only
in terms of the genus and an explicit upper bound for the Arakelov–Green
function in terms of the delta invariant. Furthermore, we give a canonical
extension of Faltings’ delta invariant to the moduli space of indecomposable
principally polarised complex abelian varieties. As applications to Arakelov
theory, we obtain bounds for the Arakelov heights of the Weierstraß points
and for the Arakelov intersection number of any geometric point with certain
torsion line bundles in terms of the Faltings height. Moreover, we deduce an
improved version of Szpiro’s small points conjecture for cyclic covers of prime
degree and an explicit expression for the Arakelov self-intersection number of
the relative dualizing sheaf, an effective version of the Bogomolov conjecture
and an arithmetic analogue of the Bogomolov–Miyaoka–Yau inequality for
hyperelliptic curves.
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Introduction

From geometry to arithmetic

In number theory one is interested in so-called diophantine equations, that
means integral (or rational) solutions of systems of equations

F1(X1, . . . , Xn) = 0, . . . , Fm(X1, . . . , Xn) = 0,

where Fj is a polynomial in the variables X1, . . . , Xn. Equivalently, one can
ask for integral (or rational) points on the algebraic variety defined by the
polynomials F1, . . . , Fm. A remarkable theorem according to this question
is the Mordell conjecture, proved by Faltings in [Fal83]: Any smooth and
projective curve C of genus g ≥ 2 defined over a number field K has only
finitely many K-rational points. However, it is still an open problem to find
an effective bound for the heights of the K-rational points.

We can consider the analogous geometric situation. Let k be an alge-
braically closed field of characteristic zero and B′ a smooth and projective
curve of genus q ≥ 2 defined over k. Denote by k(B′) the function field
associated to B′. Let C ′ be a smooth, projective, geometrically irreducible,
nonconstant curve of genus g ≥ 2 defined over k(B′). The minimal fibering
V → B′ associated to C ′ is a complete algebraic surface. Hence, one has
an intersection theory on V , and the finiteness of the k(B′)-rational points
on C ′ follows from a suitable bound of the self-intersection number K2

V of
the canonical bundle KV of V , as in [Par68, Theorem 5]. Here, one can also
obtain an effective bound for the heights of the k(B′)-rational points.

Coming back to the arithmetic situation of a smooth, projective and
geometrically connected curve C of genus g ≥ 2 over a number field K, we
obtain an arithmetic surface p : C → B = Spec OK by stable reduction
theory, where OK denotes the ring of integers of K. But this does not seem
to be the counterpart of V → B′ since B is affine. In particular, it is not
complete. Hence, we have no moving lemma to define an intersection theory.
Thus, we should look for a model of C over a compactification of B, but
such a compactification does not exist in the category of schemes. Since the
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closed points of B correspond to the non-archimedean valuations of K, we
expect the missing points of B to correspond to the archimedean valuations
of K.

Instead of constructing a compactification of B, we enrich the data of any
vector bundle E over C by a structure corresponding to the archimedean
valuations of K. If P : B → C denotes a section of p and b ∈ |B| a non-
archimedean valuation of K, the completed stalk (P ∗E)b is a vector bundle
on the completion Spec OK,b, that means a vector space EKb over Kb, the
completion of K with respect to b, together with a OK,b-lattice Λ ⊆ EKb .
Any OK,b-lattice Λ ⊆ EKb defines a maximal compact subgroup in the b-
adic topology GLOK,b(Λ) = {g ∈ GL(EKb)|g(Λ) = Λ} ⊆ GL(EKb). This
correspondence defines a bijection between OK,b-lattices up to similarity in
EKb and maximal compact subgroups of GL(EKb) in the b-adic topology,
where two lattices Λ and Λ′ are similar if there exists a number c ∈ Kb \ {0}
such that cΛ = Λ′.

Now let v be any archimedean place of K. After a finite field extension,
we may assume that the completion of K with respect to v is C. Let EC be
the base change of P ∗E induced by an embedding OK → C corresponding to
v. The maximal compact subgroups of GL(EC) bijectively correspond to the
positive-definite hermitian forms up to multiples in C\{0}. Thence, we think
of a vector bundle on a “model of C over the compactification of Spec OK”
as a vector bundle E on C together with a smooth hermitian metric on Eσ,
for every embedding σ : OK → C, compatible with the complex conjugation,
where Eσ denotes the base change of E induced by σ. This motivates the
idea of Arakelov geometry.

Arakelov geometry

We review the main ideas of Arakelov geometry. The main references for
this section are [Ara74] and [Fal84]. Arakelov introduced in [Ara74] a new
kind of divisors, now called Arakelov divisors, and he defined an intersection
theory for them. An Arakelov divisor D can be written as a formal sum
D = Dfin +

∑
v∈S∞ rv · Fv, where Dfin denotes a classical divisor on C , the

sum runs over all archimedean valuations v of K, rv ∈ R is any real number
and Fv is a formal symbol standing for the “fibre above v”. For example, the
Arakelov divisor associated to a rational function f ∈ K(C) is given by

d̂iv(f) = div(f) +
∑

σ : K→C

(
−
∫
Cσ

log |f |σµ
)
Fσ,

2



where div(f) is the usual Weil divisor associated to f , the sum runs over
all embeddings σ : K → C, Cσ is the pullback of C induced by the em-
bedding σ : K → C, we write Fσ = Fv if σ : K → C corresponds to the
archimedean valuation v, and µ denotes the canonical Arakelov (1, 1)-form
given by i

2g

∑g
j=1 ψj ∧ ψj for a basis ψ1, . . . , ψg of H0(Cσ,Ω

1
Cσ

), which is or-

thonormal with respect to the inner product 〈ω, ω′〉 = i
2

∫
ω ∧ω′. We denote

by D̂iv(C) the group of Arakelov divisors on C and by

Ĉh(C) = D̂iv(C)/{d̂iv(f)|f ∈ K(C)}

the Arakelov–Chow group.
Alternatively, we can consider metrized line bundles on C , that means

line bundles L on C together with a hermitian metric on Lσ for every embed-
ding σ : K → C, compatible with complex conjugation. For a compact and
connected Riemann surface X of genus g ≥ 1 the Arakelov–Green function
G : X2 → R≥0 is the unique function satisfying ∂P∂P logG(P,Q) = πi(µ−δQ)
and

∫
X

logG(P,Q)µ(P ) = 0. For any section Q of p : C → B we get a canon-
ical metric on the line bundle OC (Q) by putting ‖1Q‖(P ) = G(P,Q) on the
line bundle OCσ(Q) on Cσ for every embedding σ, where 1Q ∈ H0(C ,OC (Q))
denotes the canonical constant section.

Let D = Dfin +
∑

v∈S∞ rv · Fv be any Arakelov divisor. We also obtain
a canonical metric on O(Dfin) by forcing that the metric is compatible with
tensor products of line bundles and equipping bundles of the form OC (Fb)
with the canonical metric, where b is a closed point of B and Fb is the fibre
of p over b. We associate to D the metrized line bundle O(D), where the
underlying line bundle is O(Dfin) and its metric over Cσ for any embedding
σ corresponding to an archimedean valuation v is e−rv times its canonical
metric. We call a metrized line bundle L admissible if there is an Arakelov
divisor D with L ∼= O(D) as metrized line bundles. We denote by P̂ic(C ) the
group of isomorphism classes of admissible metrized line bundles on C . We
have a canonical isomorphism Ĉh(C ) ∼= P̂ic(C ). A metrized line bundle is
admissible if and only if it holds ∂∂ log ‖sσ‖2

σ = 2πi deg(Lσ)µ on Lσ for every
embedding σ : K → C and for a local generating section sσ ∈ H0(Cσ, Lσ).

Arakelov defined in [Ara74] a bilinear and symmetric intersection pairing

on P̂ic(C ). For example, for two sections P,Q of p, which are different on
the generic fibre, the Arakelov intersection number is defined by

(P,Q) = (O(P ),O(Q)) =
∑
v∈|B|

(P |Cv , Q|Cv) logNv −
∑

σ : K→C

logGσ(P,Q),

where |B| is the set of closed points in B, (P |Cv , Q|Cv) denotes the usual
intersection number on the geometric fibre Cv of C over v, Nv denotes the
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cardinality of the residue field of OK at v and Gσ is the Arakelov–Green
function of Cσ.

Let ωC /B be the relative dualizing sheaf of p : C → B. There is a canonical
metric on (ωC /B)σ induced by ‖dz‖Ar(P ) = limQ→P |z(Q)− z(P )| /Gσ(P,Q),
where z : U → C is a local coordinate of a neighbourhood P ∈ U ⊆ Cσ. This
metric is admissible, see [Ara74]. We also have a canonical metric on the
line bundle det p∗ωC /B induced by the inner product 〈ω, ω′〉 = i

2

∫
ω ∧ ω′

on H0(Cσ,Ω
1
Cσ

). The Arakelov degree of a metrized line bundle L on B is
defined by

d̂egL =
∑
v∈|B|

ordv(s) logNv −
∑

σ : K→C

log ‖s‖σ,

where s ∈ H0(B,L) is a non-zero section of L and ordv(s) denotes the order
of vanishing of s at v.

After a finite field extension, we can assume that C has semi-stable re-
duction over K. Further, we denote by C the minimal regular model of C
over B. Then the arithmetic Noether formula, proved by Faltings [Fal84,
Theorem 6], states

12d̂eg det p∗ωC /B = (ωC /B, ωC /B) +
∑
v∈|B|

δv logNv +
∑

σ : K→C

δ′(Cσ), (1)

where δv denotes the number of singularities of the geometric fibre Cv of C
over v ∈ |B| and δ′ is a certain invariant of compact and connected Riemann
surfaces of positive genus. This invariant is the main object of study in this
thesis. However, we will consider the normalization δ(X) = δ′(X)+4g log 2π,
as originally introduced by Faltings, see [Mor89] for the comparison of these
normalizations.

The delta invariant

Next, we discuss some properties of the invariant δ. Faltings introduced the
invariant δ in [Fal84] by the following equation. Let X be any compact and
connected Riemann surface of genus g ≥ 1. Then δ(X) satisfies

‖θ‖(P1 + · · ·+ Pg −Q) = exp(−1
8
δ(X)) · ‖ det(ψj(Pk))‖Ar∏

j<kG(Pj, Pk)
·

g∏
j=1

G(Pj, Q),

(2)

where P1, . . . , Pg, Q ∈ X are pairwise different points, such that the line
bundle O(P1+· · ·+Pg−Q) has no global sections and ‖θ‖ : Picg−1(X)→ R≥0
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is the unique function satisfying (i) ∂∂ log ‖θ‖ = πi(ν−δΘ) for Θ ⊆ Picg−1(X)
the divisor consisting of line bundles of degree (g− 1) having global sections
and ν the canonical translation invariant (1, 1)-form with

∫
Picg−1(X)

νg = g!

and (ii)
∫

Picg−1(X)
‖θ‖2 νg

g!
= 2−g/2.

Since this formula is very implicit, it would be nice to have a more explicit
description for δ. For any complex elliptic curve E Faltings proved

δ(E) = − log ‖∆1‖(E)− 8 · log(2π),

where we set

‖∆1‖(E) = (Im τ)6 · exp(−2πIm τ) ·
∞∏
n=1

|1− exp(2πinτ)|24

for τ ∈ C satisfying Im τ > 0 and E ∼= C/(Z + τZ). A few years later,
Bost stated in [Bos87, Proposition 4] the following explicit formula for any
compact and connected Riemann surface X of genus g = 2

δ(X) = −4

∫
Pic1(X)

log ‖θ‖ν2
2
− 1

4
log ‖∆2‖(X)− 16 log 2π, (3)

where we define for any hyperelliptic Riemann surface X

‖∆g‖(X) = 2−4(g+1)( 2g
g−1) ·

∏
L∈Picg−1(X)

L⊗2∼=KX,‖θ‖(L)6=0

‖θ‖(L)8

with KX the canonical bundle on X. We will show that Bost’s formula can
be generalized to hyperelliptic Riemann surfaces of arbitrary genus.

Guàrdia [Guà99, Proposition 1.1] and de Jong [dJo08, Theorem 4.4] con-
structed derivative versions of the function ‖θ‖ to replace ‖ det(ψj(Pk))‖Ar

in (2). Since ‖θ‖ can explicitly be given by the Riemann theta function
associated to X, it remains to replace the Arakelov–Green function in (2).
This was also done by de Jong using Weierstraß points in [dJo05a, Theorem
4.4]. In particular, he found the following formula for hyperelliptic Riemann
surfaces

δ(X) = 4(g−1)
g2

∫
X

log ‖θ‖(gP −Q)µ(P )− 3g−1

2g( 2g
g−1)

log ‖∆g‖(X)− 8g log 2π,

(4)

see [dJo05b, Corollary 1.7]. We will prove an expression for δ(X) only in
terms of integrals of ‖θ‖ and one of its derivative versions.
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The arithmetic Noether formula predicts that δ(X) is the archimedean
counterpart of the number of singularities δv of a geometric fibre Cv. Hence,
one expects that limt→0 δ(Xt) becomes infinity for a smooth family of semi-
stable complex curves X → D over the unit disc D ⊆ C, where Xt is
a Riemann surface if and only if t 6= 0. Indeed, Jorgenson [Jor90] and
Wentworth [Wen91] proved that if X0 consists of two Riemann surfaces of
genus g1 and g2 meeting in one node, then δ(Xt) + 4g1g2

g
log |t| is bounded

on D and if X0 has only one non-separating node as a singular point, then
δ(Xt)+ 4g−1

3g
log |t|+6 log(− log |t|) is bounded on D. In particular, δ becomes

infinity on the boundary ofMg, the moduli space of compact and connected
Riemann surfaces of genus g, in its Deligne–Mumford compactification Mg.
A more general result on the degeneration of δ(Xt), where X0 is any semi-
stable complex curve, was recently proved by de Jong [dJo15].

It follows, that δ is bounded from below onMg, and it is natural to ask for
an effective lower bound. Van Känel deduced the lower bounds δ(X) ≥ −9
for X of genus g = 1, see [vKä14b, p. 92], and δ(X) ≥ −186 for X of
genus g = 2, see [vKä14a, Proposition 5.1], from the explicit formulas above.
Jorgenson and Kramer [JK09, JK14] also found effective lower and upper
bounds of δ(X) in terms of hyperbolic geometry and Javanpeykar [Jav14]
proved lower and upper bounds of δ(X) in terms of the Belyi degree of X.
However, these bounds are not bounded from below on Mg. In this thesis
we will prove, that we have in general δ(X) > −2g log 2π4.

As an arithmetic application, Parshin [Par90] proved, that if there are
absolute constant c1, c2 and c3, such that every curve C/K of genus g ≥ 2
satisfies

(ωC /B, ωC /B) ≤ c1

∑
v∈|B|

δv logNv +
∑

σ : K→C

δ(Cσ)

+ c2 logDK + c3[K : Q],

(5)

then one can deduce an effective version of the Mordell conjecture, and even
the abc-conjecture. Here, DK denotes the absolute value of the discriminant
of K/Q and the constants are allowed to depend on g. We will obtain such
an inequality for hyperelliptic curves.

Zhang proved in [Zha93, Theorem 5.6] that a suitable lower bound of
(ωC /B, ωC /B) leads to an effective Bogomolov conjecture. The Bogomolov
conjecture states, that any embedding of C(K) into Pic0(C)(K) is discrete
with respect to the Neron-Tate norm, where K denotes an algebraic closure of
K. It was non-effectively proved by Ullmo [Ull98] and Zhang [Zha98] in 1998.

By the arithmetic Noether formula, an explicit description of d̂eg det p∗ωC /B
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and δ(Cσ) give an explicit description of (ωC /B, ωC /B). We will deduce an
effective Bogomolov conjecture for hyperelliptic curves in this way.

There are two other invariants of Riemann surfaces motivated by Arakelov
theory. The Kawazumi–Zhang invariant ϕ, introduced independently in
[Kaw08] and [Zha10], appears by comparing the self-intersection numbers
(ωC /B, ωC /B) and (∆ξ,∆ξ), where ∆ξ denotes the canonical Gross–Schoen
cycle, see [Zha10]. It holds

2g+1
2g−2

(ωC /B, ωC /B) = (∆ξ,∆ξ) +
∑

σ : K→C

ϕ(Cσ) +
∑
v∈|B|

(
2g+1
2g−2

εv + ϕv

)
logNv,

where εv and ϕv are certain invariants of the weighted dual graph of the
geometric fibre Cv, see also [Zha10] for their definitions. The Hain–Reed
invariant βg, introduced in [HR04], appears as a quotient of two canonical
metrics on (det p∗ωC /B)⊗8g+4. De Jong [dJo13, Theorem 1.4] obtained the
relation

δ(X) = 3
2g+1

βg(X)− 2g−2
2g+1

ϕ(X)

for any compact and connected Riemann surface X of genus g ≥ 1.

Statement of results

In the following we summarize the results of this thesis.

Results on Riemann surfaces

Our main result, stated in the following theorem, gives a relation between
Faltings’ δ-invariant and the Kawazumi–Zhang invariant ϕ.

Theorem 1. Any compact and connected Riemann surface X of genus g ≥ 1
satisfies

δ(X) = −24

∫
Picg−1(X)

log ‖θ‖νg
g!

+ 2ϕ(X)− 8g log 2π.

Note, that ϕ(X) = 0 if g = 1. Next, we state some applications of the
theorem. The first application is an explicit lower bound for δ(X) depending
only on g.

Corollary 1. Any compact and connected Riemann surface X of genus g ≥ 1
satisfies δ(X) > −2g log 2π4.
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In the proof we apply the inequalities
∫

Picg−1(X)
log ‖θ‖νg

g!
< −g

4
log 2 and

ϕ(X) ≥ 0, where the former follows from Jensen’s formula.
As another application, we obtain a canonical extension of the invariants δ

and ϕ to indecomposable principally polarised complex abelian varieties. De
Jong introduced in [dJo10] the function η = t(θj)(θjk)

c(θj) on Cg, where (θj)
is the vector of the first partial derivations of a theta function θ associated
to a principally polarised complex abelian variety and (θjk) is the matrix of
its second partial derivations. In [dJo08] he also defined a real valued version
‖η‖ on Θ, the zero divisor of θ, see also Section 1.1. We will deduce the
following theorem from Theorem 1 and from a formula for δ(X) by de Jong
[dJo08, Theorem 4.4].

Theorem 2. For any compact and connected Riemann surface X of genus
g ≥ 2, the invariant δ(X) satisfies

δ(X) = 2(g − 7)

∫
Picg−1(X)

log ‖θ‖νg
g!
− 2

∫
Θ

log ‖η‖νg−1

g!
− 4g log 2π.

Moreover, the invariant ϕ(X) satisfies

ϕ(X) = (g + 5)

∫
Picg−1(X)

log ‖θ‖νg
g!
−
∫

Θ

log ‖η‖νg−1

g!
+ 2g log 2π.

Here, Θ ⊆ Picg−1(X) is the canonical divisor consisting of line bundles of
degree g − 1 having global sections. Also, we deduce an explicit formula for
the Arakelov–Green function. For this purpose, we calculate the invariant
A(X) in Bost’s formula for the Arakelov–Green function, see [Bos87].

Theorem 3. For any compact and connected Riemann surface X of genus
g ≥ 2 it holds

logG(P,Q) =

∫
Θ+P−Q

log ‖θ‖νg−1

g!
+ 1

2g
ϕ(X)−

∫
Picg−1(X)

log ‖θ‖νg
g!
.

As a consequence of the theorem, we obtain the following upper bound
for the Arakelov–Green function.

Corollary 2. Let X be any compact and connected Riemann surface of genus
g ≥ 2. The Arakelov–Green function is bounded by δ(X) in the following way:

sup
P,Q∈X

logG(P,Q) <

{
1
4g
δ(X) + 3g3 log 2 if g ≤ 5,

2g+1
48g

δ(X) + 2g3 log 2 if g > 5.
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Upper bounds for the Arakelov–Green function were already obtained by
Merkl [EC11, Theorem 10.1] and Jorgenson–Kramer [JK06] by very different
methods. But our bound seems to be more explicit and more natural in the
sense of Arakelov theory. If X is the modular curve X1(N), one can apply
this bound to compute the complexity of an algorithm by Edixhoven for
the computation of Galois representations associated to modular forms, see
[EC11]. Indeed, δ(X1(N)) can be bounded polynomial in N , see for example
[JK09, Remark 5.8] if X1(N) has genus g ≥ 2, or [Jav14, Corollary 1.5.1] in
general.

Results on curves over number fields

To describe further applications of Theorem 1, let C be again a smooth,
projective and geometrically connected curve of genus g ≥ 2 defined over a
number field K and C its minimal regular model over B = Spec OK . We
may assume that C is semi-stable. We set d = [K : Q]. The stable Faltings

height is defined by hF (C) = 1
d
d̂eg det p∗ωC /B. For any geometric point P of

C we denote by h(P ) the stable Arakelov height and by hNT (P ) the Néron-
Tate height; see Section 6.1 for the definitions of these heights. Let W be
the divisor of Weierstraß points of C. We will apply our lower bound of δ
and an estimate of theta functions to a formula by de Jong [dJo09, Theorem
4.3] for the heights of the Weierstraß points of C. This yields the following
bound.

Proposition 1. The heights of the Weierstraß points of C are bounded by

max
P∈W

h(P ) ≤
∑
P∈W

h(P ) < (6g2 + 4g + 2)hF (C) + 12g4 · log 2.

In the summation over W the Weierstraß points are counted with their mul-
tiplicity in W .

De Jong obtained in [dJo04, Proposition 2.6.1], see also [EC11, Theorem
9.2.5], an estimate for the Arakelov intersection number of a torsion line
bundle and an arbitrary geometric point on C. In the following situation,
we can apply the bound in the above proposition and the bound of the
Arakelov–Green function to make de Jong’s estimate more explicit.

Proposition 2. Let W1, . . . ,Wg be arbitrary and not necessary different
Weierstraß points on C and write D for the effective divisor

∑g
j=1 Wj. Fur-

ther, let L be any line bundle on C of degree 0, that is represented by a
torsion point in Pic0(C) and that satisfies dimH0(L(D)) = 1. Write D′ for
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the unique effective divisor on C, such that L ∼= OC(D′−D). Let P ∈ C(K)
be any geometric point of C. We may assume that P,D,D′ and L are defined
over K. It holds

1
d
(D′ −D,P ) < 13g4 · hF (C) + 28g6 · log 2.

Our next application is motivated by Szpiro’s small points conjecture
[Szp85a]. This conjecture was proven by Javanpeykar and von Känel for
cyclic covers of prime degree, see [JvK14]. Let S be the set of finite places
of K, where C has bad reduction. We write NS =

∏
v∈S Nv and DK for the

absolute value of the discriminant of K over Q. In the case g = 2, it is proven
in [JvK14] that there are infinitely many geometric points P of C such that

max(hNT (P ), h(P )) ≤ ν2dν(NSDK)ν , ν = 105d.

To prove this result, they first showed that if C is a cyclic cover of prime
degree, then it has infinitely many geometric points P satisfying

max(hNT (P ), h(P )) ≤ ν8gdν(NSDK)ν − 1
d

∑
σ : K→C

δ(Cσ), ν = d(5g)5. (6)

Then they applied for g = 2 the lower bound δ(Cσ) ≥ −186. On combining
our Corollary 1 with (6) we deduce the following generalization.

Corollary 3. Suppose that C is is a cyclic cover of prime degree. Then C
has infinitely many geometric points P , which satisfy

max(hNT (P ), h(P )) < ν8gdν(NSDK)ν .

This improves the explicit bound in [JvK14], which depends exponentially
on NS and DK .

Results on hyperelliptic curves over number fields

Next, we state lower and upper bounds of the Arakelov self-intersection num-
ber (ωC /B, ωC /B) for hyperelliptic curves. For general curves Faltings already
proved in [Fal84, Theorem 5] that (ωC /B, ωC /B) ≥ 0. Furthermore, Zhang
[Zha92, Zha93] proved its strict positivity if C has bad reduction at least at
one finite place of K, and Moriwaki [Mor96, Mor97] gave an effective lower
bound in this case. In general, Ullmo proved its strict positivity in [Ull98].

From now on, we assume C to be hyperelliptic. Our proof allows us to
deduce the following formula for δ

δ(Cσ) = −2(g−1)
2g+1

ϕ(Cσ)− 3g
(2g+1)

(
2g
g−1

)−1
log ‖∆g‖(Cσ)− 8g log 2π. (7)
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This formula was already proved by de Jong [dJo13, Corollary 1.8] in a
different way. Combining this formula with results by Kausz [Kau99] and
Yamaki [Yam04], we can give an explicit description of (ωC /B, ωC /B) in terms
of ϕ(Cσ) and the geometry of the reduction of C at the finite places of K.
In particular, we deduce the following bounds for (ωC /B, ωC /B).

Corollary 4. Let C be any hyperelliptic curve as above. The Arakelov self-
intersection number (ωC /B, ωC /B) is bounded in the following way:

(ωC /B, ωC /B) ≥ g−1
2g+1

∑
v∈|B|

δv logNv + 2
∑

σ : K→C

ϕ(Cσ)


and

(ωC /B, ωC /B) ≤ g−1
2g+1

(3g + 1)
∑
v∈|B|

δv logNv + 2
∑

σ : K→C

ϕ(Cσ)

 .

Yamaki [Yam08, Corollary 4.2] proved an effective Bogomolov conjecture
for hyperelliptic curves over function fields using an explicit expression for the
self-intersection number of the canonical bundle. For hyperelliptic curves over
number fields one can adopt this proof starting with our explicit expression
for (ωC /B, ωC /B). Precisely, we obtain the following corollary.

Corollary 5. Let C be any hyperelliptic curve as above and z any geometric
point of Pic0(C). There are only finitely many geometric points P ∈ C(K)
satisfying

hNT (((2g−2)P −KC)− z) ≤ (g−1)2

2g+1

2g−5
12gd

∑
v∈|B|

δv logNv + 1
d

∑
σ : K→C

ϕ(Cσ)

 ,

where KC denotes the canonical bundle on C.

We can deduce from Corollary 4 the upper bound

(ωC /B, ωC /B) < g−1
2g+1

(3g + 1)
∑
v∈|B|

δv logNv +
∑
σ

δ(Cσ) + 2gd log 2π4

 ,

which is of the form (5) suggested by Parshin. This improves similar, but
less explicit bounds by Kausz [Kau99, Corollary 7.8] and Maugeais [Mau03,
Corollaire 2.11]. Nevertheless, this does not suffice to deduce any arithmetic
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consequences by the same methods as in [Par90] since we assume C to be
hyperelliptic.

The method of proof of Theorem 1 allows us moreover to establish the fol-
lowing generalization of Rosenhain’s formula on θ-derivatives. We denote by
‖J‖ the derivative version of ‖θ‖ introduced by Guàrdia [Guà99, Definition
2.1].

Theorem 4. Let X be any hyperelliptic Riemann surface of genus g ≥ 2 and
denote by W1, . . . ,W2g+2 the Weierstraß points of X. For any permutation
τ ∈ Sym(2g + 2) it holds

‖J‖(Wτ(1), . . . ,Wτ(g)) = πg
2g+2∏
j=g+1

‖θ‖(Wτ(1) + · · ·+Wτ(g) −Wτ(j)).

This gives an absolute value answer to a conjecture by Guàrdia [Guà02,
Conjecture 14.1].

Main ideas of the proof

We describe the principal ideas of the proof of Theorem 1. The case g = 1
follows from Faltings’ computations for elliptic curves in [Fal84, Section 7].
Hence, we can assume g ≥ 2.

Reduction to hyperelliptic Riemann surfaces

Consider

f(X) = δ(X) + 24

∫
Picg−1(X)

log ‖θ‖vg
g!
− 2ϕ(X) (8)

as a real-valued function onMg, the moduli space of compact and connected
Riemann surfaces of genus g. Theorem 1 asserts that we constantly have
f(X) ≡ −8g log 2π. We will reduce to prove Theorem 1 for hyperelliptic
Riemann surfaces by showing that f(X) is harmonic. Since there are no
non-constant harmonic functions on Mg, it follows that f(X) is constant.
Since for any g ≥ 2 there exists at least one hyperelliptic Riemann surface of
genus g, it is then enough to compute f(X) if X is hyperelliptic.

To prove that f(X) is harmonic on Mg, we apply the Laplace operator
∂∂ on Mg to the terms in (8). For ϕ(X) and δ(X) we have an expression
for the resulting forms in terms of the canonical forms eA1 ,

∫
π2
h3 and ωHdg

(see Section 4.1) on Mg by de Jong [dJo14b]. To calculate the application
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of ∂∂ to the integral in (8), we apply the Laplace operator on the universal
abelian variety with level 2 structure to log ‖θ‖ and we pull back the integral
to the (g+1)-th power of the universal Riemann surface with level 2 structure
Xg →Mg[2]. The pullback can be expressed in terms of Deligne pairings by
a result due to de Jong [dJo14b, Proposition 6.3]. The main difficulty is to
express the first Chern form of the (g + 1)-th power in the sense of Deligne
pairings of the line bundle

g⊗
j=1

pr∗jTXg/Mg [2] ⊗
g⊗
j=1

pr∗j,g+1O(∆)∨ ⊗
g⊗
j<k

pr∗j,kO(∆)

on X g+1
g in terms of the forms eA1 ,

∫
π2
h3 and eA. Here, TXg/Mg [2] denotes the

relative tangent bundle, ∆ ⊆ X 2
g is the diagonal and prj and prj,k denote

the projections to the respective factors of X g+1
g . We solve this problem by

associating graphs to the terms in the expansion of the power, which we can
classify and count.

The hyperelliptic case

To prove Theorem 1 for any hyperelliptic Riemann surface X of genus g ≥ 2,
we generalize Bost’s formula (3) to hyperelliptic Riemann surfaces of genus
g ≥ 2. The generalized formula states

δ(X) = −8(g−1)
g

∫
Picg−1(X)

log ‖θ‖νg
g!
−
(

2g
g−1

)−1
log ‖∆g‖(X)− 8g log 2π. (9)

We will see later in Section 4.4 that we can canonically define the invariant
‖∆g‖(X) also for non-hyperelliptic Riemann surfaces, but formula (9) will
not be true for general Riemann surfaces. The main ingredient of the proof
of formula (9) is the following formula∫

Picg−1(X)

log ‖θ‖g−1 νg

g!
=

∫
Xg

log ‖θ‖(P1+···+Pg−Q)g

‖θ‖(gP1−Q)
µ(P1) . . . µ(Pg). (10)

The proof of (10) consists essentially of two steps. The first step is to de-
compose the function log ‖θ‖ into a sum of Arakelov–Green functions and an
additional invariant. This step generalizes the decomposition in [BMM90,
A.1.] for g = 2 to arbitrary hyperelliptic Riemann surfaces. In the second
step, we use the decomposition of the first step to compare the pullbacks of
the integral of log ‖θ‖ on Picg−1(X) under the maps

Φ: Xg → Picg−1(X), (P1, . . . , Pg) 7→ (P1 + · · ·+ Pg −Q),

Ψ: Xg → Picg−1(X), (P1, . . . , Pg) 7→ (2P1 + P2 + · · ·+ Pg−1 − Pg).
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In this step we also obtain a connection of the integrals of log ‖θ‖ to the
invariant ϕ(X).

To connect formula (10) with Faltings’ δ-invariant, we compare two in-
variants obtained by the function ‖J‖: The iterated integral over Xg of its
logarithm and the product of its values in Weierstraß points. Then we apply
Guàrdia’s expression for δ(X) in [Guà99, Proposition 1.1] to connect the first
invariant with (10) and δ(X). De Jong proved in [dJo07, Theorem 9.1] that
the second invariant is essentially ‖∆g‖(X). This together with de Jong’s
formula (4) leads to formula (9) and also to the formula in Theorem 1 by the
connection of the integrals of log ‖θ‖ to ϕ(X).

We remark, that there is an alternative way to compute the constant
f(X): Consider a family of Riemann surfaces Xt of genus g ≥ 2 degenerating
to a singular complex curve X0 consisting of two Riemann surfaces X1 and
X2 of genus g − 1 respectively 1 meeting in one point. For this family the
integral in (8) degenerates nicely and the asymptotic behaviour of δ(Xt)
and ϕ(Xt) were studied by Wentworth [Wen91] and de Jong [dJo14a]. Using
their results, one can deduce that f(Xt) degenerates to f(X1)+f(X2) in this
family. Hence, one obtains f(X) = −8g log 2π by induction. However, the
methods of our proof for hyperelliptic Riemann surfaces are of independent
interest. For example, they also prove formulas (7) and (9) and Theorem 4.

Overview

In the following, we explain the structure of this thesis. In the first Chapter
we define all required invariants of abelian varieties and Riemann surfaces.
In Chapter 2 we study certain integrals of log ‖θ‖ and of the Arakelov–Green
function. The third chapter deals with the proof of Theorem 1 for hyper-
elliptic Riemann surfaces. First, we introduce our decomposition of log ‖θ‖
in Section 3.1, and we proof equation (10) in Section 3.2. In the subsequent
section we obtain Theorem 1 for hyperelliptic Riemann surfaces, and we give
some consequences and examples. In Section 3.4 we apply our decomposition
of log ‖θ‖ to prove Theorem 4.

In Chapter 4 we prove Theorem 1 in general. For this purpose, we discuss
the forms obtained by applying the Laplace operator ∂∂ on Mg to ϕ(X),
δ(X) and H(X) in Section 4.1. To compare the latter one with the former
ones, we introduce the Deligne pairing in Section 4.2, and we calculate the
expansion of the power in the sense of Deligne pairings of a certain line
bundle using graphs in Section 4.3. In Section 4.4 we conclude our main
result Theorem 1, and we deduce Corollary 1. After we bound the function
‖θ‖ in Section 4.5, we study the Arakelov–Green function in Section 4.6,
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where we obtain Theorem 3 and Corollary 2.
In Chapter 5 we consider indecomposable principally polarised complex

abelian varieties. We prove Theorem 2 in Section 5.1. This yields a canonical
extension of δ and ϕ to indecomposable principally polarised complex abelian
varieties. We discuss some of their asymptotic behaviours in Section 5.2. In
the last chapter we apply our results to the arithmetic situation of Arakelov
theory. In particular, we prove Propositions 1 and 2 and Corollary 3 in
Section 6.1 and Corollaries 4 and 5 in Section 6.2.
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Chapter 1

Invariants

We give the definitions of the invariants appearing in the following chapters
and we state some of their properties and relations.

1.1 Invariants of abelian varieties

In this section we define some invariants of abelian varieties. Let (A,Θ) be
any principally polarised complex abelian variety of dimension g ≥ 1, where
Θ ⊆ A denotes a divisor, such that O(Θ) is an ample and symmetric line
bundle. The principal polarisation of (A,Θ) determines the divisor class of
Θ only up to a translation by a 2-torsion point. There exists a complex and
symmetric g × g matrix Ω with positive definite imaginary part Y = Im Ω,
such that A = Cg/(Zg + ΩZg) and Θ is the zero divisor of the function

θ : Cg → C, z 7→ θ(z) = θ(Ω; z) =
∑
n∈Zg

exp(πitnΩn+ 2πitnz),

see for example [BL04, Chapter 8].
Since we have θ(z+m+nΩ) = exp(−πitnΩn−2πitnz)θ(z) for m,n ∈ Zg,

we obtain a well-defined, real-valued function ‖θ‖ : A→ R≥0 by

‖θ‖(z) = ‖θ‖(Ω; z) = det(Y )1/4 exp(−πt(Im z)Y −1(Im z)) · |θ|(z).

We associate to (A,Θ) the canonical (1, 1)-form

ν = ν(A,Θ) = i
2

g∑
j,k=1

(Y −1)jkdZj ∧ dZk,

where Z1, . . . , Zg are coordinates in Cg. This form is translation-invariant.
The function ‖θ‖ could also be defined as the unique function ‖θ‖ : A→ R≥0

satisfying:
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(θ1) The zero divisor of ‖θ‖ is Θ.

(θ2) For z /∈ Θ its curvature is given by ∂∂̄ log ‖θ‖(z)2 = 2πiν.

(θ3) The function is normed by 1
g!

∫
A
‖θ‖2νg = 2−g/2.

For a calculation of the third property see [BL04, Proposition 8.5.6]. In
particular, the function ‖θ‖ depends on the choice of Θ for a principally
polarised complex abelian variety. Further, we define the following invariant

H(A,Θ) = 1
g!

∫
A

log ‖θ‖νg.

If (A,Θ) is the Jacobian variety of a Riemann surface X of genus g = 2,
this definition coincides with the definition of log ‖H‖(X) in [Bos87]. The
invariant H(A,Θ) is bounded from above.

Proposition 1.1.1. Any principally polarised complex abelian variety (A,Θ)
of dimension g ≥ 1 satisfies H(A,Θ) < −g

4
log 2.

Proof. Since
∫
A
νg = g!, Jensen’s inequality and (θ3) give

2H(A,Θ) = 1
g!

∫
A

log ‖θ‖2νg < log

(
1
g!

∫
A

‖θ‖2νg
)

= −g
2

log 2.

We obtain another function η : Cg → C by considering certain partial
derivations of θ:

η(z) = det


∂2θ

∂Z1∂Z1
(z) . . . ∂2θ

∂Z1∂Zg
(z) ∂θ

∂Z1
(z)

...
. . .

...
...

∂2θ
∂Zg∂Z1

(z) . . . ∂2θ
∂Zg∂Zg

(z) ∂θ
∂Zg

(z)
∂θ
∂Z1

(z) . . . ∂θ
∂Zg

(z) 0

 ,

see also [dJo10]. Further, we get a real-valued variant ‖η‖ : Θ→ R≥0 by

‖η‖(z) = det(Y )(g+5)/4 exp(−π(g + 1)t(Im z)Y −1(Im z)) · |η|(z),

see also [dJo08]. The function η is identically zero on Θ if and only if (A,Θ)
is decomposable, see [dJo10, Corollary 3.2]. We set

Λ(A,Θ) = 1
g!

∫
Θ

log ‖η‖νg−1

if (A,Θ) is indecomposable.
By definition, the invariants H(A,Θ) and Λ(A,Θ) are invariant under

translation by 2-torsion points of the divisor Θ. Hence, we can indeed con-
sider them as invariants of (indecomposable) principally polarised complex
abelian varieties.
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1.2 Invariants of Riemann surfaces

In this section we define some invariants of Riemann surfaces. Let X be
a compact and connected Riemann surface of genus g ≥ 1. We choose a
symplectic basis of homology Ai, Bi ∈ H1(X,Z), that means we have the
intersection pairings (Ai.Aj) = (Bi.Bj) = 0 and (Ai.Bj) = δij for all i, j,
where δij denotes the Kronecker symbol. Further, we choose a basis of one
forms ω1, . . . , ωg ∈ H0(X,Ω1

X), such that
∫
Aj
ωi = δij. We associate to X

its period matrix Ω = ΩX , which is given by Ωij =
∫
Bi
ωj. It is symmet-

ric and has positive definite imaginary part denoted by Y = Im Ω. The
Jacobian of X, denoted by Jac(X), is the principally polarised abelian va-
riety associated to Ω. In the following, we shortly write ν = νJac(X). For
a fixed base point Q ∈ X the Abel–Jacobi map is given by the embedding
I : X → Jac(X), P 7→ (

∫ P
Q
ω1, . . . ,

∫ P
Q
ωg). We define the canonical (1, 1)

form µ on X by µ = 1
g
I∗ν, which has volume

∫
X
µ = 1. Further, we denote

the canonical bundle on X by KX .
There is a unique theta characteristic αX , that is 2αX = KX , which gives

an isomorphism

Picg−1(X)
∼−→ Jac(X), L 7→ (L − αX), (1.2.1)

such that ‖θ‖(Ω;L − αX) = 0 if and only if H0(X,L) 6= 0, see for example
[Mum83, Corollary II.3.6]. We simply write ‖θ‖(D) = ‖θ‖(O(D) − αX) for
a divisor D of degree g − 1. It follows, that ‖θ‖(D) = 0 if and only if D is
linearly equivalent to an effective divisor. We denote Θ ⊆ Picg−1(X) for the
divisor in Picg−1(X) defined by the zeros of ‖θ‖. Equivalently, Θ is given
by the line bundles of degree g − 1 having global sections. For any effective
divisor D of degree g−1 we also write ‖η‖(D) = ‖η‖(O(D)−αX). Since the
divisor Θ ⊆ Picg−1(X) is canonical, the functions ‖θ‖ and ‖η‖ on Picg−1(X)
do not depend on the choice of the period matrix Ω.

We set H(X) = H(Jac(X)) and Λ(X) = Λ(Jac(X)). Another invari-
ant S(X) of X was defined by de Jong in [dJo05a, Section 2]. It satisfies
logS(X) = −

∫
X

log ‖θ‖(gP − Q)µ(P ). We generalize this to a family of
invariants given by

Sk(X) =

∫
Xk

log ‖θ‖((g − k + 1)P1 + P2 + · · ·+ Pk −Q)µ(P1) . . . µ(Pk)

for every 1 ≤ k ≤ g, where k stands for the dimension of the integral. In
particular, we have S1(X) = − logS(X). We will prove a relation between
H(X), S1(X) and Sg(X) for hyperelliptic Riemann surfaces in Section 3.2.
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Another way to build an invariant from the function θ is to consider the
integral of certain derivatives. For this purpose, we define as in [Guà99,
Definition 2.1]

‖J‖(P1, . . . , Pg) = det(Y )(g+2)/4 exp

(
−π

g∑
k=1

tykY
−1yk

)∣∣∣det
(
∂θ
∂Zl

(wk)
)∣∣∣ ,

where P1, . . . , Pg denote arbitrary points of X, wk ∈ Cg is a lift of the divisor
class (P1 + · · ·+Pg −Pk−αX) ∈ Jac(X) and yk is the imaginary part of wk.
To get an invariant we set

B(X) =

∫
Xg

log ‖J‖(P1, . . . , Pg)µ(P1) . . . µ(Pg).

For hyperelliptic Riemann surfaces we will give a relation between B(X) and
Sg(X) in Section 3.1.

We define the Arakelov–Green function G : X2 → R≥0 as the unique
function satisfying the following conditions:

(G1) We have G(P,Q) > 0 for P 6= Q. For a fixed Q ∈ X, G(P,Q) has a
simple zero in P = Q.

(G2) For P 6= Q the curvature with respect to the first coordinate is given
by ∂P ∂̄P logG(P,Q)2 = 2πiµ(P ).

(G3) It is normalized by
∫
X

logG(P,Q)µ(P ) = 0.

One can check that G(P,Q) = G(Q,P ). For shorter notation we write
g(P,Q) = logG(P,Q). Bost has shown in [Bos87, Proposition 1], that there
is an invariant A(X), such that

g(P,Q) = 1
g!

∫
Θ+P−Q

log ‖θ‖νg−1 + A(X). (1.2.2)

We will give an explicit expression for the invariant A(X) in Section 4.6. An-
other natural invariant defined by the Arakelov–Green function is its supre-
mum supP,Q∈X g(P,Q). We will bound it by more explicit invariants also in
Section 4.6.

Next, we recall the definition of Faltings’ δ invariant in [Fal84, p. 402].
Let ψ1, . . . , ψg be another basis of H0(X,Ω1

X), which is orthonormal with
respect to the inner product

〈ψ, ψ′〉 = i
2

∫
X

ψ ∧ ψ′. (1.2.3)
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Then the defining equation for δ(X) is

‖θ‖(P1 + · · ·+ Pg −Q) = exp
(
−1

8
δ(X)

)
· ‖ det(ψj(Pk))‖Ar∏

j<kG(Pj, Pk)
·

g∏
j=1

G(Pj, Q),

where P1, . . . , Pg, Q are pairwise different points, such that the class of the
divisor (P1 + · · · + Pg − Q) lies not in Θ and the Arakelov norm ‖ · ‖Ar of
holomorphic one forms is induced by

‖dz‖Ar(P ) = lim
Q→P

|z(Q)− z(P )|
G(P,Q)

,

where z : U → C is a local coordinate of a neighbourhood P ∈ U ⊆ X. This
invariant plays an important role in Arakelov theory. For example, it is up
to a constant the δ in the arithmetic Noether formula for the archimedean
places. In Section 4.4 we will obtain a new expression and a lower bound
only in terms of g for δ(X).

In [Guà99, Proposition 1.1] Guàrdia gave the following expression

‖θ‖(P1 + · · ·+ Pg −Q)g−1 = exp
(

1
8
δ(X)

) ‖J‖(P1, . . . , Pg)∏
j<kG(Pj, Pk)

g∏
j=1

G(Pj, Q)g−1.

(1.2.4)

Taking logarithm and integrating with µ(P1) . . . µ(Pg) gives

δ(X) = 8(g − 1)Sg(X)− 8B(X). (1.2.5)

We state another formula for δ(X) by de Jong. For this purpose, let Θsm

be the smooth part of Θ ⊆ Picg−1(X). Every divisor D ∈ Θsm has a unique
representation D = P1 + · · · + Pg−1 for some points P1, . . . , Pg−1 on X. By
Riemann–Roch, the involution

σ : Picg−1(X)→ Picg−1(X), D → KX −D

induces an involution on Θsm. For effective divisors D = P1 + · · · + Pr and
E = Q1 + · · ·+Qs we define the Arakelov–Green function by

G(D,E) =
r∏
j=1

s∏
k=1

G(Pj, Qk).

For any D ∈ Θsm and any different points Q,R ∈ X, such that Q (respec-
tively R) is not contained in the unique expression of D (respectively σ(D))
as sum of g − 1 points, we have by [dJo08, Theorem 4.4]

‖η‖(D) = exp
(
−1

4
δ(X)

)
G(D, σ(D))

(
‖θ‖(D +R−Q)

G(R,Q)G(D,Q)G(σ(D), R)

)g−1

.
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Write D = P1 + · · · + Pg−1. If we take the product of the g − 1 equations
obtained by putting R = Pj for each j ≤ g− 1 in the above equation, we get

‖η‖(P1 + · · ·+ Pg−1) = exp
(
−1

4
δ(X)

) g−1∏
j=1

‖θ‖(P1 + · · ·+ Pg−1 + Pj −Q)

G(Pj, Q)g
.

(1.2.6)

Next, we define the Kawazumi–Zhang invariant ϕ(X), which was intro-
duced and studied independently in [Kaw08] and [Zha10]. For this purpose,
we consider the diagonal divisor ∆ ⊆ X2. We have a canonical hermitian
metric on OX2(∆) by ‖1‖(P1, P2) = G(P1, P2), where 1 is the canonical sec-
tion of OX2(∆). We denote by h∆ the curvature form of OX2(∆). It can be
given explicitly by

h∆(P1, P2) = µ(P1) + µ(P2)− i
2

g∑
k=1

(
ψk(P1) ∧ ψ̄k(P2) + ψk(P2) ∧ ψ̄k(P1)

)
,

(1.2.7)

see [Ara74, Proposition 3.1]). We define ϕ(X) by

ϕ(X) =

∫
X2

g(P1, P2)h2
∆(P1, P2), (1.2.8)

see [Zha10, Proposition 2.5.3]. It is not difficult to prove ϕ(X) = 0 for g = 1
and that we have the lower bound

ϕ(X) > 0 (1.2.9)

for g ≥ 2, see [Kaw08, Corollary 1.2] or [dJo14b, Proposition 4.2].

1.3 Invariants of hyperelliptic Riemann sur-

faces

We consider the more special case of hyperelliptic Riemann surfaces. Let X
be any hyperelliptic Riemann surface of genus g ≥ 2. That means, there are
pairwise different complex numbers a1, . . . , a2g+1 ∈ C, such that X is given
by the equation

y2 = (x− a1) · (x− a2) · . . . · (x− a2g+1)(=: f(x)) (1.3.1)

and the unique point at infinity, denoted by ∞ ∈ X. There is a canonical
involution induced by y 7→ −y, which we denote by σ : X → X. The fixed
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points of σ are the Weierstraß points of X. They bijectively correspond to
the points x = a1, . . . , x = a2g+1 and the point ∞. We denote them by
W1, . . . ,W2g+2, where W2g+2 = ∞. For the symplectic basis of homology
A1, . . . , Ag, B1, . . . , Bg we choose the canonical one, see [Mum84, Chapter
IIIa, §5].

For hyperelliptic Riemann surfaces we define the Petersson norm of the

modular discriminant ‖ϕg‖(X). For every η =
[
η′

η′′

]
with η′, η′′ ∈ 1

2
Zg we set

θ[η](z) = exp
(
πi

t
η′Ωη′ + 2πi

t
η′(η′′ + z)

)
θ (Ωη′ + η′′ + z) .

Further, as in [Mum84, Chapter IIIa, Definition 5.7] we define

η2k−1 =

[
t
(0, . . . , 0, 1

2
, 0, . . . , 0)

t
(1

2
, . . . , 1

2
, 0, 0, . . . , 0)

]
for 1 ≤ k ≤ g + 1,

η2k =

[
t
(0, . . . , 0, 1

2
, 0, . . . , 0)

t
(1

2
, . . . , 1

2
, 1

2
, 0, . . . , 0)

]
for 1 ≤ k ≤ g,

where the non-zero entry in the top row occurs in the k-th position. For a
subset S ⊆ {1, . . . , 2g + 1} we set ηS =

∑
k∈S ηk(mod 1). We denote by T

the collection of all subsets of {1, . . . , 2g + 1} of cardinality g + 1. Further,
we set U = {1, 3, . . . , 2g + 1} and we write ◦ for the symmetric difference.

We define the Petersson norm of the modular discriminant of X by

‖ϕg‖(X) = (detY )2(2g+1
g+1 )

∏
T∈T

|θ[ηT◦U ](0)|8 .

Further, we denote a modified version by

‖∆g‖(X) = 2−4(g+1)( 2g
g−1)‖ϕg‖(X).

For a discussion on the relation between ‖ϕg‖(X) and the discriminant of
the polynomial f in (1.3.1) we refer to Lockhart [Loc94].

As a direct consequence of the correspondence in [Mum84, IIIa Proposi-
tion 6.2] we obtain the following identity

‖ϕg‖(X) =
∏

{j1,...,jg+1}∈T

‖θ‖(Wj1 + · · ·+Wjg −Wjg+1)
8. (1.3.2)

Since we can choose every Weierstraß point to be the point at infinity and
the invariant ‖ϕg‖(X) does not depend on this choice, we get by taking the
product over all these choices

‖ϕg‖(X) =
∏

{j1,...,jg+1}∈Ug+1

‖θ‖(Wj1 + · · ·+Wjg −Wjg+1)
4, (1.3.3)
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where we denote by Uk the collection of all subsets of {1, . . . , 2g + 2} of
cardinality k. Due to de Jong we have the relations

δ(X) = 4(g−1)
g2

S1(X)− 3g−1
2g

(
2g
g−1

)−1
log ‖∆g‖(X)− 8g log 2π, (1.3.4)

see [dJo05b, Corollary 1.7], and∏
{j1,...,jg}∈Ug

‖J‖(Wj1 , . . . ,Wjg) = π(2g+2
g )g · ‖ϕg‖(X)(g+1)/4, (1.3.5)

see [dJo07, Theorem 9.1].
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Chapter 2

Integrals

We give some relations between different integrals of the function log ‖θ‖ and
the Arakelov-Green function. Let X be any compact and connected Riemann
surface of genus g ≥ 2 throughout this chapter.

2.1 Integrals of theta functions

In this section we establish two ways to write the invariant H(X) as an
integral over Xg. For a fixed base point Q ∈ X we define the maps

Φ: Xg → Picg−1(X), (P1, . . . , Pg) 7→ (P1 + · · ·+ Pg −Q),

Ψ: Xg → Picg−1(X), (P1, . . . , Pg) 7→ (2P1 + P2 + · · ·+ Pg−1 − Pg).

Proposition 2.1.1. The maps Φ and Ψ are smooth and surjective. More-
over, Φ is generically of degree g!, Ψ is generically of degree 4g!, and the
pullbacks of the volume form νg satisfy Ψ∗νg = 4Φ∗νg.

Proof. The maps are defined as linear combinations of the Abel–Jacobi map.
Hence, they are smooth. Jacobi’s inversion theorem gives the surjectivity of
Φ, see for example [FK80, III.6]. If we have divisors P1 + · · · + Pg − Q and
R1 + · · ·+Rg −Q representing the same class in Picg−1(X) \Θ, then

‖θ‖(P1 + · · ·+ Pg −Q) = ‖θ‖(R1 + · · ·+Rg −Q)

has zeros in P1, . . . , Pg, R1, . . . , Rg as a function in Q. But it has exactly g
zeros counted with multiplicities, see for example [Mum83, Theorem II.3.1].
Hence, the g-tuples (P1, . . . , Pg) and (R1, . . . , Rg) coincide up to order. Thus,
Φ is generically of degree g!.
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For the pullbacks of dZk we get

Φ∗(dZk) =

g∑
j=1

ωk(Pj) and Ψ∗(dZk) = 2ωk(P1)− ωk(Pg) +

g−1∑
j=2

ωk(Pj).

Therefore, Φ∗νg is a linear combination of terms of the form

ωρ(1)(P1) ∧ ω̄τ(1)(P1) ∧ · · · ∧ ωρ(g)(Pg) ∧ ω̄τ(g)(Pg),

for two permutations ρ, τ ∈ Sym(g). But Ψ∗νg is the same linear combination
in the terms

2ωρ(1)(P1)∧2ω̄τ(1)(P1)∧ωρ(2)(P2)∧· · ·∧ω̄τ(g−1)(Pg−1)∧−ωρ(g)(Pg)∧−ω̄τ(g)(Pg).

Thus, we have Ψ∗νg = 4Φ∗νg.
Since Ψ∗νg is non-zero, the image of Ψ has to be of dimension g. Hence,

we have Ψ(Xg) = Picg−1(X), since the image is compact and Picg−1(X) is
an abelian variety. The degree of Ψ is 4g! by Ψ∗νg = 4Φ∗νg.

We can now compute H(X) by pulling back the integral by Φ

H(X) = 1
(g!)2

∫
Xg

log ‖θ‖(P1 + · · ·+ Pg −Q)Φ∗νg (2.1.1)

and by pulling back the integral by Ψ

H(X) = 1
4(g!)2

∫
Xg

log ‖θ‖(2P1 + P2 + · · ·+ Pg−1 − Pg)Ψ∗νg (2.1.2)

= 1
(g!)2

∫
Xg

log ‖θ‖(2P1 + P2 + · · ·+ Pg−1 − Pg)Φ∗νg,

see for example [DFN85, Theorem 14.1.1].

2.2 Integrals of the Arakelov–Green function

We compare integrals of the Arakelov–Green function with respect to the
form Φ∗νg with the Kawazumi–Zhang invariant ϕ. First, we need a general
lemma. For k ≤ g and points R1, . . . , Rg−k, Q ∈ X we define the map

Φk : Xk → Picg−1(X),

(P1, . . . , Pk) 7→ P1 + · · ·+ Pk +R1 + · · ·+Rg−k −Q.

The pullbacks of dZl are Φ∗k(dZl) =
∑k

j=1 ωl(Pj). In particular, we have
gµ = I∗ν = Φ∗1ν. For the relation to Φ∗νg we have the following lemma.
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Lemma 2.2.1. The integral of Φ∗νg over the variables Pk+1, . . . , Pg gives the
following multiple of the form Φ∗kν

k in the remaining variables P1, . . . , Pk:∫
(Pk+1,...,Pg)∈Xg−k

Φ∗νg(P1, . . . , Pg) = g!(g−k)!
k!

Φ∗kν
k(P1, . . . , Pk).

Proof. By changing coordinates in Cg by a matrix B with B2 = Y −1, we can
restrict to the case, where ν is of the form ν = i

2

∑g
j=1 dZj ∧ dZ̄j and the

pullbacks ψj = I∗(dZj) form an orthonormal basis of H0(X,Ω1
X). Taking the

g-th power of ν yields

νg =
(
i
2

)g
g! · dZ1 ∧ dZ̄1 ∧ · · · ∧ dZg ∧ dZ̄g.

Since Φ∗(dZj) =
∑g

k=1 ψj(Pk), we get by pulling back νg with Φ

Φ∗νg =
(
i
2

)g
g!

∑
ρ,τ∈Sym(g)

g∧
m=1

ψm(Pρ(m)) ∧ ψ̄m(Pτ(m)).

Since the ψj’s are orthonormal, only the summands with ρ(j) = τ(j)
will remain after integrating over Pj. Hence, we can reduce to sum over
permutations ρ, τ ∈ Sym(k):∫

(Pk+1,...,Pg)∈Xg−k
Φ∗νg(P1, . . . , Pg)

=(g − k)!
(
i
2

)k
g!

∑
1≤j1<···<jk≤g

∑
ρ,τ∈Sym(k)

k∧
m=1

ψjm(Pρ(m)) ∧ ψ̄jm(Pτ(m)),

where the factor (g− k)! comes from the permutations of the forms in Pj for
all k < j ≤ g. On the other hand, the pullback of

νk =
(
i
2

)k
k!

∑
1≤j1<···<jk≤g

dZj1 ∧ dZ̄j1 ∧ · · · ∧ dZjk ∧ dZ̄jk

yields

Φ∗νk =
(
i
2

)k
k!

∑
1≤j1<···<jk≤g

∑
ρ,τ∈Sym(k)

k∧
m=1

ψjm(Pρ(m)) ∧ ψ̄jm(Pτ(m)).

Now the lemma follows by comparing these formulas.
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Next, we calculate integrals of the Arakelov–Green function. As a conse-
quence of Lemma 2.2.1, we get for all k

1
(g!)2

∫
Xg

g(Pk, Q)Φ∗νg(P1, . . . , Pg) =

∫
X

g(Pk, Q)µ(Pk) = 0.

For the terms g(Pk, Pl) we get the following lemma relating their integrals to
the Kawazumi–Zhang invariant ϕ(X).

Lemma 2.2.2. For k 6= l we have

1
(g!)2

∫
Xg

g(Pk, Pl)Φ
∗νg(P1, . . . , Pg) = 1

2g(g−1)
· ϕ(X).

Proof. As in the proof of Lemma 2.2.1, we change coordinates in Cg, such
that ν = i

2

∑g
j=1 dZj ∧ dZ̄j and the ψj = I∗(dZj) form an orthonormal basis

of H0(X,Ω1
X). We have ν2 = −1

4

∑
p 6=q dZp ∧ dZ̄p ∧ dZq ∧ dZ̄q and for the

pullback by Φ2 we obtain Φ∗2(dZj) = ψj(P1) + ψj(P2). Hence, we get for the
pullback of ν2 after some calculations

Φ∗2ν
2 = 1

2

∑
p 6=q

(ψp(P1) ∧ ψ̄q(P1) ∧ ψq(P2) ∧ ψ̄p(P2)

−ψp(P1) ∧ ψ̄p(P1) ∧ ψq(P2) ∧ ψ̄q(P2)).

Since µ = i
2g

∑g
j=1 ψj ∧ ψ̄j, we get on the other hand

µ(P1)µ(P2) = − 1
4g2

g∑
p,q=1

ψp(P1) ∧ ψ̄p(P1) ∧ ψq(P2) ∧ ψ̄q(P2)

and by (1.2.7)

h2
∆ = 2µ(P1)µ(P2) + 1

2

g∑
p,q=1

(
ψp(P1) ∧ ψ̄q(P1) ∧ ψq(P2) ∧ ψ̄p(P2)

)
.

Putting this together, we obtain h2
∆ = Φ∗2ν

2−2(g2−1)µ(P1)µ(P2). By (G3) in
Section 1.2 the integral

∫
X2 g(P1, P2)µ(P1)µ(P2) vanishes. Using the defining

equation (1.2.8) for ϕ(X), we obtain

1
2g(g−1)

ϕ(X) = 1
2g(g−1)

∫
X2

g(P1, P2)Φ∗2ν
2 = 1

(g!)2

∫
Xg

g(P1, P2)Φ∗νg,

where the latter equality is due to Lemma 2.2.1. Now the lemma follows by
symmetry.

27



The function g(σ(P1 + · · ·+Pg−1), Pg) is defined on a dense subset of Xg.
Hence, we can compute the integral over Xg and we obtain the following
relation.

Lemma 2.2.3. It holds

1

(g!)2

∫
Xg

g(σ(P1 + · · ·+ Pg−1), Pg)Φ
∗νg = 1

2g
ϕ(X).

Proof. Denote by X(g−1) the (g− 1)-th symmetric power of X. We have the
canonical map

Φ̃Θ : X(g−1) → Θ, (P1, . . . , Pg−1)→ P1 + · · ·+ Pg−1.

We denote Φ̃−1
Θ (Θsm) = X̃(g−1). The map Φ̃Θ induces an isomorphism

X̃(g−1) ∼= Θsm. In particular, we obtain the involution σ also on X̃(g−1).
We define the map

Φ̃ : X̃(g−1) ×X → Picg−1(X),

((P1, . . . , Pg−1), Pg) 7→ P1 + · · ·+ Pg −Q

and the map

Φ̃σ : X̃(g−1) ×X → Picg−1(X),

((P1, . . . , Pg−1), Pg) 7→ σ(P1 + · · ·+ Pg−1) + Pg −Q.

A direct computation as in the proof of Proposition 2.1.1 gives Φ̃∗νg = Φ̃∗σν
g.

Since Φ̃ = Φ̃σ ◦ (σ× idX) and (σ× idX) is an automorphism, we can compute

1

(g!)2

∫
Xg

g(σ(P1 + · · ·+ Pg−1), Pg)Φ
∗νg

=
1

g · g!

∫
X̃(g−1)×X

g(σ(P1 + · · ·+ Pg−1), Pg)Φ̃
∗νg

=
1

g · g!

∫
X̃(g−1)×X

g(P1 + · · ·+ Pg−1, Pg)Φ̃
∗
σν

g

=
1

g · g!

∫
X̃(g−1)×X

g(P1 + · · ·+ Pg−1, Pg)Φ̃
∗νg

=
1

(g!)2

g−1∑
j=1

∫
Xg

g(Pj, Pg)Φ
∗νg.

By Lemma 2.2.2 this equals 1
2g
ϕ(X).
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Chapter 3

The hyperelliptic case

In this chapter we restrict to the case of hyperelliptic Riemann surfaces. In
particular, we obtain an explicit description of the invariant δ in this case.
Therefore, let X be any hyperelliptic Riemann surface X of genus g ≥ 2
throughout this chapter.

3.1 Decomposition of theta functions

We give a decomposition of log ‖θ‖ into a sum of Arakelov–Green functions
and a certain invariant of X and we state some consequences.

Proposition 3.1.1. The function log ‖θ‖ decomposes in the following way:

log ‖θ‖(P1 + · · ·+ Pg −Q) = Sg(X) +

g∑
j=1

g(Pj, Q) +
∑
k<l

g(σ(Pk), Pl).

Proof. We consider

α(P1) = log ‖θ‖(P1 + · · ·+ Pg −Q)−
g∑
j=1

g(Pj, Q)−
∑
k<l

g(σ(Pk), Pl)

(3.1.1)

as a function in the variable P1 by fixing the remaining points, such that
each summand on the right hand side is well defined for at least some choices
of P1. For any point P ∈ X the divisors P + σ(P ) and 2 · ∞ are linearly
equivalent, see [Mum84, Chapter IIIa.§2.]. Hence, P1+· · ·+Pg−Q is effective
if P1 = σ(Pk) for some k 6= 1 or P1 = Q. But ‖θ‖(P1 + · · · + Pg − Q) has
exactly g zeros as a function in P1, see [Mum83, Theorem II.3.1]. Therefore,
α(P1) has no poles. Further, we get

∂∂̄α(P1) = πiI∗ν(P1)− gπiµ(P1) = 0

29



by (θ2) and (G2) in Section 1.2. Hence, α(P1) is a harmonic function on a
compact space. Thus, it is constant. Analogously, we can show, that the ex-
pression (3.1.1) is constant as a function in P2, . . . , Pg or Q. Integrating with
µ(P1) . . . µ(Pg) shows that α = Sg(X) since the Arakelov–Green functions
vanish by (G3).

As a corollary, we obtain a similar decomposition for the function log ‖J‖.

Corollary 3.1.2. The function log ‖J‖ decomposes in the following way:

log ‖J‖(P1, . . . , Pg) = B(X) +
∑
k<l

g(Pk, Pl) + (g − 1)
∑
k<l

g(Pk, σ(Pl)).

Proof. We apply the decomposition of log ‖θ‖ in Proposition 3.1.1 to formula
(1.2.4) and we eliminate δ(X) by (1.2.5). This gives the corollary.

Another application of the decomposition in Proposition 3.1.1 is the fol-
lowing relation of invariants of X.

Corollary 3.1.3. We have

log ‖ϕg‖(X) = 4
(

2g
g−1

) (
g+1
g
B(X)− (g − 1)Sg(X)− (g + 1) log π

)
.

Proof. Applying the decomposition of Proposition 3.1.1 to (1.3.3) gives:

log ‖ϕg‖(X) = 4
(

2g+2
g+1

)
Sg(X) + 4

(
2g
g−1

) ∑
1≤k<l≤2g+2

g(Wk,Wl). (3.1.2)

In the same way, the decomposition of Corollary 3.1.2 applied to (1.3.5)
yields: (

2g+2
g

)
g log π + g+1

4
log ‖ϕg‖(X) (3.1.3)

=
(

2g+2
g

)
B(X) +

(
2g
g−2

)
g

∑
1≤k<l≤2g+2

g(Wk,Wl).

Now the lemma follows by combining (3.1.2) and (3.1.3).

3.2 Comparison of integrals

In this section we prove the following relation between integrals of log ‖θ‖.

Theorem 3.2.1. It holds (g − 1)H(X) = gSg(X)− S1(X).
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The idea of the proof is to apply the decomposition in Proposition 3.1.1
to the two different expressions of H(X) in (2.1.1) and (2.1.2). First, we
prove the following two lemmas.

Lemma 3.2.2. We have 2S1(X) = g(g − 1)Sg−1(X)− (g + 1)(g − 2)Sg(X).

Proof. If we apply Proposition 3.1.1 to log ‖θ‖((g−k+1)P1+P2+· · ·+Pk−Q)
and if we integrate with µ(P1) . . . µ(Pk), we get

Sk(X) = Sg(X) + (g−k)(g−k+1)
2

∫
X

g(σ(P ), P )µ(P ). (3.2.1)

If we do this for k = 1 and for k = g − 1, we can solve the two resulting
equations for S1(X), Sg−1(X) and Sg(X). This yields the assertion of the
lemma.

The proof shows, that we can give similar relations for any three of the
Sj(X)’s, but we will not need this.

Lemma 3.2.3. For k 6= l we have

1
(g!)2

∫
Xg

g(σ(Pk), Pl)Φ
∗νg = 1

2g(g−1)
· ϕ(X).

Proof. The involutions on Picg−1(X) and on X are compatible in the sense
that the divisors σ(P1 + · · · + Pg−1) and σ(P1) + · · · + σ(Pg−1) are linearly
equivalent. This follows, since σ(Pj)+Pj and 2·∞ are linearly equivalent and
(2g− 2) ·∞ represents the canonical divisor class KX , see [Mum84, Chapter
IIIa §2.]. Thus, the lemma is a direct consequence of Lemma 2.2.3.

Proof of Theorem 3.2.1. We can now prove the theorem using Lemma 2.2.2
and Lemma 3.2.3 to compute the terms which we get by applying the de-
composition in Proposition 3.1.1 to the equations (2.1.1) and (2.1.2). This
yields on the one hand

H(X) = 1
(g!)2

∫
Xg

log ‖θ‖(P1 + · · ·+ Pg −Q)Φ∗νg = Sg(X) + 1
4
ϕ(X),

and on the other hand

H(X) = 1
(g!)2

∫
Xg

log ‖θ‖(2P1 + P2 + · · ·+ Pg−1 − Pg)Φ∗νg

= Sg(X) +

∫
X

g(σ(P ), P )µ(P ) +
(
g(g+1)

2
− 1
)

1
2g(g−1)

ϕ(X)

= Sg−1(X) + (g+2)
4g

ϕ(X).
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The last equality follows by (3.2.1). A simple computation yields

H(X) = g+2
2
Sg(X)− g

2
Sg−1(X).

Using Lemma 3.2.2, we can substitute Sg−1(X) to obtain the formula in the
theorem.

As a corollary of the proof we get the following explicit expression for the
Kawazumi–Zhang invariant.

Corollary 3.2.4. It holds ϕ(X) = 4
g
(H(X)− S1(X)).

3.3 Explicit formulas for the delta invariant

Now we can deduce an explicit formula for δ(X). As mentioned in the intro-
duction, Bost [Bos87, Proposition 4] stated the following expression for δ(X)
for g = 2:

δ(X) = −4H(X)− 1
4

log ‖∆2‖(X)− 16 log(2π).

We generalize this to hyperelliptic Riemann surfaces. Furthermore, we give
a relation between δ(X) and ϕ(X).

Theorem 3.3.1. We have

δ(X) = −8(g−1)
g

H(X)−
(

2g
g−1

)−1
log ‖∆g‖(X)− 8g log 2π

and
δ(X) = −24H(X) + 2ϕ(X)− 8g log 2π.

Proof. First, we substitute S1(X) in formula (1.3.4) by the result of Theorem
3.2.1. This yields

δ(X) = 4(g−1)
g

Sg(X)− 4(g−1)2

g2
H(X)− 3g−1

2gn
log ‖∆g‖(X)− 8g log 2π, (3.3.1)

where we denote shortly n =
(

2g
g−1

)
. A combination of formula (1.2.5) and

Corollary 3.1.3 yields

Sg(X) = g(g+1)
g−1

log 2π + g
4n(g−1)

log ‖∆g‖(X) + g+1
8(g−1)

δ(X). (3.3.2)

If we now insert (3.3.2) for the Sg(X)-term in (3.3.1) and solve for δ(X), we
obtain the first formula in the theorem. If we apply again equation (1.3.4)
to this formula, we can eliminate the log ‖∆g‖(X)-term to obtain

δ(X) = −8(3g−1)
g

H(X)− 8
g
S1(X)− 8g log 2π.

Now Corollary 3.2.4 gives the second formula in the theorem.
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For the applications to hyperelliptic curves over number fields in Section
6.2 we deduce the following formula for δ(X), which was also proved by de
Jong in [dJo13, Corollary 1.8] by different methods.

Corollary 3.3.2. It holds

δ(X) = −2(g−1)
2g+1

ϕ(X)− 3g
(2g+1)

(
2g
g−1

)−1
log ‖∆g‖(X)− 8g log 2π.

Proof. This formula directly follows by combining the two formulas in The-
orem 3.3.1.

We can also conclude the following corollary about the Kawazumi–Zhang
invariant ϕ(X) and the modified discriminant ‖∆g‖(X).

Corollary 3.3.3. We obtain the following explicit formula for ϕ(X)

ϕ(X) = 4(2g+1)
g

H(X)− 1
2

(
2g
g−1

)−1
log ‖∆g‖(X).

In particular, we get the upper bound log ‖∆g‖(X) < −2(2g + 1)
(

2g
g−1

)
log 2.

Proof. One gets the formula for ϕ(X) by comparing the two formulas in
Theorem 3.3.1 and solving for ϕ(X), log ‖∆g‖(X) and H(X). The bound
follows by (1.2.9) and Proposition 1.1.1.

Von Känel has given an upper bound for ‖∆g‖(X) in [vKä14a, Lemma 5.4]
by bounding the function ‖θ‖ similarly as we will do in the proof of Lemma
4.5.1. However, our bound for ‖∆g‖(X) is much sharper. In particular, it
decreases for growing g.

Example 3.3.4. The formulas in Theorem 3.3.1 and Corollary 3.3.3 allows
us to compute the invariants δ and ϕ effectively for hyperelliptic Riemann
surfaces. For any integer n ≥ 5 consider the hyperelliptic Riemann surface
Xn given by the projective closure of the complex, affine curve defined by

y2 = xn + a,

where a ∈ C \ {0}. The isomorphism class of Xn does not depend on a, as
one sees by a change of coordinates. It is also isomorphic to the hyperelliptic
Riemann surface associated to the equation y2 + y = xn. Using the software
Mathematica we obtain the following values:

n Genus of Xn log ‖∆g‖(Xn) H(Xn) δ(Xn) ϕ(Xn)
5 2 −43.14 −0.485 (±0.003) −16.68 0.54
6 2 −44.34 −0.495 (±0.001) −16.34 0.59
7 3 −239.75 −0.706 (±0.019) −24.36 1.40
8 3 −246.58 −0.719 (±0.011) −23.84 1.51
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The values of H(X5), ‖∆2‖(X5) and δ(X5) were also computed in [BMM90].
More recently, Pioline found in [Pio15] formulas for the invariants δ and
ϕ of Riemann surfaces of genus 2, which allow a noticeably more efficient
computation of δ and ϕ than our formulas. In particular, he computed the
values of δ(X5), ϕ(X5), δ(X6) and ϕ(X6) in [Pio15, Section 4.1].

The invariant ‖∆g‖(X) can be computed much more efficiently than
the invariant H(X). Moreover, the Noether formula predicts, that δ is the
archimedean analogue of the logarithm of the discriminant of the finite places.
Indeed, δ is essentially the logarithm of the norm of the modular discriminant
for elliptic Riemann surfaces. Hence, it may be interesting to approximate
δ(X) by log ‖∆g‖(X) for hyperelliptic Riemann surfaces.

Corollary 3.3.5. We have the following relation between the invariants δ(X)
and ‖∆g‖(X):

− 1
n

log ‖∆g‖(X) + 2(g − 1) log 2 < δ(X) + 8g log 2π < −3g
(2g+1)n

log ‖∆g‖(X),

where we write shortly n =
(

2g
g−1

)
.

Proof. The first bound directly follows from the first formula in Theorem
3.3.1 and the bound in Proposition 1.1.1. The second inequality follows by
applying the bound ϕ(X) > 0 to the formula in Corollary 3.3.2.

3.4 A generalized Rosenhain formula

Finally, we apply the decomposition in Proposition 3.1.1 to give an absolute
value answer to a conjecture by Guàrdia in [Guà02, Conjecture 14.1]. Rosen-
hain stated in [Ros51] an identity for the case g = 2, which can be written
in our setting as

‖J‖(W,W ′) = π2
∏

W ′′ 6=W,W ′
‖θ‖(W ′′ +W −W ′),

where W,W ′ are two different Weierstraß points and the product runs over all
Weierstraß points W ′′ different from W and W ′. Looking for a generalization
to genus g ≥ 2, de Jong has found formula (1.3.5). We deduce the following
more general result.

Theorem 3.4.1. For any permutation τ ∈ Sym(2g + 2) it holds

‖J‖(Wτ(1), . . . ,Wτ(g)) = πg
2g+2∏
j=g+1

‖θ‖(Wτ(1) + · · ·+Wτ(g) −Wτ(j)).
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Proof. First, we compare the applications of the decomposition in Proposi-
tion 3.1.1 to (1.3.2) and (1.3.3). This yields

8
(

2g−1
g−1

) ∑
1≤k<l≤2g+1

g(Wk,Wl) = 4
(

2g
g−1

) ∑
1≤k<l≤2g+2

g(Wk,Wl).

An elementary calculation gives

∑
1≤k<l≤2g+1

g(Wk,Wl) = g

2g+1∑
k=1

g(Wk,W2g+2).

The decomposition corresponding to (1.3.2) is

log ‖ϕg‖(X) = 8
(

2g+1
g+1

)
Sg(X) + 8

(
2g−1
g−1

) ∑
1≤k<l≤2g+1

g(Wk,Wl).

Hence, we get

8g
(

2g−1
g−1

) 2g+1∑
k=1

g(Wk,W2g+2) = log ‖ϕg‖(X)− 8
(

2g+1
g+1

)
Sg(X).

Since this does not depend on the choice of the Weierstraß point at infinity,
we more generally get for a fixed 1 ≤ m ≤ 2g + 2

8g
(

2g−1
g−1

) 2g+2∑
k=1
k 6=m

g(Wk,Wm) = log ‖ϕg‖(X)− 8
(

2g+1
g+1

)
Sg(X).

Summing this for m = τ(1), . . . , τ(g) and using Corollary 3.1.3 to eliminate
the term log ‖ϕg‖(X), we get

g∑
j=1

2g+2∑
k=1
k 6=τ(j)

g(Wk,Wτ(j)) = B(X)− (g + 2)Sg(X)− g log π.
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Now we can conclude the theorem by the following calculation:

2g+2∑
j=g+1

log ‖θ‖(Wτ(1) + · · ·+Wτ(g) −Wτ(j))

=(g + 2)Sg(X) + (g + 2)
∑

1≤k<l≤g

g(Wτ(k),Wτ(l)) +

2g+2∑
j=g+1

g∑
k=1

g(Wτ(k),Wτ(j))

=(g + 2)Sg(X) + g
∑

1≤k<l≤g

g(Wτ(k),Wτ(l)) +

g∑
j=1

2g+2∑
k=1
k 6=τ(j)

g(Wk,Wτ(j))

=(g + 2)Sg(X) + g
∑

1≤k<l≤g

g(Wτ(k),Wτ(l)) +B(X)− (g + 2)Sg(X)− g log π

= log ‖J‖(Wτ(1), . . . ,Wτ(g))− g log π.

This completes the proof.
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Chapter 4

The general case

We prove our main result in this chapter, see Theorem 4.4.1, and we deduce
some applications, for example a lower bound for δ and an explicit expression
and an upper bound for the Arakelov–Green function.

4.1 Forms on universal families

In this section we discuss canonical forms on the universal family of compact
and connected Riemann surfaces of fixed genus and on the universal family of
principally polarised complex abelian varieties of fixed dimension with level 2
structure. We use these forms to compute the application of ∂∂ to invariants
of Riemann surfaces considered as functions on the moduli space.

Let g ≥ 3. Denote by Mg the moduli space of compact and connected
Riemann surfaces of genus g and by q : Cg → Mg the universal family of
compact and connected Riemann surfaces of genus g. The Arakelov–Green
function defines a function G : Cg×MgCg → R≥0, which again defines a metric
on O(∆), where ∆ ⊆ Cg ×Mg Cg is the diagonal. This induces a metric on
the relative tangent bundle TCg/Mg , since TCg/Mg is the normal bundle of ∆.
Denote by h = c1(O(∆)) the first Chern form of O(∆), that means, we have
an equality

1
πi
∂∂ logG = h− δ∆

of currents on Cg ×Mg Cg. Further, we set eA = h|∆, which is the first
Chern form of TCg/Mg . We write eA1 =

∫
q
(eA)2. A direct calculation, see also

[dJo14b, Proposition 5.3], gives the equality

1
πi
∂∂ϕ =

∫
q2

h3 − eA1 (4.1.1)

of forms on Mg, where q2 : Cg ×Mg Cg →Mg is the canonical morphism.
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Denote by det q∗Ω
1
Cg/Mg

the determinant of the Hodge bundle of Cg over

Mg equipped with the metric induced by (1.2.3) and write ωHdg for its first
Chern form. The invariant δ satisfies

1
πi
∂∂δ = eA1 − 12ωHdg, (4.1.2)

see for example [dJo14b, Section 10].
Now we consider Mg[2], the moduli space of compact and connected

Riemann surfaces of genus g with level 2 structure, see for example [HL97,
Section 7.4] for a precise definition. Denote π : Xg →Mg[2] for the universal
compact and connected Riemann surface overMg[2]. We will fix some nota-
tion. We write X n

g for the product Xg×Mg [2] · · ·×Mg [2]Xg with n factors over
Mg[2] and πn : X n

g →Mg[2] for the canonical morphism. Further, we denote

X (n)
g for the corresponding symmetric product and ρn : X n → X (n) for the

canonical map. For any m,n with m ≤ n and pairwise different j1, . . . , jm we
denote by prj1,...,jmX n

g → Xm
g the projection to the j1-th, . . . , jm-th factors.

Moreover, we write prj1,...,jm : X n
g → X n−m

g for the projection forgetting the
j1-th, . . . , jm-th factors. We obtain forms h on X 2

g , eA on Xg and eA1 and
ωHdg on Mg[2] by pulling back the forms h, eA, eA1 and ωHdg defined above
by the maps forgetting the level 2 structure.

Further, we denote by Ag[2] the moduli space of principally polarised
complex abelian varieties with level 2 structure and we write p : Ug → Ag[2]
for the universal principally polarised complex abelian variety over Ag[2].
There exists a 2-form ω0 on Ug such that the restriction of ω0 to a principally
polarised abelian variety (A,Θ) with arbitrary level 2 structure considered
as a fibre of p is ν(A,Θ) and the restriction of ω0 along the zero section of p
is trivial, see for example [HR01]. Without risk of confusions, we also write
ωHdg for the first Chern form of det p∗Ω

1
Ug/Ag [2] endowed with its L2-metric.

If we denote the Torelli map by t : Mg[2]→ Ag[2], it holds t∗ωHdg = ωHdg as
forms on Mg[2], see [Szp85b, Lemme 3.2.1].

Next, we would like to define the function ‖θ‖ on Ug. However, there is no
canonical theta divisor for an arbitrary principally polarised complex abelian
variety. But for any compact and connected Riemann surface X, there is a
canonical theta divisor in Picg−1(X) given by the image of the canonical
map X(g−1) → Picg−1(X). Every theta characteristic α of X defines a theta
divisor Θα ⊆ Jac(X), see (1.2.1). On Mg[2] we can consistently choose a
theta characteristic on each curve. Hence, we obtain a theta characteristic α
of Xg. For every such theta characteristic α of Xg we get a theta divisor Θα in
Ug. Using the properties of uniqueness (θ1)–(θ3) in Section 1.1 on each fibre
of p, we obtain a function ‖θα‖ on Ug. We define a metric on the line bundle
O(Θα) on Ug by ‖θα‖. This line bundle has first Chern form ω0 + 1

2
ωHdg, see
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[HR01, Proposition 2]. Hence, we obtain

1
πi
∂∂ log ‖θα‖ = ω0 + 1

2
ωHdg − δΘα .

We would like to express 1
πi
∂∂H(X) by the forms eA1 ,

∫
π2
h3 and ωHdg.

For this purpose, we fix a theta characteristic α of Xg and we consider the
map

γ′ : X (g−1)
g ×Mg [2] X 2

g → Ug,
[X; (P1, . . . , Pg−1), Pg, Pg+1] 7→ [Jac(X);P1 + · · ·+ Pg − Pg+1 − α].

Further, we write γ = γ′ ◦ (ρg−1 × idX 2
g
) : X g+1

g → Ug. Note that γ′ and γ
depend on the choice of α. The restriction of γ to a fibre of πg+1, that means
to the (g+ 1)-th power of a compact and connected Riemann surface X with
a level 2 structure inducing a theta characteristic αX , is

γ|Xg+1 : Xg+1 → Jac(X), (P1, . . . , Pg+1) 7→ P1 + · · ·+ Pg − Pg+1 − αX .

Fixing a Riemann surface X ∈Mg and a point Q ∈ X we obtain a map

sQ : Xg → Xg+1, (P1, . . . , Pg) 7→ (P1, . . . , Pg, Q),

which is a section of prg+1|Xg+1 : Xg+1 → Xg. As shown in Section 2.1, we
have

H(X) = 1
(g!)2

∫
Xg

log ‖θαX‖(P1 + · · ·+ Pg −Q− αX)((γ|Xg+1) ◦ sQ)∗νg.

A direct computation yields

1
(g!)2

∫
Xg

log ‖θαX‖(P1 + · · ·+ Pg −Q− αX)((γ|Xg+1) ◦ sQ)∗νg

= 1
(g!)2

∫
prg+1|Xg+1

log ‖θαX‖(P1 + · · ·+ Pg − Pg+1 − αX)(γ|Xg+1)∗νg,

which shows that the latter equals H(X) and it is independent of the choice
of the point Pg+1.

The restriction of ωHdg to a fibre of p is trivial and the restriction of ω0

to a fibre of p equals ν. Hence, we obtain

H(X) = 1
(g!)2

∫
prg+1

log ‖θα‖(P1 + · · ·+ Pg − Pg+1 − α)γ∗(ω0 + 1
2
ωHdg)g.
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Using this expression, we compute 1
πi
∂∂H(X) by applying the Laplace oper-

ator 1
πi
∂∂ on X g+1

g :

1
πi
∂∂

∫
prg+1

log ‖θα‖(P1 + · · ·+ Pg − Pg+1 − α)γ∗(ω0 + 1
2
ωHdg)g

=

∫
prg+1

γ∗(ω0 + 1
2
ωHdg)g+1 −

∫
prg+1

γ∗ (δΘα) γ∗(ω0 + 1
2
ωHdg)g

=

∫
prg+1

γ∗ωg+1
0 + g+1

2

∫
prg+1

γ∗ωg0 ∧ ωHdg −
∫
prg+1

γ∗ (δΘα) γ∗ωg0

− g
2

∫
prg+1

γ∗(δΘα)γ∗ωg−1
0 ∧ ωHdg.

Since the restriction of ωHdg to a fibre of prg+1 is trivial and it holds∫
A
νg(A,Θ) =

∫
Θ
νg−1

(A,Θ) = g! for any principally polarised complex abelian vari-

ety (A,Θ), we get

g+1
2

∫
prg+1

γ∗ωg0 ∧ ωHdg = (g+1)·(g!)2
2

ωHdg and

g
2

∫
prg+1

γ∗ (δΘα) γ∗ωg−1
0 ∧ ωHdg = g·(g!)2

2
ωHdg.

Therefore, we obtain

1
πi
∂∂H(X) = 1

2
ωHdg + 1

(g!)2

(∫
prg+1

γ∗ωg+1
0 −

∫
prg+1

γ∗ (δΘα) γ∗ωg0

)
. (4.1.3)

Thus, we have to compute the form γ∗ω0.

4.2 Deligne pairings

In this section we introduce the Deligne pairing for hermitian line bundles
as it was defined by Deligne in [Del85, Section 6] and extended to arbitrary
relative dimension by Zhang in [Zha96]. We will use it to study the form
γ∗ω0.

Let q : X → S be a smooth, flat and projective morphism of complex
manifolds of pure relative dimension n, and let L0, . . . ,Ln be hermitian line
bundles on X. Then the line bundle 〈L0, . . . ,Ln〉(X/S) is the line bundle on
S, which is locally generated by symbols 〈l0, . . . , ln〉, where the lj

′s are sec-
tions of the respective Lj ′s such that their divisors have no intersection,
and if for some 0 ≤ j ≤ n and some function f on X the intersection
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∏
k 6=j div(lk) =

∑
i niYi is finite over S and it has empty intersection with

div(f), then it holds the relation

〈l0, . . . , lj−1, f · lj, lj+1, . . . , ln〉 =
∏
i

NormYi/S(f)ni〈l0, . . . , ln〉.

By induction we define a metric on 〈L0, . . . ,Ln〉(X/S) such that

log ‖〈l0, . . . , ln〉‖ = log ‖〈l0, . . . , ln−1〉‖(div(ln)) +

∫
q

log ‖ln‖
n−1∧
i=0

c1(Li),

where c1(L) denotes the first Chern form of a hermitian line bundle L.
In the following, we list some properties, which can be found in [Zha96,

Section 1]. The Deligne pairing is multilinear and symmetric and it satisfies

c1(〈L0, . . . ,Ln〉) =

∫
q

n∧
i=0

c1(Li). (4.2.1)

Further, let φ : X→ Y be a smooth, flat and projective morphism of complex
manifolds over S with m1 = dimY/S and m2 = dimX/Y , K0, . . . ,Km2

hermitian line bundles on X and L1, . . . ,Lm1 hermitian line bundles on Y .
We have an isometry

〈K0, . . . ,Km2 , φ
∗L1, . . . , φ

∗Lm1〉(X/S) (4.2.2)
∼=〈〈K0, . . . ,Km2〉(X/Y),L1, . . . ,Lm1〉(Y/S).

If m2 = 1 and K0 = φ∗L0 for some hermitian line bundle L0 on Y , we obtain

c1(〈K1, φ
∗L0, . . . , φ

∗Ln−1〉(X/S)) = deg(K1) · c1(〈L0, . . . ,Ln−1〉(Y/S)).
(4.2.3)

Moreover, for general m2 and hermitian line bundles L0, . . . ,Lm1+1 on Y , we
have the isometry

〈K1, . . .Km2−1, φ
∗L0, . . . , φ

∗Lm1+1〉(X/S) = OS. (4.2.4)

We will often omit (X/S) in the notation and we will also use the shorter

notation L〈n+1〉
0 = 〈L0, . . . ,L0〉, where the L0 occurs (n + 1) times on the

right hand side.
We apply this to the family prg+2 : X g+2

g → X g+1
g . For any positive

integers j ≤ k we have a canonical section of prk+1:

sk+1,j : X k
g → X k+1

g , [X;P1, . . . , Pk] 7→ [X;P1, . . . , Pk, Pj].
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We set L = O(2sg+2,1 + · · ·+2sg+2,g−2sg+2,g+1)⊗pr∗g+2T as a line bundle on
X g+2
g , where we write T = TXg/Mg [2] for the relative tangent bundle. The first

Chern form of L vanishes if we restrict to any fibre of prg+2 : X g+2
g → X g+1

g .
In particular, L is of degree 0 on each fibre of prg+2, such that we obtain a
section of the Jacobian bundle Ug ×Ag [2] X g+1

g → X g+1
g . By definition this

section equals ([2] ◦ γ) × idX g+1
g

, where [2] denotes the multiplication with

2 on Ug. By a result due to de Jong [dJo14b, Proposition 6.3], we have
c1(L〈2〉) = −2([2] ◦ γ)∗ω0. Thus, we can compute

γ∗ω0 = 1
4
([2] ◦ γ)∗ω0 = −1

8
c1(L〈2〉). (4.2.5)

If s is a section of prg+2 and L0 any hermitian line bundle on X g+2
g , we

obtain a canonical isometry 〈O(s),L0〉 ∼= s∗L0. Hence, it follows

〈O(sg+2,j),O(sg+2,j)〉 ∼= s∗g+2,jO(sg+2,j) ∼= pr∗jT, (4.2.6)

where the last isometry follows, since s∗g+2,jO(sg+2,j) is the pullback of the
line bundle s∗2,1O(∆) by the projection prj : X g+1

g → Xg to the j-th factor and
s2,1 is the diagonal embedding Xg → X 2

g , such that s∗2,1O(∆) ∼= T . Moreover,
we have for j 6= k

〈O(sg+2,j),O(sg+2,k)〉 ∼= s∗g+2,jO(sg+2,k) ∼= pr∗j,kO(∆) (4.2.7)

and for all 1 ≤ j ≤ g + 1

〈O(sg+2,j), pr
∗
g+2T 〉 = s∗g+2,jpr

∗
g+2T = pr∗jT.

Now we can express the line bundle L〈2〉 by

L〈2〉 ∼=

(
g⊗
j=1

pr∗jT ⊗
g⊗
j=1

pr∗j,g+1O(∆)∨ ⊗
g⊗
j<k

pr∗j,kO(∆)

)⊗8

(4.2.8)

⊗
(
pr∗g+2T

)〈2〉
,

where we denote L ∨ for the dual of a line bundle L . We define L̃ by

L̃ =

g⊗
j=1

pr∗jT ⊗
g⊗
j=1

pr∗j,g+1O(∆)∨ ⊗
g⊗
j<k

pr∗j,kO(∆),

such that L〈2〉 = L̃⊗8⊗
(
pr∗g+2T

)〈2〉
. It holds c1(pr∗g+2T ) = pr∗g+2e

A and hence,

we deduce by (4.2.1) that c1

((
pr∗g+2T

)〈2〉)
= eA1 . Since the restriction of eA1
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to a fibre of πg+1 is trivial and further, the restriction of c1(L̃) to a fibre Xg+1

of πg+1 is equal to −(γ∗ω0)|Xg+1 = −(γ|Xg+1)∗νJac(X), we get by (4.2.5)∫
prg+1

γ∗ωg+1
0 =

(
−1

8

)g+1
∫
prg+1

c1(L〈2〉)g+1

= (−1)g+1 ·

(∫
prg+1

c1(L̃)g+1 + g+1
8

∫
prg+1

c1(L̃)g ∧ eA1

)
= (−1)g+1 ·

∫
prg+1

c1(L̃)g+1 − g+1
8
· (g!)2eA1 .

Next, we compute the second integral in equation (4.1.3). Denote by
Hg[2] the moduli space of hyperelliptic Riemann surfaces of genus g with
level 2 structure. We restrict for the rest of this section to the open subspace
M′

g = Mg[2] \ Hg[2] of Mg[2]. In particular, we sloppily write Xg for the
restriction Xg ×Mg [2]M′

g, γ instead of γ|Xg×Mg [2]M′g , etc. The singular locus

Θsing
α of the divisor Θα has codimension 4 in the restriction of Ug/Ag[2] to
M′

g, and its preimage under the map

γΘα : X g−1
g → Θα [X;P1, . . . , Pg−1] 7→ [Jac(X);P1 + · · ·+ Pg−1 − α]

has codimension 2. This follows for example from the proof of [BL04, Propo-
sition 11.2.8]. Hence, the points [X;P1 + · · ·+ Pg − Pg+1] ∈ pr−1

g+1([X;Pg+1])
with the property P1 + · · · + Pg−1 ∈ Θsing

α form a subspace of the fibre
pr−1

g+1([X;Pg+1]) of dimension at most (g − 2). Since the current γ∗ (δΘα) re-
stricts the space for the integration to a space of dimension g−1, it is enough

to integrate over the subspace where P1 + · · · + Pg−1 /∈ Θsing
α . Write X̃ (g−1)

g

for the subspace of X (g−1)
g , where P1 + · · · + Pg−1 /∈ Θsing

α . The canonical

involution on the universal Jacobian induces an involution σ on X̃ (g−1)
g . This

is given as follows: If (P1, . . . , Pg−1) denotes a section of X̃ (g−1)
g →M′

g, then

σ(P1, . . . , Pg−1) is the unique section (R1, . . . , Rg−1) of X̃ (g−1)
g → M′

g, such
that the sum P1 + · · ·+Pg−1 +R1 + · · ·+Rg−1 represents the canonical bundle
on Xg/M′

g. Now the integral can be computed as follows∫
prg+1

γ∗(δΘα)γ∗ωg0 =

g∑
j=1

∫
prg+1

δ{Pj=Pg+1}γ
∗ωg0 +

∫
prg+1

δ{Pg∈σ(P1,...,Pg−1)}γ
∗ωg0 ,

(4.2.9)

where Pg ∈ σ(P1, . . . , Pg−1) means, that σ(P1, . . . , Pg−1) = (R1, . . . , Rg−1)
and Pg = Rj for some j ≤ g − 1. For the terms in the sum we get by
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symmetry∫
prg+1

δ{Pj=Pg+1}γ
∗ωg0 =

∫
prg+1

δ{Pg=Pg+1}γ
∗ωg0 =

∫
prg

s∗g+1,gγ
∗ωg0 ,

where the last integral is with respect to the fibres of prg : X g
g → Xg. We

define the following line bundle on X g
g

L̃′ =
g−1⊗
j=1

pr∗jT ⊗
g−1⊗
j<k

pr∗j,kO(∆)

and set L′ = L̃′⊗8 ⊗ T 〈2〉. Since it holds s∗g+1,g(L〈2〉) = L′, we obtain

s∗g+1,gγ
∗ω0 = s∗g+1,g(−1

8
c1(L〈2〉)) = −1

8
c1(L′).

Thus, we compute∫
prg

s∗g+1,gγ
∗ωg0 = (−1)g ·

(∫
prg

c1(L̃′)g + g
8

∫
prg

c1(L̃′)g−1 ∧ eA1

)
.

Since the restriction of eA1 to a fibre of πg : X g
g → M′

g is trivial and the

restriction of c1(L̃′) to a fibre Xg−1 of prg is equal to −Φ∗g−1νJac(X), where
Φg−1 is the map

Φg−1 : Xg−1 → Jac(X), (P1, . . . , Pg−1) 7→ P1 + · · ·+ Pg−1 − αX ,

we conclude∫
prg

s∗g+1,gγ
∗ωg0 = (−1)g ·

∫
prg

c1(L̃′)g − g
8
· (g − 1)! · g! · eA1 .

Next, we compute the second term of the right hand side of (4.2.9). For
this purpose, we define the map

σ̃ : X̃ (g−1)
g ×M′g X

2
g → X̃

(g−1)
g ×M′g X

2
g ,

((P1, . . . , Pg−1), Pg, Pg+1) 7→ (σ(P1, . . . , Pg−1), Pg, Pg+1).

If we shortly write γσ = γ′ ◦ σ̃ ◦ (ρg−1 × idX 2
g
), we obtain

∫
prg+1

δ{Pg∈σ(P1+···+Pg−1)}γ
∗ωg0 =

g−1∑
j=1

∫
prg+1

δ{Pj=Pg}γ
∗
σω

g
0 . (4.2.10)
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Since γσ is the map

γσ : X g+1
g → Ug,

[X;P1, . . . , Pg+1] 7→ [Jac(X);−P1 − · · · − Pg−1 + Pg − Pg+1 + αX ],

we again apply [dJo14b, Proposition 6.3] to compute γ∗σω0 = −1
8
c1(N ), where

N denotes the line bundle N = Ñ⊗8 ⊗ T 〈2〉 with

Ñ =
⊗

1≤j≤g+1
j 6=g

pr∗jT ⊗
⊗

1≤j<k≤g+1
j 6=g,k 6=g

pr∗j,kO(∆)⊗
⊗

1≤j≤g+1
j 6=g

prj,gO(∆)∨.

Further, we denote the following line bundle on X g
g

Ñ ′ =
⊗
1≤j≤g
j 6=g−1

pr∗jT ⊗
⊗

1≤j<k≤g
j 6=g−1,k 6=g−1

pr∗j,kO(∆)

and set N ′ = Ñ ′
⊗8
⊗ T 〈2〉. Let s be the section of prg : X g+1

g → X g
g defined

by

s : X g
g → X g+1

g , [X;P1, . . . , Pg] 7→ [X;P1, . . . , Pg−2, Pg−1, Pg−1, Pg].

As for L′, we obtain (γσ ◦ s)∗ω0 = −1
8
c1(N ′). Since c1(N ′) does not depend

on the (g − 1)-th factor of X g
g , we conclude∫

prg+1

δ{Pg−1=Pg}γ
∗
0ω

g
0 =

∫
prg

s∗γ∗σω
g = −1

8

∫
prg

c1(N ′)g = 0.

By symmetry the entire sum in (4.2.10) vanishes.

By (4.2.1) we obtain
∫
prg+1

c1(L̃)g+1 = c1

(
L̃〈g+1〉

)
, where the Deligne

pairing is with respect to the family prg+1 : X g+1
g → Xg. Likewise, we have∫

prg
c1(L̃′)g = c1

(
L̃′〈g〉

)
, where the Deligne pairing is with respect to the

family prg : X g
g → Xg. If we apply all results from this section to the equation

(4.1.3), we obtain the following relation

1
πi
∂∂H(X) = 1

2
ωHdg − 1

8
eA1 + (−1)g+1

(g!)2

(
c1(L̃〈g+1〉) + g · c1(L̃′〈g〉)

)
(4.2.11)

of forms onM′
g. Thus, we have to calculate the forms c1(L̃〈g+1〉) and c1(L̃′〈g〉).
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4.3 Graphs and Terms

We compute c1(L̃〈g+1〉) and c1(L̃′〈g〉) by associating a graph to each term in

the expansions of the powers L̃〈g+1〉 and L̃′〈g〉. First, we define for n ≤ g the
sets

Ln = {pr∗jT, pr∗j,g+1O(∆), pr∗k,lO(∆)|1 ≤ j ≤ n, 1 ≤ k < l ≤ n},

L′n = {pr∗jT, pr∗k,lO(∆)|1 ≤ j ≤ n, 1 ≤ k < l ≤ n}.
For any (n+ 1)-tuple (L0, . . . ,Ln) ∈ Ln+1

n we define the associated graph
Γ(L0, . . . ,Ln) as follows: The set of vertices is {v1, . . . , vn, vg+1} and there
are (n+ 1) edges, for every 0 ≤ j ≤ n either the loop ej = (vk, vk) if it holds
Lj = pr∗kT or the edge ej = (vk, vl) if Lj = pr∗k,lO(∆). Further, we define the
graph Γ′(L0, . . . ,Ln) for any (n+ 1)-tuple (L0, . . . ,Ln) ∈ L′n+1

n as the graph
Γ(L0, . . . ,Ln) without the vertex vg+1.

Lemma 4.3.1. There are constants a1, a2, a3, a
′
1, a
′
2, a
′
3 ∈ Z such that we

have the following equalities of forms on Xg:

(a) c1

(
L̃〈g+1〉

)
= a1 ·

∫
π2
h3 + a2 · eA + a3 · eA1 ,

(b) c1

(
L̃′〈g〉

)
= a′1 ·

∫
π2
h3 + a′2 · eA + a′3 · eA1 .

Proof. We only prove (a). The proof of (b) can be done in a very similar
way. By linearity, it is enough to show

c1(〈L0, . . . ,Lg〉) ∈ Z ·
∫
π2

h3 + Z · eA + Z · eA1

for all L0, . . . ,Lg ∈ Lg. Write Γ1, . . . ,Γr for the connected components
of Γ(L0, . . .Lg), where Γ1 is the connected component containing the ver-
tex vg+1. Denote by gj the first Betti number of Γj for 1 ≤ j ≤ r. We
have

∑r
j=1 gj = r. If we had gj = 0 for some j ≥ 2, we would obtain

c1(〈L0, . . . ,Lg〉) = 0 by (4.2.4). Hence, we distinguish the following two
cases:

• In the first case we have gj = 1 for all 1 ≤ j ≤ r. By symmetry we
can assume that the edges contained in Γ1 are the edges associated to
L0, . . . ,Lq and that L0, . . . ,Lq ∈ Lq. If q < g, we factorize the family
prg+1 : X g+1

g → Xg over pr1,...,q+1,g+1 : X g+1
g → X q+2

g . Then we obtain
by (4.2.2)

〈L0, . . . ,Lg〉 = 〈L0, . . . ,Lq, 〈Lq+1, . . . ,Lg〉(X g+1
g /X q+2

g )〉(X q+2
g /Xg).
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If we again factorize the family prq+2 : X q+2
g → Xg by the projection

prq+1 : X q+2
g → X q+1

g , we can apply (4.2.3) to the right hand side of the
equality, such that we get

〈L0, . . . ,Lg〉 = deg(〈Lq+1, . . . ,Lg〉(X g+1
g /X q+2

g ))〈L0, . . . ,Lq〉(X q+1
g /Xg).

Hence, we only have to consider 〈L0, . . . ,Lq〉. The associated graph
Γ1 = Γ(L0, . . . ,Lq) is connected and has first Betti number g1 = 1. If
vj with 1 ≤ j ≤ q is a vertex of Γ1 with deg(vj) = 1, then we may
assume, that eq is the unique edge connected to vj and we obtain by
(4.2.3)

〈L0, . . . ,Lq〉(X q+1
g /Xg) = deg(Lq) · 〈L0, . . . ,Lq−1〉(X q

g /Xg),

where we factorize the family prq+1 : X q+1
g → Xg by the projection

prj : X q+1
g → X q

g . The associated graph Γ(L0, . . . ,Lq−1) is obtained
from Γ1 by removing the vertex vj and the edge eq.

If vj with 1 ≤ j ≤ q is a vertex of Γ1 with deg(vj) = 2, we may assume,
that eq−1 and eq are the edges connected to vj. Now we get by (4.2.2)

〈L0, . . . ,Lq〉(X q+1
g /Xg) = 〈L0, . . . ,Lq−2, 〈Lq−1,Lq〉(X q+1

g /X q
g )〉(X q

g /Xg),

where we again factorize the family prq+1 : X q+1
g → Xg by the projection

prj : X q+1
g → X q

g . The line bundles Lq−1 and Lq have to be equal to
pr∗k1,jO(∆), respectively pr∗k2,jO(∆), for some k1, k2 ∈ {1, . . . , q, g+ 1}.
Hence, we have by a similar computation as for (4.2.6) and (4.2.7)

〈Lq−1,Lq〉 = 〈pr∗k1,jO(∆), pr∗k2,jO(∆)〉 = pr∗k1,k2O(∆)

if k1 6= k2, and

〈Lq−1,Lq〉 = 〈pr∗k1,jO(∆), pr∗k1,jO(∆)〉 = pr∗k1T

if k1 = k2. Thus, the associated graph Γ(L0, . . . ,Lq−2, 〈Lq−1,Lq〉) is
well defined and it arises from Γ1 by removing the vertex vj and replac-
ing the edges eq−1 and eq by an edge connecting the two not necessarily
different neighbours of vj. Therefore, we can assume that the vertices
v1, . . . , vq of Γ1 have degree at least 3. This is only possible if Γ1 only
consists of the vertex vg+1 and the loop e0 = (vg+1, vg+1):

•vg+1
e0 .
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This means, that we always have in this case

c1(〈L0, . . . ,Lg〉) = n · c1(T ) = n · eA

for some n ∈ Z.

• The second case can be handled very similarly to the first one. Here,
we have g1 = 0, gk = 2 for some 2 ≤ k ≤ r and gj = 1 for j /∈ {1, k}.
Again, we may assume by symmetry that the edges contained in Γk are
the edges associated to L0, . . . ,Lq and that L0, . . . ,Lq ∈ L′q. As in the
first case we get by (4.2.2) and (4.2.3)

〈L0, . . . ,Lg〉 = deg(〈Lq+1, . . . ,Lg〉) · 〈L0, . . . ,Lq〉.

By the same arguments as in the first case, we can reduce to the case,
where the vertices v1, . . . , vq of Γk have degree at least 3. But these are
all vertices of Γk. Moreover, Γk is connected and its first Betti number
is 2. Hence, there are up to permutations only the possibilities

(a) •v1
e0 e1 (b) v1• •v2

e0
e1

e2 (c) v1• •v2

e0

e1

e2

for Γk.

The graph (a) corresponds to q = 1 and L0 = L1 = T . In this case we
have c1(〈L0,L1〉) = eA1 by (4.2.1). The graph (b) corresponds to q = 2,
L0 = pr∗1T , L1 = pr∗1,2O(∆) and L2 = pr∗2T . We can apply (4.2.2) to
obtain

〈pr∗1T, pr∗1,2O(∆), pr∗2T 〉 = 〈〈pr∗1T, pr∗1,2O(∆)〉, T 〉,

where we factorize the family π2 : X 2
g →M′

g by pr2 : X 2
g → Xg. Since

〈pr∗1T, pr∗1,2O(∆)〉 = T,

we again conclude c1(〈L0,L1,L2〉) = eA1 . Finally, the graph (c) corre-
sponds to q = 2 and L0 = L1 = L2 = pr∗1,2O(∆). Hence, we can again
apply (4.2.1) to obtain c1(〈L0,L1,L2〉) =

∫
π2
h3.
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By the lemma and by formula (4.2.11) we have the following equality of
forms on M′

g

1
πi
∂∂H(X) = 1

2
ωHdg + b1 ·

∫
π2

h3 + b2 · eA1 + b3 · eA, (4.3.1)

where X is non-hyperelliptic and b1, b2, b3 ∈ Q are constants depending only
on g. Since H(X) does not depend on the choice of the point Pg+1, we must
have b3 = 0. Since the constants only depend on g and we assume g ≥ 3, the
formula is also true for hyperelliptic Riemann surfaces by continuity. If we
restrict (4.3.1) to the hyperelliptic locus Hg[2], we know by Theorem 3.3.1
and by formulas (4.1.1) and (4.1.2) that

b1 ·
∫
π2

h3 + b2 · eA1 = 1
12

∫
π2

h3 − 1
8
eA1 .

But onHg[2] we have the linear dependence 3eA1 = (2−2g)
∫
π2
h3, see [dJo14b,

Proposition 10.7]. Hence, we can only conclude b2 = 12b1−g
8(g−1)

. Therefore, we
have to compute b1 in another way. This is done by the following lemma.

Lemma 4.3.2. The constants a1 and a′1 in Lemma 4.3.1 satisfy a1 = 0 and

a′1 = g!(g−1)!
12

(−1)g−1.

Proof. We have to weight and count the graphs associated to the terms in
the expansions of the powers c1(L̃〈g+1〉) and c1(L̃′〈g〉). We first consider the

case c1(L̃〈g+1〉). By the arguments of the proof of Lemma 4.3.1 we have
c1(〈L0, . . . ,Lg〉) = a ·

∫
π2
h3 for some L0, . . . ,Lg ∈ L′g and a 6= 0 only if the

associated graph Γ(L0, . . . ,Lg) has a subgraph Γ0 containing two different
vertices vj, vk which are connected by three disjunct paths not involving the
vertex vg+1.

Hence, we can compute a1 by

a1 =

g+1∑
k=3

Ak ·Bg,g+1−k ·
(
g

k−1

)
·
(
g+1
k

)
, (4.3.2)

where Ak is the number of k-tuples (L0, . . . ,Lk−1) ∈ L′kk−1 such that the graph
Γ′(L0, . . . ,Lk−1) has two vertices of degree 3 and all other vertices have degree
2, that means it is of the form Γ0 described above. To define Bg,k we introduce
another graph Γg(L0, . . . ,Lq) for any (q+1)-tuple (L0, . . . ,Lq) ∈ Lq+1

g , which
is defined as follows: The set of vertices is {v1, . . . , vg+1} and there are q + 1
edges associated to L0, . . . ,Lq in the same way as for Γ. Now Bg,k is the sum
of the weights w(L0, . . . ,Lk−1) associated to all k-tuples (L0, . . . ,Lk−1) ∈ Lkg ,
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where the weight is defined as follows: w(L0, . . . ,Lk−1) is 0 if for some l ≤ k
and some subset {j1, . . . , jl} ⊆ {0, . . . , k− 1} of cardinality l at most l− 1 of
the vertices v1, . . . , vk of the graph Γg(Lj1 , . . . ,Ljl) has non-zero degree and
otherwise it has the value (2− 2g)b1 · (−1)deg(vg+1), where b1 denotes the first
betti number of Γg(L0, . . . ,Lk−1). Note, that if we define another weight
w′ in exactly the same way except that we replace the vertices v1, . . . , vk
by vg−k+1, . . . , vg, we will obtain the same number Bg,k by symmetry. In
particular, if the graph Γ(L0, . . . ,Lk−1) is of the form Γ0 and if we have
w′(Lk, . . . ,Lg) = 0, then it follows c1(〈L0, . . . ,Lg〉) = 0 by (4.2.4). But for
simpler notations we will work with the weight w.

We obtain the binomial coefficient
(
g

k−1

)
by choosing k−1 of the g vertices

{v1, . . . , vg} of the associated graph Γ(L0, . . . ,Lg) to be the vertices of Γ0

and the binomial coefficient
(
g+1
k

)
by choosing the position of the k-tuple

associated to the graph Γ0 in the whole (g + 1)-tuple (L0, . . . ,Lg).
One can check the correctness of formula (4.3.2) by the methods of proof

of Lemma 4.3.1: Every circle in the associated graph of a tuple (L0, . . . ,Lg)
outside of Γ0 can be reduced to a loop, which is associated to a line bundle
pr∗jT having degree deg(pr∗jT ) = 2 − 2g. Moreover, every line bundle of

the form pr∗j,g+1O(∆) occurs as its dual in L̃. Thus, we have to multiply
with deg(pr∗j,g+1O(∆)∨) = −1 for every line bundle of this form in the tuple
(L0, . . . ,Lg). This justifies the formula of the weight w and hence, formula
(4.3.2) follows by elementary combinatorics and using (4.2.3) inductively.

Claim. It holds Ak =
(
k−1

2

)
· k!(k−1)!

12
for 3 ≤ k ≤ g + 1.

Proof of the claim. Let k = 3. Since (pr∗1,2O(∆), pr∗1,2O(∆), pr∗1,2O(∆)) is
the only tuple with the desired property, we have A3 = 1. Hence, we can
assume k ≥ 4. Write (L0, . . . ,Lk−1) for a tuple of the desired form and vj1 , vj2
for the vertices of the associated graph, which have degree 3. There are

(
k−1

2

)
possible choices for vj1 and vj2 . Further, there are (k − 3)!

(
k−1

2

)
choices to

order the remaining vertices and to divide them in 3 groups representing the
3 paths from vj1 to vj2 . But here, the 3 paths are ordered, so we have to
divide by the possibilities to order these paths. We have to distinguish two
cases:

• The lengths of two paths from vj1 to vj2 are 1. Then there are 3
possibilities to order all three paths. But on the other side, we have k!

2

possibilities to order the line bundles in the tuple (L0, . . . ,Lk−1), since
two of them are equal. Hence, in this case we have to multiply by k!

6
.

• Otherwise, there are two paths from vj1 to vj2 with length at least
2. Therefore, there are 3! = 6 possibilities to order all three paths.
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Here, we have k! possibilities to order the line bundles in the tuple
(L0, . . . ,Lk−1), since all of them are different. Hence, in this case we
also have to multiply by k!

6
.

Thus, we conclude Ak =
(
k−1

2

)
· (k − 3)! ·

(
k−1

2

)
· k!

6
=
(
k−1

2

)
· k!(k−1)!

12
.

Claim. The number Bg,k is given by Bg,k = (−1)k · k! · g!
(g−k)!

.

Proof of the claim. We prove this by induction over k. If k = 0, we only have
the empty tuple, which is weighted by 1. Hence, we assume k > 0 and that
the claim is true for k − 1. For any q ≤ g denote by Z[Lqg] the free abelian
group over the set of q-tuples of elements in Lg. Write wq ∈ Z[Lqg] for the
distinguished element

wq =
∑

(L0,...,Lq−1)∈Z[Lqg ]

w(L0, . . . ,Lq−1) · (L0, . . . ,Lq−1).

For any element c ∈ Z[Lqg] we define the degree deg(c) ∈ Z to be the sum of
its coefficients. Then we have Bg,q = deg(wq), and the induction hypothesis
states

deg(wk−1) = (−1)k−1 · (k − 1)! · g!
(g−k+1)!

.

We have to prove deg(wk) = −k(g − k + 1) · deg(wk−1). We distinguish the
following cases to extend a non-zero weighted (k − 1)-tuple to a non-zero
weighted k-tuple:

(1)k (L0, . . . ,Lk−2)→ (L0, . . . ,Lk−2, pr
∗
kT ),

(2)k (L0, . . . ,Lk−2)→ (L0, . . . ,Lk−2, pr
∗
k,lO(∆)) for any 1 ≤ l ≤ g with l 6= k

and pr∗k,lO(∆) /∈ {L0, . . . ,Lk−2},

(3)k (L0, . . . ,Lk−2)→ (L0, . . . ,Lk−2, pr
∗
k,lO(∆)) for any 1 ≤ l ≤ g with l 6= k

and pr∗k,lO(∆) ∈ {L0, . . . ,Lk−2},

(4)k (L0, . . . ,Li−1, pr
∗
l T,Li+1, . . . ,Lk−2)

→ (L0, . . . ,Li−1, pr
∗
l,kO(∆),Li+1, . . . ,Lk−2, pr

∗
k,lO(∆)) for any l 6= k,

(5)k (L0, . . . ,Li−1, pr
∗
l,mO(∆),Li+1, . . . ,Lk−2)

→ (L0, . . . ,Li−1, pr
∗
l,kO(∆),Li+1, . . . ,Lk−2, pr

∗
k,mO(∆)) for any l 6= k

and m 6= k with l 6= m,

(6)k (L0, . . . ,Lk−2)→ (L0, . . . ,Lk−2, pr
∗
k,g+1O(∆)).
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We additionally consider the extensions (1)j-(6)j for any 1 ≤ j ≤ k which
coincide with (1)k-(6)k with the change that the new line bundle occurs in
the j-th factor instead of the last factor. In this way, we obtain all k-tuples of
non-zero weight as extensions of (k− 1)-tuples of non-zero weight. However,
the same k-tuple can be constructed by different extensions. Hence, we have
to count them with suitable multiplicities.

For a (k − 1)-tuple (L0, . . . ,Lk−2) ∈ Lk−1
g we denote by m = deg(vk)

the degree of the vertex vk of the associated graph Γg(L0, . . . ,Lk−2). Let w′k
be the element in Z[Lkg ], which we obtain by taking for all (k − 1)-tuples
(L0, . . . ,Lk−2) ∈ Lk−1

g and all j ≤ k

- the extensions (1)j times (2− 2g) · w(L0, . . . ,Lk−2),

- the extensions (2)j times (1−m) · w(L0, . . . ,Lk−2),

- the extensions (3)j times (g −m) · w(L0, . . . ,Lk−2),

- the extensions (4)j and (5)j times w(L0, . . . ,Lk−2) and

- the extensions (6)j times (m− 1) · w(L0, . . . ,Lk−2).

Next, we prove w′k = wk. Let (L0, . . . ,Lk−1) ∈ Lkg be a k-tuple with
non-zero weight. Denote by m′ = deg(vk) the degree of the vertex vk in
the associated graph Γ = Γ(L0, . . . ,Lk−1). If Γ has a loop at vk, the tuple
(L0, . . . ,Lk−1) can only be obtained by an extension of kind (1)j from a non-
zero weighted (k−1)-tuple. Hence, we can assume, that Γ has no loop at vk.
Since every extension (1)j-(6)j only adds edges connected to vk, it is enough
to consider the connected component Γ1 of the graph Γ, which contains the
vertex vk. Its first Betti number b1(Γ1) is either 1 and all its vertices form a
subset of {v1, . . . , vk} or b1(Γ1) = 0 and Γ1 additionally contains one vertex
vi with k < i ≤ g + 1. More precisely, we distinguish the following four
cases, where we denote by Z1 a connected subgraph of Γ1 with first Betti
number b1(Z1) = 1 and by Γ1,1, . . . ,Γ1,m′ connected subgraphs of Γ1, which
are trees. The sets of vertices of Z1,Γ1,1, . . . ,Γ1,m′−1 are assumed to be non-
empty subsets of {v1, . . . , vk−1} and the set of vertices of Γ1,m′ is assumed to
be a subset of {v1, . . . , vk−1, vi}, which has to contain vi.

• In the first case, we consider Γ1 with b1(Γ1) = 1 and Γ1 has the structure

vk•

Z1 Γ1,1 . . . Γ1,m′−1

e

.
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These graphs can be obtained by an extension of the form (2)j, where
the edge e is added, or by an extension of the form (5)j, where an edge
from Z1 to Γ1,l for some l ≤ m′− 1 is replaced by the edges from Z1 to
vk and from Γ1,l to vk. In both cases the weight of the tuple is preserved
by the extension and we have m = m′− 1 for the extension of the form
(2)j. Here, the j is unique by the choice of the k-tuple and the kind of
extension. All in all, the coefficient of the k-tuple (L0, . . . ,Lk−1) in w′k
equals

((1− (m′ − 1)) + (m′ − 1)) · w(L0, . . . ,Lk−1) = w(L0, . . . ,Lk−1).

• Next, we consider graphs Γ1 with b1(Γ1) = 1 and having the structure

vk•

• •Γ1,1 Γ1,2 . . . Γ1,m′−1

e′
e

.

Here, there are two edges from vk to the subgraph Γ1,1 landing in two
different vertices. These graphs can be obtained by extensions of the
form (2)j, where the edge e or the edge e′ is added, or by an extension
of the form (5)j, where an edge from one of the neighbours of vk in the
graph Γ1 to another is replaced by two edges connecting each of these
two neighbours with vk, where at least one of the neighbours has to be
contained in Γ1,1. Hence, there are 2 possible extensions of the form
(2)j, where m = m′ − 1, and (m′ − 1) + (m′ − 2) possible extensions of
the form (5)j. The weight of the tuple is preserved by these extensions.
The j is unique by the choice of the k-tuple and the kind of extension.
Hence, the coefficient of the k-tuple (L0, . . . ,Lk−1) in w′k is given by

(2(1− (m′−1))+(m′−1+m′−2))w(L0, . . . ,Lk−1) = w(L0, . . . ,Lk−1).

• We have a third case with b1(Γ1) = 1, where Γ1 is of the form

vk•

•Γ1,1 Γ1,2 . . . Γ1,m′−1

e

e′

.

Here, there are two edges from vk to the subgraph Γ1,1 landing in the
same vertex. These graphs can be obtained by an extension of the form
(3)j, where the edge e or the edge e′ is added, by an extension of the
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form (4)j, where a loop is replaced by the edges e and e′, or by an
extension of the form (5)j, where an edge from one of the neighbours
of vk in the graph Γ1 to another is replaced by two edges connecting
each of the two neighbours with vk, where one of the neighbours has to
be the one in Γ1,1. The extensions of the form (3)j and (5)j multiply
the weight by (2 − 2g), the extensions of the form (4)j preserve the
weight and we have m = m′ − 1 for the extensions of the form (3)j.
Since each of these extensions adds at least one of the edges e and e′,
which represent two isomorphic line bundles in the tuple (L0, . . . ,Lk−1),
there are two choices for the j. Therefore, the coefficient of the k-tuple
(L0, . . . ,Lk−1) in w′k is

2
(
g−(m′−1)

2−2g
+ 1 + m′−2

2−2g

)
· w(L0, . . . ,Lk−1) = w(L0, . . . ,Lk−1).

• Finally, it remains the case b1(Γ1) = 0 and Γ1 is of the form

vk•

Γ1,1 Γ1,m′−1. . . Γ1,m′

e

.

There is an 1 ≤ r ≤ g + 1 with r 6= k such that e = (vk, vr). We
additionally distinguish the following two cases.

(a) Assume r ≤ g. Then we obtain graphs of this form by an extension
of the form (2)j, where the edge e is added, or by an extension of the
form (5)j, where an edge from vr to Γ1,l for some l < m′ is replaced
by the edge from Γ1,l to vk and the edge (vk, vr). These extensions
preserve the weights of the corresponding tuples. Further, we have
m = m′ − 1 for the extension (2)j. The j is unique by the choice
of the k-tuple and the kind of extension. Hence, the coefficient of
the k-tuple (L0, . . . ,Lk−1) in w′k equals

((1− (m′ − 1)) + (m′ − 1)) · w(L0, . . . ,Lk−1) = w(L0, . . . ,Lk−1).

(b) Otherwise, we have r = i = g + 1. Then graphs of this form can
be obtained by extensions of the form (5)j, where an edge from
vr to Γ1,l for some l < m′ is replaced by the edge from Γ1,l to vk
and the edge (vk, vr), or by an extension of the form (6)j, where
the edge e is added. The extensions of the form (5)j preserve the
weight, while the extension of the form (6)j changes the weight by
the factor −1. Further, we have m = m′−1 for the extension of the
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form (6)j. The j is unique by the choice of the k-tuple and the kind
of extension. Thus, the coefficient of the k-tuple (L0, . . . ,Lk−1) in
w′k is given by

((m′−1)+(−1)·((m′−1)−1))·w(L0, . . . ,Lk−1) = w(L0, . . . ,Lk−1).

Thus, we obtain w′k = wk. We conclude that deg(wk) = deg(wk−1) · c(g, k),
where c(g, k) equals

k · ((2− 2g) + (1−m)(g − 1−m) + (g −m)m+ (k − 1−m) + (m− 1))

=− k(g − k + 1).

This proves the claim.

Now we can prove the first equation of the lemma by putting the values
for Ak and Bg,k into equation (4.3.2)

a1 =

g+1∑
k=3

(
k−1

2

)k!(k−1)!
12

(−1)g+1−k(g + 1− k)! g!
(k−1)!

(
g

k−1

)(
g+1
k

)
= g!(g+1)!

12
(−1)g

g∑
k=2

(−1)k
(
k
2

)(
g
k

)
= 0.

For the last equality see for example [BQ08].
For a′1 we obtain by the same arguments

a′1 =

g∑
k=3

Ak ·B′g,g−k ·
(
g−1
k−1

)
·
(
g
k

)
.

Here, B′g,k denotes the sum of the weights w(L0, . . . ,Lk−1) for all k-tuples

(L0, . . . ,Lk−1) ∈ L′kg−1. We obtain B′g,k = (−1)k · k! · g!
(g−k)!

in the same way

as for Bg,k. One only has to note, that there is no extension of the form (6)j
and we have l,m ≤ g − 1 for all extensions (2)j − (5)j. To calculate a′1, we
claim the following identity of binomial coefficients

n∑
k=3

(−1)k−1
(
k−1

2

)(
n
k

)
= 1, (4.3.3)

where n ≥ 3. We prove this by induction over n. It is trivially true for n = 3.
Hence, we can assume n ≥ 4. If (4.3.3) is true for n− 1, we obtain

n∑
k=3

(−1)k−1
(
k−1

2

)(
n
k

)
=

n∑
k=3

(−1)k−1
(
k−1

2

)(
n−1
k−1

)
+

n−1∑
k=3

(−1)k−1
(
k−1

2

)(
n−1
k

)
= 0 + 1.
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For the vanishing of the first sum see again [BQ08]. The second sum is 1 by
the induction hypothesis. Now we get for a′1

a′1 =

g∑
k=3

(
k−1

2

)k!(k−1)!
12

(−1)g−k(g − k)! g!
k!

(
g−1
k−1

)(
g
k

)
= g!(g−1)!

12
(−1)g−1

g∑
k=3

(−1)k−1
(
k−1

2

)(
g
k

)
= g!(g−1)!

12
(−1)g−1.

This completes the proof of the lemma.

Now we can compute the constants in (4.3.1). Equation (4.2.11) and
Lemma 4.3.2 yield b1 = 1

12
and hence, b2 = −1

8
. We summarize this to

1
πi
∂∂H(X) = 1

2
ωHdg + 1

12

∫
π2

h3 − 1
8
eA1 (4.3.4)

as forms on Mg[2]. Since all these forms are already defined on Mg, this
formula also holds for the corresponding forms on Mg.

4.4 Main result

In this section we deduce our main result, which generalizes the second for-
mula in Theorem 3.3.1 to compact and connected Riemann surfaces. Pre-
cisely, we prove the following theorem.

Theorem 4.4.1. Any compact and connected Riemann surface X of genus
g ≥ 1 satisfies δ(X) = −24H(X) + 2ϕ(X)− 8g log 2π.

Proof. For g = 1 and g = 2 this follows from [Fal84, Section 7], respectively
Theorem 3.3.1. Thus, we assume g ≥ 3. Consider the function

f(X) = δ(X) + 24H(X)− 2ϕ(X)

as a real-valued function onMg. By (4.1.1), (4.1.2) and (4.3.4) this function
satisfies ∂∂f(X) = 0, that means f is harmonic onMg. But there are no non-
constant holomorphic functions on Mg, see for example [ACG11, p. 437].
Hence, there are also no non-constant harmonic functions on Mg. Thus,
f(X) is constant on Mg, and we obtain f(X) = −8g log 2π by Theorem
3.3.1.

As an application of the theorem we obtain a lower bound for the invariant
δ(X) by applying the lower bounds in Proposition 1.1.1 and (1.2.9).
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Corollary 4.4.2. For any compact and connected Riemann surface X of
genus g ≥ 1 we have δ(X) > −2g log 2π4.

One can generalize the invariant ‖∆g‖ of hyperelliptic Riemann surfaces
to arbitrary compact and connected Riemann surfaces of positive genus, even
to principally polarised complex abelian varieties. Let (A,Θ) be any princi-
pally polarised complex abelian variety of dimension g ≥ 1 as in Section 1.1.
We define the set D2 = {z ∈ A \Θ | 2z = 0} and we set

‖∆g‖(A,Θ) = 2−4(g+1)( 2g
g−1)

∑
J⊆D2
#J=r

∏
z∈J

‖θ‖(z)8,

where r =
(

2g+1
g+1

)
. In particular, we have ‖∆g‖(Jac(X)) = ‖∆g‖(X) if X

is a hyperelliptic Riemann surface of genus g ≥ 2. Hence, we also define
‖∆g‖(X) = ‖∆g‖(Jac(X)) if X is an arbitrary connected and compact Rie-
mann surface of genus g ≥ 1. However, the first formula of Theorem 3.3.1
and Corollaries 3.3.2 and 3.3.3 are not true for arbitrary connected and com-
pact Riemann surfaces. Indeed, we have 1

πi
∂∂ log ‖∆g‖(X) = 4r ·ωHdg−δZ as

forms onMg, where Z ⊆Mg is the vanishing locus of ‖∆g‖, which is known
to be empty at least for g ≤ 5, see [Bea13, Section 5]. Comparing this with
the forms (4.1.1), (4.1.2) and (4.3.4), we notice that each of the mentioned
formulas implies 3eA1 = (2 − 2g)

∫
π2
h3, which is not true in general on Mg,

see also [dJo14b, Section 10].

4.5 Bounds for theta functions

In this section we give an upper bound for the function ‖θ‖. This bound will
be used in the next section to obtain an upper bound for the Arakelov–Green
function.

Lemma 4.5.1. Let (A,Θ) be any principally polarised complex abelian va-
riety of dimension g ≥ 1 as in Section 1.1. For any real number r > 0 and
any z ∈ A we obtain

log ‖θ‖(z) + rH(A,Θ) ≤ 1
4

(
5 max(2, g3)(1 + r) + g2

(
r + 2 + 1

r

))
log 2.

Proof. The idea of the proof is based on [Gra00, Section 2.3.2]. We denote
by Hg the Siegel upper half-space. The symplectic group Sp(2g,R) acts on
Cg ×Hg by

(z,Ω) 7→ (t(CΩ +D)−1z, (AΩ +B)(CΩ +D)−1)
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for any

(
A B
C D

)
∈ Sp(2g,R). The group Sp(2g,Z) acts by translation

by 2-torsion points on ‖θ‖, see for example [BL04, Theorem 8.6.1]. Hence,
supz∈A ‖θ‖(z) is independent of a representative Ω in a coset of Sp(2g,Z).
Therefore, it suffices to prove the assertion for a fundamental domain in Hg.
We define the fundamental domain Fg to be the subspace of matrices Ω ∈ Hg

satisfying the following bounds:

(i) For all 1 ≤ j, k ≤ g, we have |(Re Ω)jk| ≤ 1
2
.

(ii) For all γ ∈ Sp(2g,Z), we have det(Im (γ · Ω)) ≤ det(Im Ω).

(iii) For all n ∈ Zg and j ≤ g, such that nj, . . . , ng are relatively prime, we
have the inequalities tn(Im Ω)n ≥ (Im Ω)jj.

(iv) For all j ≤ g − 1, we have (Im Ω)j,j+1 ≥ 0.

It follows for example from [Igu72, Chapter V.§4.] that this is indeed a
fundamental domain in Hg. Let z ∈ Cg. If we write y = Im z = (Im Ω) · b
for some b ∈ Rg, then the triangle inequality gives

exp(−πty(Im Ω)−1y) · |θ(z,Ω)| ≤
∑
n∈Zg

exp(−πt(n+ b)(Im Ω)(n+ b)).

Let c(g) =
(

4
g3

)g−1 (
3
4

)g(g−1)/2
be the Minkowski constants. By (iii) and (iv),

Ω is Minkowski reduced and we obtain the Minkowski inequality

tm(Im Ω)m ≥ c(g)

g∑
j=1

m2
j(Im Ω)jj

for all m ∈ Rg. Hence, we obtain∑
n∈Zg

exp(−πt(n+ b)(Im Ω)(n+ b)) ≤
g∏
j=1

∑
n∈Z

exp(−πc(g)(Im Ω)jj(n+ bj)
2).

Since we sum over Z, we can assume 0 ≤ bj ≤ 1 for all 1 ≤ j ≤ g. We have

(n+ bj)
2 ≥ n+ b2

j ≥ n for n ≥ 0,

(n+ bj)
2 ≥ −n− 1 + (1− bj)2 ≥ −n− 1 for n ≤ −1.

This allows us to split the sum into two sums over N0 and bound in the
following way:∑

n∈Z

exp(−πc(g)(Im Ω)jj(n+ bj)
2) ≤ 2

∑
n∈N0

exp(−πc(g)(Im Ω)jj · n)

≤ 2

1− exp(−πc(g)(Im Ω)jj)
.
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We have (Im Ω)jj ≥
√

3/2 for all j ≤ g, see also [Igu72, Chapter V.§4.].
Using ex ≥ x+ 1 for x ∈ R, we get for the function θ:

exp(−πty(Im Ω)−1y) · |θ(z,Ω)| ≤
(

2 +
4

πc(g)
√

3

)g
≤ max(4, 2g

3

). (4.5.1)

Here, we used c(g) ≥ 2−g
2
.

Now we consider the case 1
4
≤ bg ≤ 3

4
. By Hadamard’s theorem we have

det(Im Ω) ≤
∏g

j=1(Im Ω)jj and hence, det(Im Ω) ≤ ((Im Ω)gg)
g by property

(iii). Therefore, we can bound for s ≥ 0

det(Im Ω)s
∑
n∈Z

exp(−πc(g)(Im Ω)gg(n+ bg)
2)

≤2((Im Ω)gg)
gs
∑
n∈N0

exp
(
−πc(g)(Im Ω)gg ·

(
n+ 1

16

))
≤((Im Ω)gg)

gs exp
(
− 1

16
πc(g)(Im Ω)gg

)(
2 +

4

πc(g)
√

3

)
.

Using again ex ≥ x+ 1, we get

((Im Ω)gg)
gs exp

(
− 1

16
πc(g)(Im Ω)gg

)
≤
(

16gs

eπc(g)

)gs
≤ 2g

3s+2g2s2 .

Putting these bounds together, we get for the case 1
4
≤ bg ≤ 3

4
:(

s− 1
4

)
log det(Im Ω) + log ‖θ‖(z) ≤ (max(2, g3) + g3s+ 2g2s2) · log 2.

To integrate over A means to integrate over a fundamental domain in Cg

for the lattice Zg + ΩZg. Hence, we can again assume 0 ≤ bg ≤ 1 and by the
translation invariance of the volume form νg we get

1
g!

∫
z∈A|bg∈[1/4,3/4]

νg(z) = 1
g!

∫
z∈A|bg∈[0,1/4]∪[3/4,1]

νg(z) = 1
2

Therefore, we split and bound the integral H(A,Θ) in the following way:(
s− 1

4

)
log det(Im Ω) +H(A,Θ)

≤1
2

max(2, g3) log 2

+ 1
g!

∫
z∈A|1/4≤bg≤3/4

((
2s− 1

4

)
log det(Im Ω) + log ‖θ‖(z)

)
νg(z)

≤(max(2, g3) + g3s+ 4g2s2) log 2.

Now the lemma follows by combining this with equation (4.5.1) and setting
s = (r + 1)/(4r).
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4.6 The Arakelov–Green function

We give an explicit expression for the Arakelov–Green function by calculating
Bost’s invariant A(X) in (1.2.2). Furthermore, we will bound the supremum
of the Arakelov–Green function in terms of δ(X) and we give another expres-
sion for δ. Let X be any compact and connected Riemann surface of genus
g ≥ 2.

Theorem 4.6.1. It holds

g(P,Q) = 1
g!

∫
Θ+P−Q

log ‖θ‖νg−1 + 1
2g
ϕ(X)−H(X).

Proof. Integrating (1.2.2) with µ(P ) gives

−A(X) = 1
g!

∫
X

(∫
Θ+P−Q

log ‖θ‖νg−1

)
µ(P ).

We define the map

ΦΘ : Xg−1 → Θ, (P1, . . . , Pg−1) 7→ P1 + · · ·+ Pg−1,

which is smooth, surjective and generically of degree (g − 1)!. Since ν is
translation-invariant, we conclude that

−A(X) = 1
(g−1)!g!

∫
Xg

log ‖θ‖(P1 + · · ·+ Pg −Q)Φ∗Θν
g−1(P1, . . . , Pg−1)µ(Pg).

For a divisor D ∈ Θsm and points Pg, Q ∈ X the term

log ‖Λ‖(D) = log ‖θ‖(D + Pg −Q)− g(Pg, Q)− g(D,Q)− g(σ(D), Pg)
(4.6.1)

does not depend on Pg or Q, see [dJo08, Proposition 4.3]. We obtain

−A(X) = 1
(g−1)!g!

∫
Xg−1

log ‖Λ‖(P1 + · · ·+ Pg−1)Φ∗Θν
g−1(P1, . . . , Pg−1)

= 1
(g!)2

∫
Xg

log ‖Λ‖(P1 + · · ·+ Pg−1)Φ∗νg(P1, . . . , Pg),

since the Arakelov–Green functions in (4.6.1) integrates to 0. The latter
equality follows by Lemma 2.2.1. If we again substitute log ‖Λ‖ by (4.6.1) in
the last expression, only the integral of log ‖θ‖(P1 + · · · + Pg − Q) and the
integral of −g(σ(P1 + · · ·+Pg−1), Pg) are non-zero. The first one gives H(X)
and the second one equals − 1

2g
ϕ(X) by Lemma 2.2.3. Thus, we obtain the

identity A(X) = 1
2g
ϕ(X)−H(X).
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As a corollary we bound the Arakelov–Green function in terms of δ(X).

Corollary 4.6.2. The Arakelov–Green function is bounded by δ(X) in the
following way:

sup
P,Q∈X

g(P,Q) <

{
1
4g
δ(X) + 3g3 log 2 if g ≤ 5,

2g+1
48g

δ(X) + 2g3 log 2 if g > 5.

Proof. Since
∫

Θ+P−Q ν
g−1 = g!, Lemma 4.5.1 with r = 1/(2g) yields

1
g!

∫
Θ+P−Q

log ‖θ‖νg−1 + 1
2g
H(X) ≤

(
7
4
g3 + 9

8
g2 + 1

8
g
)

log 2.

For g ≤ 5 we have by Theorem 4.4.1 and Proposition 1.1.1

1
2g
ϕ(X)−H(X)− 1

2g
H(X) < 1

4g
δ(X)− 11−2g

8
log 2 + 2 log 2π,

while we obtain for g > 5 using the bound (1.2.9)

1
2g
ϕ(X)−H(X)− 1

2g
H(X) < 2g+1

48g
δ(X) + 2g+1

6
log 2π.

If we apply these inequalities to the expression for the Arakelov–Green func-
tion in Theorem 4.6.1, we get the estimates in the corollary.

Next, we discuss an application of this bound. Let L be an admissible line
bundle on X, that means L is equipped with a hermitian metric and it holds
∂∂ log ‖s‖2 = 2πi deg(L)µ for a local generating section s ∈ H0(X,L). Falt-
ings introduced in [Fal84, Section 3] a canonical metric on the determinant
of cohomology

λ(RΓ(X,L)) =
max∧

H0(X,L)⊗
max∧

H1(X,L)⊗−1

for all admissible line bundles L, which is given up to a common scalar factor.
We choose this factor, such that we have on λ(RΓ(X,Ω1

X)) =
∧gH0(X,Ω1

X)
the metric induced by (1.2.3).

If degL = r+g−1 with r ≥ g, the metric on λ(RΓ(X,L)) gives a volume
form on H0(X,L). Let E be a divisor with OX(E) ∼= L. There are points
P1, . . . , Pr on X, such that OX(E − (P1 + · · · + Pr)) has no global sections.
The canonical norm on λ(RΓ(X,OX(E − (P1 + · · ·+ Pr)))) ∼= C is given by
the real number ‖θ‖(E − (P1 + · · · + Pr))

−1 · exp(−δ(X)/8), see [Fal84, p.
402].
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Faltings proved that for every ε > 0 there exists a constant d(ε) such that
for any line bundle L of degree d ≥ d(ε) the volume of the unit ball under
the L2-norm can be estimated in the following way

V (L) = Vol

({
f ∈ H0(X,L) |

∫
X

‖f‖2µ ≤ 1

})
≥ exp(−εd2),

see [Fal84, Theorem 2]. In the proof he used an upper bound for the
Arakelov–Green function. With our bound in Corollary 4.6.2 we obtain the
following more explicit, but asymptotically worse result.

Corollary 4.6.3. Any admissible line bundle L on X of degree r + g − 1
with r ≥ g satisfies

log V (L) ≥

−
1

48g
δ(X)− r2

(
1
4g
δ(X) + 3g3 log 2

)
if g ≤ 5,

−r2
(

2g+1
48g

δ(X) + 2g3 log 2
)

if g > 5.

Proof. It follows from the proof of [Fal84, Theorem 2] that

1

V (L)
= π−r

∫
Xr

v(P1, . . . , Pr)
−1
∏
j 6=k

G(Pj, Pk)µ(P1) . . . µ(Pr),

where v(P1, . . . , Pr) = ‖θ‖(E−(P1+· · ·+Pr))−2 ·exp(−δ(X)/4) is the volume
form on λ(RΓ(X,OX(E− (P1 + · · ·+Pr)))) ∼= C with the notation as above.
Hence, we can bound

log V (L) ≥ r log π − 1
4
δ(X)− 2 log sup

z∈Jac(X)

‖θ‖(z)− r(r − 1) · sup
P,Q∈X

g(P,Q).

Applying the bounds in Lemma 4.5.1 with r = 1/(4g) to supz∈Jac(X) ‖θ‖(z)
and the bound in Corollary 4.6.2 to supP,Q∈X g(P,Q) and using that we have
the inequality H(X) ≥ − 1

24
δ(X)− g

3
log 2π by Theorem 4.4.1, we obtain the

estimate in the corollary.

As an application of the proof of Theorem 4.6.1, we obtain a formula for
δ(X) only in terms of integrals of the function log ‖θ‖.
Corollary 4.6.4. We have

δ(X) = −4g
g!

∫
X

(∫
Θ+P−Q

log ‖θ‖νg−1

)
µ(P ) + (4g − 24)H(X)− 8g log 2π.

Proof. By the proof of Theorem 4.6.1 we have

−4g
g!

∫
X

(∫
Θ+P−Q

log ‖θ‖νg−1

)
µ(P ) = 2ϕ(X)− 4gH(X).

If we apply this to Theorem 4.4.1, we obtain the corollary.
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Chapter 5

The case of abelian varieties

We state formulas for δ(X) and ϕ(X) only in terms of H(X) and Λ(X), such
that we obtain canonical extensions of the functions δ and ϕ to the mod-
uli space of indecomposable principally polarised complex abelian varieties.
Further, we discuss some of the asymptotics of these extensions.

5.1 The delta invariant of abelian varieties

We deduce the following expressions for δ and ϕ from the expressions in
Theorem 4.4.1 and formula (1.2.6).

Theorem 5.1.1. For any compact and connected Riemann surface X of
genus g ≥ 2, the invariant δ(X) satisfies

δ(X) = 2(g − 7)H(X)− 2Λ(X)− 4g log 2π.

Further, the invariant ϕ(X) satisfies

ϕ(X) = (g + 5)H(X)− Λ(X) + 2g log 2π.

Proof. If we integrate the logarithm of formula (1.2.6) with respect to Φ∗νg,
we obtain by equation (2.1.2) and by Lemma 2.2.2

1
(g!)2

∫
Xg

log ‖η‖(P1 + · · ·+ Pg−1)Φ∗νg = (g − 1)H(X)− 1
4
δ(X)− 1

2
ϕ(X).

Denote by ΦΘ the map defined in Section 4.6. We have

Λ(X) = 1
(g−1)!g!

∫
Xg−1

log ‖η‖(P1 + · · ·+ Pg−1)Φ∗Θν
g−1

= 1
(g!)2

∫
Xg

log ‖η‖(P1 + · · ·+ Pg−1)Φ∗νg,
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where the latter equality follows from Lemma 2.2.1. Putting both equations
together, we obtain

Λ(X) = (g − 1)H(X)− 1
4
δ(X)− 1

2
ϕ(X).

Now both formulas in the theorem follow by Theorem 4.4.1.

Let (A,Θ) be an indecomposable principally polarised complex abelian
variety of dimension g ≥ 2 as in Section 1.1. We define

δ(A,Θ) = 2(g − 7)H(A,Θ)− 2Λ(A,Θ)− 4g log 2π,

ϕ(A,Θ) = (g + 5)H(A,Θ)− Λ(A,Θ) + 2g log 2π.

Then we have δ(Jac(X)) = δ(X) and ϕ(Jac(X)) = ϕ(X) for any compact
and connected Riemann surface X by Theorem 5.1.1. Hence, we obtain
canonical extensions of δ and ϕ to the moduli space of indecomposable prin-
cipally polarised complex abelian varieties. For Riemann surfaces we have
the bounds ϕ(X) > 0 and δ(X) > −2g log 2π4. It is a natural question
whether these bounds are still true for the extended versions of δ and ϕ.

Question 5.1.2. Do all indecomposable principally polarised complex abelian
varieties (A,Θ) of dimension g ≥ 2 satisfy ϕ(A,Θ) > 0?

If the answer of this question is yes, we will also obtain the lower bound
δ(A,Θ) > −2g log 2π4. If the answer is no, ϕ could be seen as an indicator
for an abelian variety to be a Jacobian.

Finally in this section, we consider the Hain–Reed invariant βg(X) of
any compact and connected Riemann surface X of genus g ≥ 2, which we
already mentioned in the introduction. This invariant is only defined modulo
constants on Mg. De Jong obtained a canonical normalization by proving
that a representative of βg(X) is given by 1

3
((2g − 2)ϕ(X) + (2g + 1)δ(X)),

see [dJo13, Theorem 1.4]. Hence, we can also define βg for indecomposable
principally polarised complex abelian varieties by

βg(A,Θ) = 2(g − 4)(g + 1)H(A,Θ)− 2gΛ(A,Θ)− 4g(g+2)
3

log 2π.

By Theorem 5.1.1 we have βg(Jac(X)) = βg(X) for any compact and con-
nected Riemann surface X of genus g ≥ 2.

5.2 Asymptotics

Next, we discuss some of the asymptotics of the extended versions of the
invariants δ and ϕ for degenerating families of indecomposable principally
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polarised complex abelian varieties. We denote by D ⊆ C the open unit disc.
Further, we denote f(t) = O(g(t)) for two functions f, g : D → R if there
exists a bound M ∈ R not depending on t, such that |f(t)| ≤M · |g(t)| for all
t ∈ D. If X → D is a family of complex curves, such that Xt is a Riemann
surface if and only if t 6= 0 and X0 has exactly one node, then Jorgenson
[Jor90], Wentworth [Wen91] and de Jong [dJo14a] showed that δ(Xt) and
ϕ(Xt) go to infinity for t → 0. By continuity, δ and ϕ have to be infinity
on the boundary of Mg in its Deligne–Mumford compactification Mg and
hence, they are bounded from below on Mg.

It is a natural question, whether the same is true for the extended ver-
sions of δ and ϕ on the moduli space of indecomposable principally polarised
complex abelian varieties. As a first step, we obtain the following asymptotic
behaviour of δ and ϕ for families of indecomposable principally polarised com-
plex abelian varieties degenerating to a decomposable principally polarised
complex abelian variety.

Proposition 5.2.1. Let τ : D → Hg be a holomorphic embedding and write
(At,Θt) for the principally polarised complex abelian variety associated to
τ(t). If (At,Θt) is indecomposable for t 6= 0 and (A0,Θ0) is the product of
two indecomposable principally polarised complex abelian varieties (A1,Θ1)
and (A2,Θ2) of positive dimensions g1, respectively g2, then it holds

lim
t→0

H(At,Θt) = H(A1,Θ1) +H(A2,Θ2),

Λ(At,Θt)− 2g1g2
g

log |t| = O(1),

δ(At,Θt) + 4g1g2
g

log |t| = O(1) and

ϕ(At,Θt) + 2g1g2
g

log |t| = O(1).

Proof. For t ∈ D and j ∈ {1, 2} we denote by νt = ν(At,Θt) and νj = ν(Aj ,Θj)

the canonical (1, 1) form of (At,Θt) respectively (Aj,Θj). We may assume,
that τ(0) is of the form

τ(0) =

(
Ω1 0
0 Ω2

)
,

where Ωj ∈ Hgj is a matrix associated to (Aj,Θj). We have ν0 = ν1 + ν2 and
hence,

1
g!
νg0 = 1

g1!g2!
νg11 ν

g2
2 and 1

g!
νg−1

0 = g1
g·g1!g2!

νg1−1
1 νg22 + g2

g·g1!g2!
νg11 ν

g2−1
2 .

Likewise, we obtain det(Im τ(0)) = det(Im Ω1) · det(Im Ω2). Every z ∈ At
can be represented by a + τ(t) · b for some real vectors a, b ∈ [−1

2
, 1

2
]g. Fix
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arbitrary vectors a, b ∈ [−1
2
, 1

2
]g and write zt = a+ τ(t) · b. We obtain for the

function θ

exp
(
−πt(Im zt)(Im τ(t))−1(Im zt)

)
· |θ|(τ(t); zt)

=

∣∣∣∣∣∑
n∈Zg

exp
(
πit(n+ b)τ(t)(n+ b) + 2πitna

)∣∣∣∣∣ .
In particular, we have ‖θ‖(τ(0);

(
z1

z2

)
) = ‖θ‖(Ω1; z1) · ‖θ‖(Ω2; z2), where

zj ∈ Cgj , and hence, H(A0,Θ0) = H(A1,Θ1) +H(A2,Θ2).
We also deduce, that Θ0 = (Θ1 × A2)∪(A1 ×Θ2). Set for easier notation

ng+1 = 1
2πi

. The function ‖η‖ can be written by

‖η‖(τ(t); zt) · det(Im τ(t))−(g+5)/4 (5.2.1)

=

∣∣∣∣∣∣det

(
4π2

∑
n∈Zg

njnk exp(πit(n+ b)τ(t)(n+ b) + 2πitna)

)
j,k≤g+1

∣∣∣∣∣∣ ,
where zt = a+ τ(t) · b ∈ Θt. Write a =

(
a1

a2

)
and b =

(
b1

b2

)
, where aj and bj

are gj-dimensional vectors. Let a+ τ(0) · b represent an element in Θ1 ×A2.
Consider the expression

θ̃jk(τ(t); a, b) =
∑
n∈Zg

njnk exp(πit(n+ b)τ(t)(n+ b) + 2πitna).

If j ≤ g1 or k ≤ g1, then θ̃jk(τ(0); a, b) is non-zero for a dense subset of pairs
(a, b) in

M =
{

(a, b) ∈
[
−1

2
, 1

2

]g | a+ τ(0) · b ∈ Θ1 × A2

}
.

Otherwise it is zero, since we can write it as a product containing the factor∑
n∈Zg1

exp(πit(n+ b1)Ω1(n+ b1) + 2πitna1), (5.2.2)

which vanishes by (a1 + Ω1 · b1) ∈ Θ1. But the expression

lim
t→0

θ̃jk(τ(t); a, b)

t
,

is non-zero for a dense subset of pairs (a, b) in M . To check this, one uses
the chain rule to obtain a linear combination of partial derivations of (5.2.2)
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with coefficients ∂τpq(t)

∂t
|t=0 with p ≤ g1 and q > g2, which do not vanish all

by the definition of τ .
We have to compute the order of vanishing at t = 0 for the summands

in the expansion of the determinant in (5.2.1). Let σ ∈ Sym(g + 1) be any
permutation with σ(g + 1) 6= g + 1. Denote by m(σ) the cardinality of
{j ≤ g1 | σ(j) > g1}. The observations above shows, that

g+1∏
j=1

θ̃j,σ(j)(τ(t); a, b)

vanishes of order g2 + 1 − m(σ) at t = 0 for a dense subset of pairs (a, b)
in M . But for different j1, j2 ≤ g1 and different k1, k2 > g1 the function
θ̃jlkm(τ(t); a, b) splits into a product of two factors, such that the expression

θ̃j1k1(τ(t); a, b) · θ̃j2k2(τ(t); a, b)− θ̃j1k2(τ(t); a, b) · θ̃j2k1(τ(t); a, b)

vanishes at t = 0 of order at least 1. If σ satisfies m(σ) ≥ 2, σ(j1) = k1

and σ(j2) = k2, then we construct σ′ ∈ Sym(g+ 1) by setting σ′(j1) = σ(j2),
σ′(j2) = σ(j1) and σ′(j) = σ(j) for j /∈ {j1, j2}. We obtain that

g+1∏
j=1

θ̃j,σ(j)(τ(t); a, b)−
g+1∏
j=1

θ̃j,σ′(j)(τ(t); a, b)

vanishes of order at least g2 + 2 − m(σ). Inductively, we deduce that the
determinant in (5.2.1) vanishes of order at least g2. Since there is no such
cancellation for permutations with m(σ) = 1, we conclude that

log ‖η‖(τ(t); a+ τ(t) · b) = g2 log |t|+O(1)

for a dense subset of pairs (a, b) in M . We can argue analogously for a, b
with (a+ τ(0) · b) ∈ A1 ×Θ2. Then we obtain for the invariant Λ(At,Θt):

Λ(At,Θt) =

∫
Θ1×A2

(g2 log |t|+O(1)) g1
g·g1!g2!

νg1−1
1 νg22

+

∫
A1×Θ2

(g1 log |t|+O(1)) g2
g·g1!g2!

νg11 ν
g2−1
2

=2g1g2
g

log |t|+O(1).

Now the formulas for δ and ϕ in the proposition follow by Theorem 5.1.1.
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Chapter 6

Applications

Finally, we apply our results to Arakelov theory. For details on Arakelov
theory we refer to the introduction, and we also continue the notation from
the introduction.

6.1 Bounds of heights and intersection num-

bers

We establish some bounds of certain Arakelov intersection numbers and of the
heights of points. Let C → Spec K be a smooth, projective and geometrically
connected curve of genus g ≥ 2 defined over a number field K. After a
finite field extension, we can assume that C has semi-stable reduction over
B = Spec OK , see [DM69]. Let p : C → B be the minimal regular model of
C over B. We set d = [K : Q] and we write e(C) = 1

d
(ωC /B, ωC /B) for the

stable Arakelov self-intersection number of the relative dualizing sheaf ωC /B.
It does not depend on the choice of K. Further, we define the stable Faltings
height by hF (C) = 1

d
d̂eg det p∗ωC /B and we shortly write

δ(C) = 1
d

∑
σ : K→C

δ(Cσ) and ∆(C) = 1
d

∑
v∈|B|

δv logNv,

where the first sum runs over all embeddings σ : K → C. Now the arithmetic
Noether formula, see formula (1) in the introduction, has the form

12hF (C) = e(C) + ∆(C) + δ(C)− 4g log 2π. (6.1.1)

As a direct consequence of the arithmetic Noether formula and Corollary
4.4.2 we get the following inequality.
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Corollary 6.1.1. The Arakelov self-intersection number e(C) is bounded by

e(C) < 12hF (C) + 6g log 2π2.

Further, we also define the stable version ϕ(C) = 1
d

∑
σ : K→C ϕ(Cσ) of the

Kawazumi–Zhang invariant and the invariant H(C) = 1
d

∑
σ : K→CH(Cσ).

Next, we consider heights of points. Let P ∈ C(K) be any geometric
point of C, where K denotes an algebraic closure of K. After a finite field
extension, we can assume, that P is already defined over K with K as above.
Then we define the stable Arakelov height of P by

h(P ) = 1
d
(ωC /B,OC (P )).

On the other hand, we write hNT for the Neron-Tate height on Pic0(C) and
we set hNT (P ) = hNT ((2g − 2)P −KC), where KC is the canonical bundle
on C. It holds

hNT (P ) ≤ 2g(g − 1)h(P ), (6.1.2)

see for example [JvK14, Lemma 4.4]. Denote by W the divisor of Weierstraß
points in C. After a finite field extension, we may assume, that all Weierstraß
points are defined over K.

Proposition 6.1.2. The heights of the Weierstraß points on C are bounded
by

max
P∈W

h(P ) ≤
∑
P∈W

h(P ) < (6g2 + 4g + 2)hF (C) + 12g4 · log 2.

In the summation over W the Weierstraß points are counted with their mul-
tiplicity in W .

Proof. The first inequality is trivial since it holds h(P ) ≥ 0 for all geometric
points P of C, see [Fal84, Theorem 5]. It follows from the proof of [dJo09,
Theorem 4.3] that the sum

∑
P∈W h(P ) is bounded by

(3g − 1)(2g + 1)hF (C) + g+1
4
e(C) + g(2g − 1)(g + 1) log(2π)− 2g2 log T (C),

where the invariant T (C) is defined by T (C) = 1
d

∑
σ : K→C T (Cσ) and

log T (X) = 1
4
δ(X)− g−1

g2
S1(X)

for any compact and connected Riemann surface X of genus g ≥ 2, see
[dJo05a], where one has to pay attention to the following misprint in [dJo05a,
Theorem 4.4]: the g3 occurring in the exponent should be g2.
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We will bound the invariant − log T (X). An application of Lemma 4.5.1
with r = 1/(2g) yields

g−1
g2
S1(X) + g−1

2g3
H(X) <

(
7
4
g2 − 5

8
g − 1

)
log 2.

Now we get by Theorem 4.4.1 and the bounds in (1.2.9) and Proposition
1.1.1

− log T (X) < 2g log 2π +
(

7
4
g2 − 17

8
g − 7

8

)
log 2.

If we put this into the bound for
∑

P∈W h(P ) and if we bound e(C) in terms
of hF (C) by Corollary 6.1.1, we get the inequality in the proposition.

We apply this bound and the bound of the Arakelov–Green function in
Corollary 4.6.2 to obtain the following bound for certain Arakelov intersection
numbers.

Proposition 6.1.3. Let W1, . . . ,Wg be arbitrary and not necessary differ-
ent Weierstraß points on C and write D for the effective divisor

∑g
j=1 Wj.

Further, let L be any line bundle on C of degree 0, that is represented by a
torsion point in Pic0(C) and that satisfies dimH0(L(D)) = 1. Write D′ for
the unique effective divisor on C, such that L ∼= OC(D′−D). Let P ∈ C(K)
be any geometric point of C. We may assume that P,D,D′ and L are defined
over K. It holds

1
d
(D′ −D,P ) < 13g4 · hF (C) + 28g6 · log 2.

Proof. The intersection number 1
d
(D′ −D,P ) is bounded by

1
2
hF (C)− 1

2d
(D,D − ωC /B) + 2g2∆(C) + 1

d

∑
σ : K→C

log ‖θ‖σ,sup + g
2

log 2π,

see [EC11, Theorem 9.2.5]. Here, ‖θ‖σ,sup denotes the supremum of ‖θ‖ on
Picg−1(Cσ). Since the intersection product is additive and the adjunction
formula yields (P, P ) = −(P, ωC /B), see [Ara74, Theorem 4.1], we get

− 1
2d

(D,D − ωC /B) ≤ g+1
2

g∑
j=1

h(Wj)− 1
2d

∑
1≤j,k≤g
Wj 6=Wk

(Wj,Wk).

We can bound the terms h(Wj) by Proposition 6.1.2 and forWj 6= Wk we have
−(Wj,Wk) ≤

∑
σ : K→C gσ(Wj,Wk) with gσ the logarithm of the Arakelov–

Green function of Cσ for any embedding σ : K → C. Using Corollary 4.6.2
we can bound the Arakelov–Green functions in terms of δ(C), which we can
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again bound in terms of hF (C) by the arithmetic Noether formula (6.1.1)
and the bound e(C) ≥ 0. For g ≤ 5 this yields

− 1
2d

(D,D − ωC /B) < (3g4 + 5g3 + 3g2 + 5
2
g − 3

2
)hF (C) + 10g6 log 2

and for g > 5

− 1
2d

(D,D − ωC /B) < (3g4 + 5g3 + 13
4
g2 + 7

8
g − 1

8
)hF (C) + 15

2
g6 log 2.

Since we have hF (C) > −g
2

log 2π2 by Corollary 6.1.1, we can bound for all
g ≥ 2

− 1
2d

(D,D − ωC /B) < 105
16
g4 · hF (C) + 14g6 log 2.

Next, we bound 2g2∆(C) and 1
d

∑
σ : K→C log ‖θ‖σ,sup. We apply Lemma

4.5.1 with r = 1/(2g) to bound the supremum ‖θ‖σ,sup:

1
d

∑
σ : K→C

log ‖θ‖σ,sup <
(

7
4
g3 + 9

8
g2 + 1

8
g
)

log 2− 1
2g
H(C).

By (6.1.1), we have ∆(C) ≤ 12hF (C) − δ(C) + 4g log 2π. If we substitute
δ(C) by Theorem 4.4.1 and if we use the bounds (1.2.9) and Proposition
1.1.1, we conclude

2g2∆(C) + 1
d

∑
σ : K→C

log ‖θ‖σ,sup < 24g2hF (C) + 55g3 log 2.

If we join these bounds together, we obtain the bound in the proposition.

We can also apply our lower bound for δ(C) to a result by Javanpeykar
and von Känel on Szpiro’s small points conjecture. We denote by S the set
of places of K, where C has bad reduction. Further, we write DK for the
absolute value of the discriminant of K over Q and we set NS =

∏
v∈S Nv

and ν = d(5g)5. We say that C is a cyclic cover of prime degree if there
exists a finite morphism C → P1

K of prime degree, which is geometrically a
cyclic cover. By Javanpeykar and von Känel [JvK14, Proposition 5.3] there
exist infinitely many geometric points P of C, such that

h(P ) ≤ ν8gdν(NSDK)ν − min
X∈Mg

δ(X). (6.1.3)

Hence, we can apply Corollary 4.4.2 to considerably improve the result in
[JvK14, Theorem 3.1] on Szpiro’s small points conjecture.

Corollary 6.1.4. Suppose that C is a cyclic cover of prime degree. There
are infinitely many geometric points P ∈ C(K), which satisfy

max(hNT (P ), h(P )) ≤ ν8gdν(NSDK)ν .
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Proof. This directly follows from (6.1.3) and Corollary 4.4.2. We remark,
that the estimates in [JvK14] are coarse enough that we can omit the sum-
mand 2g log 2π4 resulting from Corollary 4.4.2 and the factor 2g(g − 1) re-
sulting from (6.1.2).

6.2 Explicit Arakelov theory for hyperelliptic

curves

In this section we consider Arakelov theory on hyperelliptic curves. In this
special case, we find an explicit description for the stable Arakelov self-
intersection number of the relative dualizing sheaf. As applications we obtain
an effective version of the Bogomolov conjecture and an arithmetic analogous
of the Bogomolov-Miyaoka-Yau inequality. We continue the notation from
the last section.

We say C is hyperelliptic if it is in addition given by the projective closure
of an equation as in (1.3.1). From now on we assume C to be hyperelliptic.
Hence, we can define ‖∆g‖(C) = 1

d

∑
σ ‖∆g‖(Cσ). Next, we define the type

and the subtype of a node. Let v ∈ |B|, such that C has bad reduction at
v. Choose a node P of the geometric fibre Cv̄ and write (Cv̄)P → Cv̄ for the
partial normalization at P . If (Cv̄)P is connected, we say that P is of type
0. Otherwise, (Cv̄)P has two connected components of arithmetic genus g1

and g2. We may assume g1 ≤ g2 and we say that P is of type g1. Since
g1 +g2 = g, we have g1 ≤ bg/2c. We write δj(Cv̄) for the number of all nodes
of type j in the geometric fibre Cv̄ and we set

∆j(C) = 1
d

∑
v∈|B|

δj(Cv̄) logNv.

It follows
∑bg/2c

j=0 ∆j(C) = ∆(C).
If P is of type 0, we also define its subtype. The hyperelliptic involution

σ extends to C , and we denote its restriction to Cv̄ by σv. If σv(P ) = P we
say P is of subtype 0. Otherwise, the partial normalization (Cv̄)P,σv(P ) at P
and σv(P ) has two connected components of arithmetic genus g1 and g2. We
again assume g1 ≤ g2 and say that P is of subtype g1. Since g1+g2 = g−1, we
have g1 ≤ b(g−1)/2c. We write ξ0 for the number of all nodes of subtype 0 in
the geometric fibre Cv̄. Note that this can also include nodes with σv(P ) 6= P
if Cv̄ is not stable. For j ≥ 1 we write ξj(Cv̄) for the number of σv-orbits of
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nodes of subtype j in the geometric fibre Cv̄. By construction we have

δ0(Cv̄) = ξ0(Cv̄) +

b g−1
2 c∑
j=1

2ξj(Cv̄).

Further, we set

Ξj(C) = 1
d

∑
v∈|B|

ξj(Cv̄) logNv.

Now we can apply our results to the work by Kausz [Kau99] and Yamaki
[Yam04] to obtain the following expression for e(C).

Corollary 6.2.1. Let C be any hyperelliptic curve as above. The Arakelov
self-intersection number e(C) is given by

e(C) = g−1
2g+1

Ξ0(C) +

b g−1
2 c∑
j=1

6j(g−1−j)+2(g−1)
2g+1

Ξj(C)

+

b g2c∑
j=1

(
12j(g−j)

2g+1
− 1
)

∆j(C) + 2(g−1)
2g+1

ϕ(C).

Proof. Kausz constructed a canonical section Λ of the metrized line bundle
(det p∗ωC /B)⊗(8g+4) in [Kau99, Section 2]. Hence, we can write

d̂eg
(
(det p∗ωC /B)⊗(8g+4)

)
=
∑
v∈|B|

ordv(Λ) logNv −
∑

σ : K→C

log ‖Λ‖σ.

Furthermore, he proved [Kau99, Theorem 3.1], that we have for v - 2

ordv(Λ) = g · ξ0(Cv̄) + 2

b g−1
2 c∑
j=1

(g − j)(j + 1)ξj(Cv̄) + 4

b g2c∑
j=1

(g − j)jδj(Cv̄).

(6.2.1)

By [Yam04, Theorem 1.7] this equality holds even if v | 2. However, Yamaki
states his theorem only for stable curves. But, we can define the stable model
C → C ′, where the map is given by contracting all rational components in the
special fibres of C meeting the rest of the special fibre in exactly two points.
There is a canonical isomorphism p∗ωC /B

∼= p′∗ωC ′/B, where p′ : C ′ → B is the
structure morphism, see for example [ACG11, Proposition 10.6.7]. Hence, we
get an identification of the sections Λ and Λ′ of (det p∗ωC /B)⊗(8g+4), respec-
tively (det p′∗ωC ′/B)⊗(8g+4). Further, the calculation in the proof of [Kau99,
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Lemma 3.2.(b)] shows, that the right hand side of (6.2.1) is compatible with
the contraction map C → C ′. Hence, (6.2.1) also holds for curves with
semi-stable reduction at places with v | 2.

For the Archimedean part we have by [dJo07, p. 11](
2g
g−1

)
log ‖Λ‖σ = g log ‖∆g‖(Cσ) + 4g2

(
2g+1
g+1

)
log 2π.

Putting everything together, we get for the Faltings height

hF (C) = 1
8g+4

gΞ0(C) + 2

b g−1
2 c∑
j=1

(g − j)(j + 1)Ξj(C) + 4

b g2c∑
j=1

(g − j)j∆j(C)


− g

8g+4

(
2g
g−1

)−1
log ‖∆g‖(C)− g log 2π.

If we apply Corollary 3.3.2 to the arithmetic Noether formula (6.1.1), we
get

12hF (C) = e(C)+∆(C)− 2(g−1)
2g+1

ϕ(C)− 3g
2g+1

(
2g
g−1

)−1
log ‖∆g‖(C)−12g log 2π.

Now the corollary follows by combining both formulas and solving for e(C).

This explicit expression for e(C) leads to an effective version of the Bogo-
molov conjecture for hyperelliptic curves in the same way as Yamaki [Yam08]
worked this out for function fields.

Corollary 6.2.2. Let C be any hyperelliptic curve as above and z any ge-
ometric point of Pic0(C). There are only finitely many geometric points
P ∈ C(K) satisfying

hNT (((2g − 2)P −KC)− z) ≤ (g−1)2

2g+1

(
2g−5
12g

∆(C) + ϕ(C)
)
.

Proof. Zhang introduced in [Zha93] the notion of the admissible pairing (·, ·)a
and of the admissible dualizing sheaf ωaC /B, and he proved, that

lim inf
P∈C(K)

hNT ((2g − 2)P −KC)− z) ≥ g−1
d

(ωaC /B, ω
a
C /B)a,

see [Zha93, Theorem 5.6]. The admissible self-intersection number of ωaC /B
satisfies

(ωaC /B, ω
a
C /B)a = (ωC /B, ωC /B)−

∑
v∈|B|

εv logNv,
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where the εv’s are non-negative constants depending only on the weighted
dual graph of Cv̄ and we have εv = 0 if C has good reduction at v, see [Zha93,
Theorem 5.5]. Hence, we have to bound εv in terms of ξj(Cv̄) and δk(Cv̄) for
0 ≤ j ≤ b(g − 1)/2c and 1 ≤ k ≤ bg/2c. This was done by Yamaki [Yam08]
for the function field case. Since we are only interested in the weighted dual
graph of a special fibre, the calculation is exactly the same. Thus, we obtain
for g ≥ 5

εv ≤ 5(g−1)
12g

ξ0(Cv̄) +

b g−1
2 c∑
j=1

4(g−1)+6j(g−1−j)
3g

ξj(Cv̄) +

b g2c∑
j=1

(
4j(g−j)

g
− 1
)
δj(Cv̄)

and for g ≤ 4

εv ≤ 5(g−1)
12g

ξ0(Cv̄) +

b g−1
2 c∑
j=1

g−1+2j(g−1−j)
g

ξj(Cv̄) +

b g2c∑
j=1

(
4j(g−j)

g
− 1
)
δj(Cv̄),

see [Yam08, Section 4.3]. Using these bounds, we can estimate by Corollary
6.2.1

1
d
(ωaC /B, ω

a
C /B)a ≥ (g−1)(2g−5)

12g(2g+1)
∆(C) + 2(g−1)

2g+1
ϕ(C).

Hence, the corollary follows by ϕ(C) > 0.

By elementary estimations of the coefficients in Corollary 6.2.1, we deduce
the following bounds for e(C).

Corollary 6.2.3. Let C be any hyperelliptic curve as above. The Arakelov
self-intersection number e(C) is bounded in the following way:

g−1
2g+1

(∆(C) + 2ϕ(C)) ≤ e(C) ≤ g−1
2g+1

((3g + 1)∆(C) + 2ϕ(C)).

As a consequence we deduce an arithmetic analogous of the Bogomolov–
Miyaoka–Yau inequality, as suggested by Parshin [Par90, §1.(10)], for hyper-
elliptic curves.

Corollary 6.2.4. Let C be any hyperelliptic curve as above. We have

e(C) < g−1
2g+1

(
(3g + 1)∆(C) + δ(C) + 2g log 2π4

)
and in terms of the more explicit invariant log ‖∆g‖(C)

e(C) < g−1
2g+1

(
(3g + 1)∆(C)−

(
2g
g−1

)−1
log ‖∆g‖(C)− 2(2g + 1) log 2

)
.
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Proof. An application of the bound in Proposition 1.1.1 to Corollary 3.3.3
and the lower bound in Corollary 3.3.5 yield

2ϕ(C) < −
(

2g
g−1

)−1
log ‖∆g‖(C)− 2(2g + 1) log 2 < δ(C) + 2g log 2π4.

Now the corollary follows by combining these bounds with the upper bound
for e(C) in Corollary 6.2.3.

A similar but weaker bound was already obtained by Kausz [Kau99,
Corollary 7.8] and Maugeais [Mau03, Corollaire 2.11]. However, their bounds
involve an additional constant, which is not explicitly given. Parshin ob-
served in [Par90] that a certain upper bound for (ωV/B, ωV/B) for all arith-
metic surfaces V → B with stable fibres and smooth generic fibre of genus
g ≥ 2 would imply interesting arithmetic consequences, for example the abc-
conjecture. Unfortunately, we can not deduce any arithmetic consequences
from the special case Corollary 6.2.4 by the same methods as in [Par90].
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183 (1990), 69–105.

[Bos87] Bost, J.-B.: Fonctions de Green-Arakelov, fonctions thêta et
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