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Abstract

In this article the different dimensionless scaling methods for capillary rise of liquids in a tube or a porous medium are discussed.
A systematic approach is taken, and the possible options are derived by means of the Buckingham π theorem. It is found that
three forces (inertial, viscous and hydrostatic forces) can be used to obtain three different scaling sets, each consisting of two
dimensionless variables and one dimensionless basic parameter. From a general point of view the three scaling options are all
equivalent and valid for describing the problem of capillary rise. Contrary to this we find that for certain cases (depending on the
time scale and the dominant forces) one of the options can be favorable. Individually the different scalings have been discussed
and used in literature previously, however, we intend to discuss the three different sets systematically in a single paper and try to
evaluate when which scaling is most useful. Furthermore we investigate previous analytic solutions and determine their ranges of
applicability when compared to numerical solutions of the differential equation of motion (momentum balance).
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1. Introduction

There are numerous applications of capillary transport
phenomena ranging from daily life (writing with ink) to
complex engineering applications (fluid management in
space) and pure academic interest (validation of CFD
tools). Thus there are many publications dealing with
this problem, its mathematical description and its phys-
ical explanation [1–7]. To obtain a better understanding
of a problem its dimensionless consideration is always of
interest. Here the Buckingham π theorem [8] can be used
to obtain appropriate dimensionless scalings. In literature
there are several papers applying dimensionless numbers
to the problem of capillary rise. Ichikawa and Satoda [9]
focus on experiments with horizontal capillaries, Dreyer
et al. [10] and Stange et al. [11,12] on capillaries in a mi-
crogravity environment. There also exist studies involving
gravity, thus leading to different scaling approaches e.g. by
Quéré et al. [13,14], Marmur and Cohen [15], Zhmud et al.
[16], Lee and Lee [17] or Fries and Dreyer [18,19]. McKinley
[20] investigates dimensionless groups for free surface flows
with a focus on complex fluids. In this paper we now intend
to follow a systematic approach to dimensionless scaling of
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capillary rise, and to compare the different derived options.
The basis for the dimensionless scalings is the differential
equation of motion of the liquid inside a capillary tube.
It can be derived by solving an integral balance of the
linear momentum in an appropriate control volume [5]. To
solve the integrals and to obtain the boundary conditions
some assumptions have been made. First of all the viscous
losses in the tube are described using the Hagen-Poiseuille
law. Also the capillary pressure is assumed to be constant,
hence a static contact angle θ is used (e.g. see [6,19]). Fur-
thermore entry effects and losses in the liquid reservoir are
neglected. With these assumptions the equation of motion
is given by (e.g.[3,16])

−ρ
d(hḣ)

dt
= −2σ cos θ

R
+

8µh

R2
ḣ + ρgh (for ḣ > 0). (1)

In this equation the momentum change (inertia, left hand
side) is balanced by the capillary pressure, the viscous forces
and the hydrostatic pressure (left to right). σ refers to the
surface tension, R to the inner tube radius, ρ to the fluid
density, g to gravity and µ to the fluid viscosity. It is inter-
esting to note that Eq. (1) is only valid for a rising column.
For a falling column - as it occurs in oscillating cases - the
different flow characteristics at the tube inlet have to be
considered. While for the rising column it acts as a sink,
a jet is emitted for the falling column. For the descending
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Fig. 1. Liquid rise in a capillary tube [19]

case, a ḣ2 term included in the left hand side of Eq. (1) has
to be omitted to obtain

−ρhḧ = −2σ cos θ

R
+

8µh

R2
ḣ + ρgh (for ḣ < 0) (2)

as shown by Lorenceau et al. [21].
The momentum balance can also be given for the capillary
rise of liquids in porous media, here the viscous term is
replaced by the Darcy law

−ρ
d(hḣ)

dt
= −2σ cos θ

R
+

φµh

K
ḣ + ρgh (for ḣ > 0). (3)

φ denotes the porosity of the structure, and K its perme-
ability.

2. Dimensionless scaling

In this section the different dimensionless scaling options
will be discussed. The Buckingham π theorem and the ap-
proach described by White [22] is used. The relevant defi-
nitions shall be introduced briefly:
• Dimensional variables are the basic output of the exper-
iment, and normally the ones to be shown in a diagram.
They vary during a given run. In our case h and t (see Fig.
1).
• Dimensional parameters affect the variables, and may
vary from case to case, however remain constant during a
given run. In our case a, b and c, see Eqs. (4), (5) and (6)
below.
• Fundamental units are the units of the variables and pa-
rameters e.g. meter, kilogram, second.
• Scaling parameters are chosen to convert the variables to
a dimensionless form. In our case: two can be chosen.
• Basic parameter is the - in our case one - remaining pa-
rameter.
• Dimensionless variables are the variables made dimen-
sionless by the scaling parameters.
• Dimensionless basic parameter is the basic parameter
made dimensionless using the scaling parameters.
In a graphic representation of the dimensionless solution
the axes are the dimensionless variables, while the dimen-
sionless basic parameter is varied to plot a set of curves
[22] (e.g. see Fig. 2). With varying dimensionless basic pa-
rameter the influence of the basic parameter (and the cor-

responding force) can be observed. Regarding Eqs. (1) and
(3) we may define the following dimensional parameters

a =
ρR

2σ cos θ
, (4)

b =
4µ

Rσ cos θ
=̂

φµR

2Kσ cos θ
, (5)

c =
ρgR

2σ cos θ
. (6)

For b both the capillary tube and the Darcy version is given.
However, in favor of readability, we will not continue to ex-
plicate the Darcy version in the further text. Please note
that the parameters a, b and c are not identical to those ap-
plied in [18,19]. Using the introduced dimensional param-
eters one can rearrange Eqs. (1) and (3) to obtain

a
d (hḣ)

dt︸ ︷︷ ︸
inertial

+ bhḣ︸︷︷︸
viscous

+ ch︸︷︷︸
hydrostatic

= 1. (7)

It can now be observed that the momentum balance has
become much more clearly arranged and that each dimen-
sional parameter stands for a single term: a - inertia, b -
viscous effects and c - hydrostatic effects. Table 1 summa-
rizes the three different scaling options that will be exam-
ined one by one in the next sections.
Table 1
Scaling options

Option Basic parameter Scaling parameters

1 a (inertia) b (viscosity) and c (gravity)

2 b (viscosity) a (inertia) and c (gravity)

3 c (gravity) a (inertia) and b (viscosity)

3. Viscous effects and gravity as scaling forces (†)

Here, b (viscous effects) and c (gravity) are used as scaling
parameters, the remaining parameter a (inertia) is used as
basic parameter. The resulting dimensionless variables and
the dimensionless basic parameter are derived by applying
the Buckingham π theorem as shown in the Appendix

π†1 = h† = ch =
ρgR

2σ cos θ
h, (8)

and

π†2 = t† =
c2t

b
=

ρ2g2R3

16µσ cos θ
t. (9)

These two dimensionless variables have been used by
Zhmud et al. [16] and Fries and Dreyer [18]. The dimen-
sionless basic parameter reads as follows

π†3 = Ω =

√
b2

ac2
=

√
128σ cos θµ2

ρ3g2R5
. (10)

According to Quéré et al. [14], we denote the basic di-
mensionless parameter π†3 as Ω. Here, Ω can be used to
measure the influence of inertia. In Fig. 2 it can be seen
that for decreasing Ω (increasing inertia, see arrow) the
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Fig. 2. Plot showing the dimensionless numerical solution of Eqs.
(11) and (12). Viscosity and gravity are the scaling forces, inertia

is the basic parameter for the set of curves. The points refer to the
analytic solution for Ω→∞ by Washburn.

oscillations and the overshoot increase. This is consistent
with Quéré et al. who find oscillations to occur for Ω ≤ 2.
It is interesting to note that for all three scaling options
presented in this article Ω (=π3) is mathematically the
same, however, its meaning changes from scaling to scal-
ing [22]. Thus Ω always reflects the influence of the chosen
basic parameter. For example, as will be shown later in
further detail, Ω can become infinite in two limits which
are physically very different: For a non inertial case (the
Washburn limit) with a = 0, and for the no gravity case
(the Bosanquet limit) with c = 0.
The numerical solutions of the momentum balance as
shown in Figs. 2, 3 and 4 have been obtained by using an
implicit Runge-Kutta algorithm with the initial conditions
h(t = 0) = 0 and ḣ(t = 0) = 0. The case differentiation
for ḣ > 0 and ḣ < 0 was programmed by including an if()
command into the code.
Applying the scalings presented above the resulting di-
mensionless momentum balances read

1
Ω2

d
(
h† dh†

dt†

)
dt†

+ h†
dh†

dt†
+ h† = 1 (for ḣ† > 0) (11)

and
1

Ω2

d2h†

dt† 2
+ h†

dh†

dt†
+ h† = 1 (for ḣ† < 0). (12)

For Ω →∞ (no inertia), Eq. (11) can be solved analytically
with the solution given in implicit form by Washburn [2]

t† = −h† − ln (1− h†), (13)

and in explicit form by Barry et al. [23] and Fries and Dreyer
[18]

h† = 1 + W (−e−1−t†). (14)

Hereby, W (x) denotes the Lambert W function. By numer-
ical means we now find that the deviation between the an-
alytic and the numerical solution is smaller than 5 % for
Ω ≥ 7.9 and t† ≥ 0.1.

Fig. 3. Plot showing the dimensionless numerical solution of Eqs.

(18) and (19). Inertia and gravity are the scaling forces, viscosity is
the basic parameter for the set of curves. The points refer to the

analytic solution for Ω→ 0 by Quéré.

4. Inertia and gravity as scaling forces (‡)

For this case one obtains - analogous to the procedure
as shown in the Appendix - the following dimensionless
variables

π‡1 = h‡ = ch =
ρgR

2σ cos θ
h, (15)

and

π‡2 = t‡ =

√
c2

a
t =

√
ρg2R

2σ cos θ
t. (16)

These dimensionless variables have been used by Quéré et
al. [14]. The dimensionless basic parameter reads

π‡3 = Ω =

√
b2

ac2
=

√
128σ cos θµ2

ρ3g2R5
. (17)

Here, Ω can be used to measure the influence of viscous
effects. Thus it can be observed that in Fig. 3 the oscillations
decrease with increasing Ω (increasing viscosity, see arrow).
The dimensionless momentum balances read

d
(
h‡ dh‡

dt‡

)
dt‡

+ Ωh‡
dh‡

dt‡
+ h‡ = 1 (for ḣ‡ > 0) (18)

and
d2h‡

dt‡ 2
+ Ωh‡

dh‡

dt‡
+ h‡ = 1 (for ḣ‡ < 0). (19)

For Ω → 0 (no viscous effects), Eq. (18) can be solved
analytically with the solution given by Quéré [13] to be

h‡ = t‡
(

1− t‡

6

)
, (20)

valid for 0 ≤ t‡ ≤ 3. By numerical means we now find
that the deviation between the analytic and the numerical
solution is smaller than 5 % for Ω ≤ 0.11 and 0 ≤ t‡ ≤ 3.

5. Inertia and viscous effects as scaling forces (∗)

With this choice one obtains - analogous to the procedure
as shown in the Appendix - the dimensionless variables as
described in following: The first one reads
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Fig. 4. Plot showing the dimensionless numerical solution of Eqs.
(25) and (26). Inertia and viscosity are the scaling forces, gravity is

the basic parameter for the set of curves. The points refer to the

analytic solution for Ω→∞ by Bosanquet.

π∗1 =

√
b2

a
h =

√
32µ2

ρR3σ cos θ
h. (21)

To be consistent with the scaling by Ichikawa and Satoda
[9], and to obtain a more elegant form of analytic solution
(see Eq. (27)) we divide π∗1 by

√
2 to obtain

h∗ =
b√
2a

h =

√
16µ2

ρR3σ cos θ
h. (22)

The second dimensionless variable reads

π∗2 = t∗ =
b

a
t =

8µ

ρR2
t, (23)

and the dimensionless basic parameter

π∗3 = Ω =

√
b2

ac2
=

√
128σ cos θµ2

ρ3g2R5
. (24)

Here, Ω can be used to measure the influence of hydrostatic
effects. Thus it can be observed that in Fig. 4 the oscil-
lations increase and the maximum height decreases with
decreasing Ω (increasing hydrostatic effect, see arrow). Us-
ing the presented scaling the dimensionless momentum bal-
ances can be given as

2
d

(
h∗ dh∗

dt∗

)
dt∗

+ 2h∗
dh∗

dt∗
+
√

2
Ω

h∗ = 1 (for ḣ∗ > 0) (25)

and

2
d2h∗

dt∗ 2
+ 2h∗

dh∗

dt∗
+
√

2
Ω

h∗ = 1 (for ḣ∗ < 0). (26)

For Ω →∞ (no hydrostatic effects), Eq. (25) can be solved
analytically with the solution given by Bosanquet [3] to be

h∗ =
√

t∗ − (1− e−t∗). (27)

By numerical means we now find that the deviation between
the analytic and the numerical solution is smaller than 5 %
for Ω ≥ 96 and t∗ ≤ 100.

Table 2
Overview of dimensionless variables and Ω. See Tab. 3 for description

of dimensionless numbers.

Variable Dimensionless numbers ∼ Forces

h† ∼ Bo
cos θ

gravity
surface tension

t† ∼ Bo2

Ca cos θ
(gravity)2

viscous · surface tension

h‡ ∼ Bo
cos θ

gravity
surface tension

t‡ ∼
√

Bo
Fr2 cos θ

√
(gravity)3

(inertia)2 · surface tension

h∗ ∼ Oh√
cos θ

viscous√
inertia · surface tension

t∗ ∼ 1
Re

viscous
inertia

Ω ∼
√

cos θ
Bo · Ga

√
surface tension · viscous

gravity

6. Discussion

In Table 2 the different dimensionless variables and Ω are
examined further on. It can be observed that they are re-
lated to the indicated forces and well known dimensionless
numbers as displayed in Table 3. In Table 2, cos θ appears
as an independent dimensionless parameter.
It is interesting to note that the three figures (Figs. 2, 3,

Table 3

List of relevant dimensionless numbers

Abbrev. Name Equation Forces

Bo Bond-number ρgR2

σ
gravity

surface tension

Ga Galileo-number gR3ρ2

µ2
gravity
viscous

Ca Capillary-number µv
σ
∼ µR

σt
viscous

surface tension

Oh Ohnesorge-number µ√
Rρσ

viscous√
inertia · surface tension

Re Reynolds-number ρRv
µ
∼ ρR2

µt
inertia
viscous

Fr Froude-number v√
gR
∼

√
R

gt2
inertia
gravity

4) shown in the previous sections all represent solutions of
the same five cases (equal Ω). Due to the different scalings
however, their shapes bear no direct resemblance. From a
general point of view, the three scaling options are all equiv-
alent for describing the problem of capillary rise. However,
for some cases there can be a benefit of choosing a certain
scaling method. In the following, two of these cases shall
be discussed:
All forces are effective
One can visualize the impact of a parameter that is to be
investigated by choosing it to be the basic parameter. Then
the two remaining parameters must act as scaling parame-
ters. If, for example, viscous effects and gravity are chosen
to be scaling forces (parameters), then Ω, the basic param-
eter for the set of curves, will reflect the influence of inertia.
One of the forces can be neglected
For some cases it is possible to neglect the influence of a
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certain force, e.g. in microgravity the hydrostatic term can
be neglected. This also applies for experiments where only
the initial time period of the capillary rise is investigated,
while for later time stages in small capillaries one can usu-
ally neglect inertia. The neglected force can not be used as a
scaling force, thus the one remaining scaling option should
be chosen. In this case the neglected force will act as basic
parameter for the set of curves. However, the plotted solu-
tion is reduced to a single curve as the basic dimensionless
parameter Ω will equal 0 or ∞.

7. Conclusion

In this paper we have demonstrated that one can use the
Buckingham π theorem to systematically derive three dif-
ferent scaling options. Each option consists of a set of two
dimensionless variables and one basic dimensionless param-
eter. The different options found are discussed and numer-
ical as well as analytic solutions of the momentum balance
are shown in dimensionless form. Generally, the different
scaling options are absolutely equivalent in terms of de-
scribing the problem. However, using the right scaling can
help to identify the influence of a certain parameter to be
investigated. Also for some special cases (e.g. micrograv-
ity) the choice is limited to a single scaling method. These
findings can help to choose an appropriate scaling for rep-
resenting experimental data of capillary rise, and they may
also help to systematically plan an experimental campaign
well in advance by defining which dimensionless basic pa-
rameter is to be varied.

Appendix - Applying the Buckingham π Theorem

The following appendix aims to clarify the procedure to
derive the scalings. For the problem discussed we find five
(5) dimensional units:
a [ s2

m2 ]
b [ s

m2 ]
c [ 1

m ]
h [m]
t [s]

and two (2) fundamental units:
time [s]
length [m]

Thus one will obtain 5− 2 = 3 dimensionless π parameters
that characterize the problem. The table of fundamental
units reads as given in Tab. 4. According to the Bucking-

Table 4

Fundamental units
- a b c h t

seconds 2 1 0 0 1
meters -2 -2 -1 1 0

ham π theorem the system of equations evolves as follows

(
2 1 0 0 1
−2 −2 −1 1 0

)
.


π1,a π2,a π3,a

π1,b π2,b π3,b

π1,c π2,c π3,c

π1,h π2,h π3,h

π1,t π2,t π3,t

 =
(

0 0 0
0 0 0

)
.

(28)
This system is under-determined, and one is allowed to
choose three parameters in each π vector.
Viscous effects and gravity as scaling forces (†)
As we have chosen that a (inertia) shall be the basic pa-
rameter and b (viscosity) and c (gravity) shall be the scal-
ing parameters we set for an appropriate scaling for h that
π1,a = 0, π1,h = 1, and π1,t = 0. To find a parameter for t
we set π2,a = 0, π2,h = 0, and π2,t = 1. To find the basic
dimensionless parameter we use π3,a = −1/2 (this is cho-
sen to be consistent with Ω as defined by Quéré et al., other
choices lead to linearly dependent solutions), π3,h = 0, and
π3,t = 0. Now one can solve to obtain:

π1,a π2,a π3,a

π1,b π2,b π3,b

π1,c π2,c π3,c

π1,h π2,h π3,h

π1,t π2,t π3,t

 =


0 0 −1/2
0 −1 1
1 2 −1
1 0 0
0 1 0

 (29)

Thus the Buckingham π theorem provides us with two di-
mensionless variables and one dimensionless basic param-
eter.

π†1 = a0b0c1h1t0 (30)

π†2 = a0b−1c2h0t1 (31)

π†3 = a−
1
2 b1c−1h0t0 (32)

Inertia and gravity as scaling forces (‡)
As we have chosen that b (viscosity) shall be the basic pa-
rameter and a (inertia) and c (gravity) shall be the scal-
ing parameters we set for an appropriate scaling for h that
π1,b = 0, π1,h = 1, and π1,t = 0. To find a parameter for
t we set π2,b = 0, π2,h = 0, and π2,t = 1. To find the ba-
sic dimensionless parameter we use π3,b = 1, π3,h = 0, and
π3,t = 0. Now one can solve to obtain:

π1,a π2,a π3,a

π1,b π2,b π3,b

π1,c π2,c π3,c

π1,h π2,h π3,h

π1,t π2,t π3,t

 =


0 −1/2 −1/2
0 0 1
1 1 −1
1 0 0
0 1 0

 (33)

Thus the Buckingham π theorem provides us with two di-
mensionless variables and one dimensionless basic param-
eter.

π‡1 = a0b0c1h1t0 (34)

π‡2 = a−
1
2 b0c1h0t1 (35)

π‡3 = a−
1
2 b1c−1h0t0 (36)

Inertia and viscous effects as scaling forces (∗)
As we have chosen that c (gravity) shall be the basic pa-
rameter and a (inertia) and b (viscosity) shall be the scal-
ing parameters we set for an appropriate scaling for h that
π1,c = 0, π1,h = 1, and π1,t = 0. To find a parameter for t
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we set π2,c = 0, π2,h = 0, and π2,t = 1. To find the basic
dimensionless parameter we use π3,c = −1 (this is chosen
to be consistent with Ω as defined by Quéré et al., other
choices lead to linearly dependent solutions), π3,h = 0, and
π3,t = 0. Now one can solve to obtain:

π1,a π2,a π3,a

π1,b π2,b π3,b

π1,c π2,c π3,c

π1,h π2,h π3,h

π1,t π2,t π3,t

 =


−1/2 −1 −1/2

1 1 1
0 0 −1
1 0 0
0 1 0

 (37)

Thus the Buckingham π theorem provides us with two di-
mensionless variables and one dimensionless basic param-
eter.

π∗1 = a−
1
2 b1c0h1t0 (38)

π∗2 = a−1b1c0h0t1 (39)

π∗3 = a−
1
2 b1c−1h0t0 (40)
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