
Preamble. This is a reprint of the article:

M. Schulze Darup and M. Mönnigmann. Improved automatic computation of Hessian
matrix spectral bounds. SIAM Journal of Scientific Computing, 38(4): 2068–2090,
2016.

The digital object identifier (DOI) of the original article is:

10.1137/15M1025773

text

Improved automatic computation of

Hessian matrix spectral bounds

Moritz Schulze Darup† and M. Mönnigmann†

Abstract

This paper presents a fast and powerful method for the computation of eigenvalue bounds for
Hessian matrices ∇2ϕ(x) of nonlinear wice continuously differentiable functions ϕ : U ⊆ Rn → R
on hyperrectangles B ⊂ U . The method is based on a recently proposed procedure [9] for an
efficient computation of spectral bounds using extended codelists. Both that approach and
the one presented here substantially differ from established methods in that they deliberately
do not use any interval matrices and thus result in a favorable numerical complexity of order
O(n)N(ϕ), where N(ϕ) denotes the number of operations needed to evaluate ϕ at a point in its
domain. We improve the method presented Mönnigmann (in [9]) by exploiting sparsity, which
naturally arises in the underlying codelists. The new method provides bounds that are as good
as or better than those from the most accurate existing method in about 82% of the test cases.

1. Introduction

We present important improvements for a recently proposed method (see [9]) for the efficient
calculation of spectral bounds for Hessian matrices on hyperrectangles. The improvements build
on a systematic treatment of sparsity of the involved matrices, which will be shown to result in
significantly tighter eigenvalue bounds. The problem can concisely be summarized as follows.
Let ϕ : U ⊆ Rn → R be a twice continuously differentiable function on an open set U ⊆ Rn and
let B = [x1, x1]× · · · × [xn, xn] be a closed hyperrectangle in U . We seek bounds λ, λ ∈ R such
that the relations λ ≤ λ ≤ λ hold for all eigenvalues λ of all matrices H ∈ {∇2ϕ(x) |x ∈ B}.
More precisely, we solve the following problem:

Find λ, λ ∈ R such that λ ≤ min
x∈B

λmin(∇2ϕ(x)) and max
x∈B

λmax(∇2ϕ(x)) ≤ λ, (1.1)

where λmin(H) and λmax(H) denote the smallest and largest eigenvalue, respectively, of the
symmetric matrix H ∈ Rn×n. A bound λ (resp., λ) is called tight if there exists at least

† M. Schulze Darup and M. Mönnigmann are with Automatic Control and Systems Theory, De-
partment of Mechanical Engineering, Ruhr-Universität Bochum, 44801 Bochum, Germany. E-mails:
moritz.schulzedarup@rub.de and martin.moennigmann@rub.de.

1

http://dx.doi.org/10.1137/15M1025773

one x ∈ B such that λ = λmin(∇2ϕ(x)) (resp., λ = λmax(∇2ϕ(x))). Note that the problem
statement (1.1) does not necessarily imply that λ and λ are tight.
Eigenvalue bounds λ, λ are used, for example, in numerical optimization methods to detect

convexity or to construct convex underestimators of nonconvex functions [1–3]. If (1.1) yields
λ ≥ 0, then ϕ is convex on the interior of the hyperrectangle B. While no conclusion on the
convexity can be drawn if (1.1) results in λ < 0, the bound λ can still be used to construct a
convex underestimator for ϕ on B. Specifically,

ϕ̆(x) = ϕ(x) − 1

2
λ
∑n

i=1
(xi − xi) (xi − xi) (1.2)

is convex, coincides with ϕ at the vertices of B, and bounds ϕ from below everywhere else in
B. Since a large fraction of the total computation time is spent on the calculation of convex
underestimators in global optimization methods [1], fast methods for solving (1.1) are of interest.
We briefly note that (1.1) must also be solved in certain problems in automatic control and
systems theory. An illustrative example is given in [8].
Existing approaches to solving (1.1) proceed in two steps. First, a symmetric interval matrix

(also called interval Hessian) that contains all Hessians ∇2ϕ(x) on B is calculated:

Find H = HT ,H = H
T ∈ Rn×n such that H ij ≤

(

∇2ϕ(x)
)

ij
≤ H ij

for every i, j ∈ {1, . . . , n} and every x ∈ B.
(1.3)

This task can efficiently be carried out by combining interval arithmetics (IA; see [10], for
example) and automatic differentiation (AD; see [4, 11], for example). In the second step,
spectral bounds can be found by solving the following problem, which is similar to but different
from (1.1):

Find λ, λ ∈ R such that λ ≤ min
H∈H

λmin(H) and max
H∈H

λmax(H) ≤ λ, (1.4)

where H = {H ∈ Rn×n |Hij ∈ [H ij ,H ij], H = HT } is the set of all symmetric matrices that

respect the bounds H and H. Various approaches exist to solving (1.4) (see, e.g., [2, 5, 6, 12]).
However, since {∇2ϕ(x) |x ∈ B} ⊆ H, problem (1.4) is conservative compared to the original
problem (1.1). In fact it is the very point of the method introduced in [9] and refined in the
present paper to avoid computing interval matrices of the form (1.3) when solving (1.1) in order
to avoid this conservatism.
We briefly summarize the computational complexity of the existing methods. The computa-

tion of the matrices H and H in (1.3) requires O(n2)N(ϕ) (resp., O(n)N(ϕ)) operations if the
forward (resp., backward) mode of AD is used, where N(ϕ) denotes the number of operations
needed to evaluate ϕ at a point in its domain [4]. After the interval Hessian has been calculated,
solving (1.4) requires between O(n2) operations for the interval variant of Gershgorin’s circle
criterion [2,5] and O(2n n3) operations for Hertz and Rohn’s method [6,12]. The latter method
is an important benchmark in that it yields tight spectral bounds for the matrix set H. Hertz
and Rohn’s method therefore provides the most accurate option to solve (1.1) via (1.3) and (1.4).
Nevertheless, the resulting eigenvalue bounds are in general not tight due to the conservatism
in (1.3).
The total numerical effort of any approach that uses (1.3) and (1.4) corresponds to the sum of

the efforts for calculating H,H and solving (1.4). Thus, the numerical effort for the established
methods varies between O(n)N(ϕ) + O(n2) (backward mode AD combined with Gershgorin’s
circle criterion) and O(n2)N(ϕ)+O(2n n3) operations (forward mode AD combined with Hertz
and Rohn’s method). The major advantage of the direct method presented in [9] is its low
computational complexity, which was shown to be of order O(n)N(ϕ).

2

It is the purpose of this paper to improve the method introduced in [9] such that sparsity
can exploited to find tighter eigenvalue bounds. Here sparsity refers not to the Hessian ∇2ϕ(x)
itself but to the intermediate expressions that are typical for AD and IA based algorithms.
Essentially, these methods represent a function x → ϕ(x), x = (x1, . . . , xn)

T by a sequence of
single arithmetic operations called a codelist (see section 3). Codelists result in very simple
intermediate functions by construction. Since many of these intermediate functions only depend
on very few of the xi, they have very sparse intermediate Hessians as functions of x. This
sparsity impedes a precise estimation of eigenvalues, because it introduces superfluous zero
eigenvalues in the intermediate Hessians (see Example 1). It is the very point of the present
paper to improve the method from [9] by treating the sparsity in the intermediate expressions
in a systematic fashion. The improvements do not increase the numerical effort compared to
the original method in [9]. In fact, sparsity needs to be investigated once during the automatic
generation of the extended codelist. The computations required to evaluate the codelist to
obtain eigenvalue bounds on a specific hyperrectangle B are no more expensive than those for
the nonsparse case treated in [9]. While the computational effort remains the same, the improved
method results in significantly tighter eigenvalue bounds than the original procedure from [9].
To show this, we investigate 1522 examples (taken from the COCONUT collection [14]; see [13]
for details) and compare the eigenvalue bounds resulting from the improved procedure to those
obtained with the original one [9] and to bounds obtained with the interval Hessian (1.3) and
Gershgorin’s circle criterion and Hertz and Rohn’s method.
We summarize the major aspects of the direct method for the computation of eigenvalue

bounds from [9] in section 3. Our main result, the exploitation of sparsity for the improvement
of the eigenvalue bounds from [9], is stated in section 4. We analyze 1522 numerical examples
from [13,14] in section 5.1 Conclusions are given in section 6.

2. Notation and preliminaries

We frequently use index sets J ⊆ N , where N := N[1,n] and where N[m,n] := {i ∈ N |m ≤ i ≤ n}.
The complement of an index set J is defined as J c := N \ J . The cardinality of an index set
J is denoted by |J |.
It is convenient to state eigenvalue bounds as intervals (e.g., λ ∈ [λ, λ]). Intervals [a, a] ⊂ R

with a ≤ a are further abbreviated by [a] := [a, a] whenever appropriate. Interval equality
[a, a] = [b, b] is understood to mean a = b and a = b. We frequently carry out calculations on
intervals with standard IA rules. The required rules are summarized in Lemma 2.1 and Table 1.

Lemma 2.1 (basic interval operations [10]): Let [a] = [a, a] and [b] = [b, b] be intervals in R.
Let a ∈ [a, a], b ∈ [b, b], and c ∈ R be arbitrary real numbers. Then, the relations in the second
column of Table 1 hold under the additional restrictions stated in the last column.

A lowercase letter surrounded by brackets may refer to a real interval [x] = [x, x] ⊂ R (as
introduced above) or a hyperrectangle [x] = [x1, x1] × · · · × [xn, xn] ⊂ Rn (with n ≥ 1). In the
latter case, the interval operations listed in Table 1 are understood to apply to every component.
For a hyperrectangle [x] ⊂ Rn and a nonempty index set J ⊆ N with the m elements j1 <
· · · < jm, the term [xJ] refers to the hyperrectangle [xJ] = [xj1]× · · · × [xjm]. Throughout the
paper, B denotes some hyperrectangle [x] ⊂ Rn.
It is furthermore convenient to use null matrices in Rm×r, which we denote by 0m,r, when

dealing with sparsity. For the special cases m = 0 or r = 0 we obtain an empty matrix. Formally,

1 Results were obtained with Jcodegen, a code generator available from the authors on request or to be used
online on www.rus.rub.de/software/jcodegen. Jcodegen generates ANSI-C code for the algorithm described
in Proposition 4.17 for a given function ϕ. In particular sparsity is treated automatically. The specific
hyperrectangle B is passed to the resulting code as a runtime parameter.

3

the empty square matrix 00,0 has no eigenvalues. It proves useful to assign the eigenvalue bounds
[λ] = [0, 0] to it. Finally, the Cartesian unit vector along the kth direction is denoted by ek ∈ Rn.

Table 1: Basic IA.

Operation/Bounds Definition Restriction

a+ b ∈ [a] + [b] := [a+ b, a+ b]

a b ∈ [a] [b] := [min{a b, a b, a b, a b},max{a b, a b, a b, a b}]
1/a ∈ 1/[a] := [1/a, 1/a] 0 /∈ [a]
am ∈ [a]m := [am, am] if a > 0 or m odd

:= [am, am] if a < 0 and m even
:= [0,max{am, am}] otherwise√

a ∈
√

[a] := [
√
a,
√
a] a ≥ 0

exp a ∈ exp([a]) := [exp(a), exp(a)]
ln(a) ∈ ln([a]) := [ln(a), ln(a)] a > 0
a+ c ∈ [a] + c := [a+ c, a+ c]
c a ∈ c [a] := [c a, c a] if c ≥ 0

:= [c a, c a] otherwise

3. Direct computation of eigenvalue bounds for Hessian matrices on

hyperrectangles

We summarize the method introduced in [9] for the direct solution of (1.1) as needed in the
present paper. We assume the function ϕ can be evaluated at an arbitrary point x ∈ U by
carrying out a finite sequence of operations of the form

y1 = x1,
...

yn = xn,
yn+1 = Φn+1(y1, . . . , yn),
yn+2 = Φn+2(y1, . . . , yn, yn+1),

...
yn+t = Φn+t(y1, . . . , yn, yn+1, . . . , yn+t−1),

ϕ = yn+t,

(3.1)

where each Φn+k, k = 1, . . . , t, represents one of the elementary operations listed in the first
column of Table 2. We treat the same operations as in [9] for ease of comparison. Note that
additional unary operations can be added according to the rules given in [9]. We refer to (3.1)
as the codelist of the function ϕ.
The codelist (3.1) can be used to evaluate the function value ϕ(x) at a specific point x in

its domain. Using AD [11] the codelist (3.1) can be extended in such a way that the gradient
∇ϕ(x) or the Hessian ∇2ϕ(x) at the point x is calculated. Moreover, using AD and IA, (3.1)
can be modified such that interval extensions, interval gradients, or interval Hessians of ϕ on
hyperrectangles B ⊂ U are computed. In fact, extended codelists are commonly used to solve
problem (1.3) as part of the established procedures for the computation of eigenvalue bounds
(see, e.g., [2]). In contrast, the method introduced in [9] only requires the interval gradient
but not the interval Hessian. Essentially, the codelist is extended by arithmetic operations that

4

compute the eigenvalue bounds for the Hessian of the intermediate function in every codelist
line. Formally, this leads to the extended codelist which we introduce in the following theorem.

Table 2: Rules for the calculation of yk, [yk], [∇yk], and [λk] in the kth line of the
codelist (3.1). [∇yk] refers to the interval gradient of line k with respect to x. The in-
terval operators [Λs([a])] and [Λt([a], [b])] are defined in (3.2) and (3.3).

op Φk yk [yk] [∇yk] [λk]

var xk [xk] [ek, ek] [0, 0]
add yi + yj [yi] + [yj] [∇yi] + [∇yj] [λi] + [λj]
mul yi yj [yi] [yj] [yj][∇yi]+[yi][∇yj] [yj][λi] + [yi][λj] + [Λt([∇yi], [∇yj])]

powNat ymi [yi]
m m [yi]

m−1 [∇yi] m[yi]
m−2((m−1)[Λs([∇yi])]+[yi][λi])

oneOver 1/yi 1/[yi] −[yk]
2 [∇yi] [yk]

2 (2 [yk] [Λs([∇yi])]− [λi])

sqrt
√
yi [

√

[yi]] 1/(2 [yk]) [∇yi] 1/(2 [yk])([λi]+1/(−2 [yi])[Λs([∇yi])])
exp exp(yi) [exp([yi])] [yk] [∇yi] [yk] ([Λs([∇yi])] + [λi])
ln ln(yi) [ln([yi])] 1/[yi] [∇yi] 1/[yi] ([λi]− 1/[yi] [Λs([∇yi])])
addC yi + c [yi]+[c, c] [∇yi] [λi]
mulByC c yi c [yi] c [∇yi] c [λi]

Theorem 3.1 (algorithm for direct eigenvalue bound computation [9, Proposition 4.2]): Assume
ϕ is twice continuously differentiable on U and can be written as a codelist (3.1). Let B =
[x1]× · · · × [xn] ⊂ U be arbitrary. Then, for all x ∈ B, we have ϕ(x) ∈ [ϕ], ∇ϕ(x) ∈ [∇ϕ], and
[λmin(∇2ϕ(x)), λmax(∇2ϕ(x))] ⊆ [λϕ], where [ϕ], [∇ϕ], and [λϕ] are calculated by the following
algorithm:

1. For k = 1, . . . , n, set [yk] = [xk, xk], [∇yk] = [ek, ek], and [λk] = [0, 0].

2. For k = n+ 1, . . . , n+ t, calculate [yk], [∇yk], and [λk] according to the third, fourth, and
fifth columns of Table 2, respectively.

3. Set [ϕ] = [yn+t], [∇ϕ] = [∇yn+t], and [λϕ] = [λn+t].

In Table 2, we use the interval operators [Λs([a])] and [Λt([a], [b])], which are defined according
to

[Λs([a])] :=

{

[a]2 if m = 1,
[0,
∑m

i=1max{a2i , a2i }] otherwise,
(3.2)

and [Λt([a], [b])] :=

{

2 [a] [b] if m = 1,

[−β, β] +
∑m

i=1[ai, ai] [bi, bi] otherwise
(3.3)

for hyperrectangles [a] = [a1, a1]× · · · × [am, am] ⊂ Rm and [b] = [b1, b1] × · · · × [bm, bm] ⊂ Rm,

where β :=

√

(
∑m

i=1max{a2i , a2i })(
∑m

i=1 max{b2i , b
2
i }). We refer to [9, Lems. 2.2 and 2.3] for

details on [Λs([a])] and [Λt([a], [b])].

4. Improved computation of eigenvalue bounds using sparsity

If sparsity is exploited, tighter eigenvalue bounds can be obtained than those that result from
the method summarized in Section 3. This is evident from the following motivating example.

5

Example 1 (method from [9] applied to ϕ(x) = x21+x22): Consider the function ϕ : R2 → R with
ϕ(x) = x21+x22. Theorem 3.1 results in the following extended codelist. Note that the expressions
for yk listed in (4.1) do not result from Theorem 3.1 but are given only for illustration of the
codelist (3.1) of ϕ.

k yk [yk] [∇yk] [λk]

1 x1 [x1] [e1, e1] [0, 0]
2 x2 [x2] [e2, e2] [0, 0]
3 y21 [y1]

2 2 [y1] [∇y1] 2([Λs([∇y1])] + [y1] [λ1])
4 y22 [y2]

2 2 [y2] [∇y2] 2([Λs([∇y2])] + [y2] [λ2])
5 y3 + y4 [y3] + [y4] [∇y3] + [∇y4] [λ3] + [λ4]

ϕ = y5 [ϕ] = [y5] [∇ϕ] = [∇y5] [λϕ] = [λ5]

(4.1)

Evaluating the extended codelist (4.1) for the hyperrectangle B = [0, 1]× [0, 1] by computing [yk],
[∇yk], and [λk] and storing the results line by line yields

[y1] = [0, 1], [∇y1] = ([1, 1], [0, 0])T , [λ1] = [0, 0],
[y2] = [0, 1], [∇y2] = ([0, 0], [1, 1])T , [λ2] = [0, 0],
[y3] = [0, 1], [∇y3] = ([0, 2], [0, 0])T , [λ3] = [0, 2],
[y4] = [0, 1], [∇y4] = ([0, 0], [0, 2])T , [λ4] = [0, 2],
[y5] = [0, 2], [∇y5] = ([0, 2], [0, 2])T , [λ5] = [0, 4],

(4.2)

where [Λs([∇y1])] = [0, 1] and [Λs([∇y2])] = [0, 1] according to (3.3). Thus, we obtain the
eigenvalue bounds [λϕ] = [λ5] = [0, 4] for ∇2(ϕ(x)) on B. Now, consider the functions g, h :
R2 → R with g(x) = x21 and h(x) = x22. From

∇2g(x) =

(

2 0
0 0

)

and ∇2h(x) =

(

0 0
0 2

)

,

we infer that both ∇2g(x) and ∇2h(x) have the eigenvalues 0 and 2 for every x ∈ B. Hence,
the eigenvalue bounds [λg] = [λ3] = [0, 2] and [λh] = [λ4] = [0, 2] that result in lines 3 and 4 of
extended codelist (4.1) are tight. The eigenvalue bounds [λ5] = [λ3] + [λ4] = [0, 4] that result in
the subsequent line are conservative, however. In fact, the Hessian of ϕ reads

∇2ϕ(x) = ∇2g(x) +∇2h(x) =

(

2 0
0 2

)

for all x ∈ B and the tight eigenvalue bounds obviously read [λ∗
ϕ] = [2, 2].

The Hessian matrices ∇2g(x) and ∇2h(x) in Exmp. 1 have zero eigenvalues which disappear
when adding the two functions to f(x) = g(x) + h(x). The situation illustrated in Example 1
arises naturally in the codelists introduced in Section 3, because codelists build up functions of
many variables from functions of very few of these variables. In order to mitigate eigenvalue
bound overestimation in these cases, we need to consider functions like g(x) and h(x) in Exam-
ple 1 as functions of only those variables that they actually depend on nonlinearly. To this end,
some simple terminology and intermediate results are introduced in section 4.1. Subsequently,
sparse sums, products, and compositions are treated in Sects. 4.2, 4.3, and 4.4, respectively.
Section 4.5 summarizes how to compute the improved eigenvalue bounds based on the rules
introduced in Sects. 4.2–4.4.

4.1. Sparsity handling using reduced Hessians and reduced gradients

As pointed out in Example 1, sparsity occurs if functions depend at most linearly on some
variables xi, where at most linear dependence is defined as follows.

6

Definition 4.1 (independence and at most linear dependence): Let f : U → R be a continuously
differentiable function on an open set U ⊆ Rn. Let i ∈ N . The function f is said to depend at
most linearly on xi if there exists a c ∈ R such that

∂f

∂xi
(x) = c for all x ∈ U . (4.3)

If (4.3) holds with c = 0, the function is said to be independent of xi

Assume a function f is known to depend at most linearly on xj for all j ∈ Lf , where Lf ⊆ N
is a given index set. Then, only the eigenvalues of the reduced Hessian (see Def. 4.2) associated
with the index set J = Lc

f are nontrivial, i.e., not necessarily equal to zero.

Definition 4.2 (reduced Hessian ∇2
J f(x)): Let f : U → R be a twice continuously differentiable

function on an open set U ⊆ Rn. Let J ⊆ N be an index set and let m = |J |. If m = 0 set
∇2

J f(x) = 00,0; otherwise denote the m elements of J by j1 < · · · < jm in ascending order and
define the reduced Hessian ∇2

J f(x) ∈ Rm×m by its elements

(

∇2
J f(x)

)

ik
=

∂2f(x)

∂xji∂xjk
,

where i, k ∈ N[1,m].

We also need to consider reduced gradient vectors.

Definition 4.3 (reduced gradient ∇J f(x)): Let f : U → R be a continuously differentiable
function on an open set U ⊆ Rn. Let J ⊆ N be a nonempty index set and let m = |J |.
Denote the m elements of J by j1 < · · · < jm in ascending order and define the reduced gradient
∇J f(x) ∈ Rm by its elements

(∇J f(x))i =
∂f(x)

∂xji
,

where i ∈ N[1,m].

Note that the index set is assumed to be nonempty in Def. 4.3 of the reduced gradient. An
empty index set corresponds to a codelist line that does not depend on any variable. Since this
case never occurs, we exclude it. The empty index set is, in contrast, included in Def. 4.2 of the
reduced Hessian, because this case does occur whenever a codelist line defines a linear or affine
function.
We can easily evaluate eigenvalue bounds for the Hessian of a function from eigenvalue bounds

for its reduced Hessian. This is stated precisely in Lemma 4.4.

Lemma 4.4 (spectral bounds for Hessian from reduced Hessian): Let f denote a twice contin-
uously differentiable function f : U → R on an open set U . Let the index set Lf ⊆ N be such

that f depends at most linearly on xi for all i ∈ Lf . Let B ⊂ U and let the interval [λ†
f] ⊂ R be

such that
λ†
f ≤ min

x∈B
λmin(∇2

Lc
f
f(x)) and max

x∈B
λmax(∇2

Lc
f
f(x)) ≤ λ

†
f . (4.4)

Then, the eigenvalues of the Hessian ∇2f(x) on B lie in the interval

[λf] =











[λ†
f] if Lf = ∅,

[0, 0] if Lf = N ,

[min{λ†
f , 0},max{λ†

f , 0}] otherwise.

(4.5)

7

Proof. We consider the cases in (4.5) separately. Lf = ∅ implies Lc
f = N and consequently

∇2f(x) = ∇2
Lc
f
f(x), which proves the first case. In the second case, i.e., Lf = N , we have

∇2f(x) = ∇2
Lf

f(x). Since f depends at most linearly on xi for all i ∈ Lf , we find ∇2
Lf

f(x) =

0n,n. Thus, the eigenvalue bounds [λf] = [0, 0] hold. Regarding the third case, we note that
∅ ⊂ Lf ⊂ N implies ∅ ⊂ Lc

f ⊂ N . Thus, m = |Lf | satisfies 0 < m < n. Without loss of
generality we assume Lc

f = N[1,m]. Then

∇2f(x) =

(

∇2
Lc
f
f(x) 0m,n−m

0n−m,m ∇2
Lf

f(x)

)

=

(

∇2
Lc
f
f(x) 0m,n−m

0n−m,m 0n−m,n−m

)

.

Now consider an arbitrary but fixed x ∈ B. We obtain

λmin(∇2f(x)) = min{λmin(∇2
Lc
f
f(x)), 0} and (4.6)

λmax(∇2f(x)) = max{λmax(∇2
Lc
f
f(x)), 0} (4.7)

based on the block-diagonal structure of ∇2
Lc
f
f(x). Bounding (4.6) below and bounding (4.7)

above for all x ∈ B yields

[min
x∈B

λmin(∇2f(x)),max
x∈B

λmax(∇2f(x))] ⊆ [min{λ†
f , 0},max{λ†

f , 0}]

according to (4.6) and (4.7) and condition (4.4). �

4.2. Improved eigenvalue bounds for the sum of two functions

We collect some recurring conditions first.

Conditions 4.5: Let g and h denote twice continuously differentiable functions g : U → R and
h : U → R on an open set U ⊂ Rn. Let the index sets Lg ⊆ N and Lh ⊆ N be such that g (resp.,
h) depends at most linearly on xi for all i ∈ Lg (resp., all i ∈ Lh). Moreover, let the index sets
Ig ⊆ Lg and Ih ⊆ Lh with Ig ⊂ N and Ih ⊂ N be such that g (resp., h) is independent of xi for

all i ∈ Ig (resp., all i ∈ Ih). Let B ⊂ U and assume there exist intervals [λ†
g] ⊂ R and [λ†

h] ⊂ R
such that

λ†
g ≤ min

x∈B
λmin(∇2

Lc
g
g(x)) and max

x∈B
λmax(∇2

Lc
g
g(x)) ≤ λ

†
g, (4.8)

λ†
h ≤ min

x∈B
λmin(∇2

Lc
h
h(x)) and max

x∈B
λmax(∇2

Lc
h
h(x)) ≤ λ

†
h. (4.9)

Note that Lg and Lh may be equal to N , while Ig and Ih are assumed to be proper subsets of
N . This difference arises because a codelist line may depend at most linearly on all variables xi,
but it will never be independent of all xi. Now assume Conds. 4.5 hold and we intend to calculate
eigenvalue bounds for ∇2f(x) on a hyperrectangle B for f(x) = g(x)+h(x). We could determine
eigenvalue bounds for the full Hessians ∇2g(x) and ∇2h(x) with Lemma 4.4 and apply the rule
for the eigenvalue bounds of the sum of full Hessians (line add in Table 2 reproduced from [9]).
However, we show in Lemma 4.8 below that it is advantageous to, roughly speaking, carry out
calculations with the sparse Hessians as long as possible and to apply Lemma 4.4 as late as
possible. We first state the rules for determining Lf , If and the eigenvalues of the reduced
Hessian of f in Lems. 4.6 and 4.7, respectively. The trivial proof of Lemma 4.6 is omitted for
brevity.

Lemma 4.6 (index sets for sums): Assume Conds. 4.5 hold and consider the function f : U → R
with f(x) = g(x) + h(x). Let Lf = Lg ∩Lh and If = Ig ∩ Ih. Then, f depends at most linearly
on xi for all i ∈ Lf and f is independent of xi for all i ∈ If .

8

Lemma 4.7 (spectral bounds for reduced Hessian of sums): Assume Conds. 4.5 hold and consider
the function f : U → R, f(x) = g(x) + h(x). Let Lf = Lg ∩ Lh. Then,

λ†
f ≤ min

x∈B
λmin(∇2

Lc
f
f(x)) and max

x∈B
λmax(∇2

Lc
f
f(x)) ≤ λ

†
f , (4.10)

where [λ†
f] is computed according to the rules listed in Table 3.

Table 3: Rules for the computation of eigenvalue bounds [λ†
f] for the reduced Hessian

∇2
Lc
f
f(x) of a sum f(x) = g(x) + h(x). Let L∪ be short for L∪ := Lg ∪ Lh. See the end of

section 4.2 for a discussion of the eight cases.

Case [λ†
f] Condition

1 [0, 0] Lg = N ∧ Lh = N
2 [λ†

g] Lg ⊂ N ∧ Lh = N
3 [λ†

h] Lg = N ∧ Lh ⊂ N
4 [min{λ†

g, λ
†
h},max{λ†

g, λ
†
h}] Lg ⊂ N ∧ Lh ⊂ N ∧ L∪ = N

5 [λ†
g] + [λ†

h] L∪ ⊂ N ∧ Lg = Lh

6 [λ†
g] + [min{λ†

h, 0},max{λ†
h, 0}] L∪ ⊂ N ∧ Lg ⊂ Lh

7 [min{λ†
g, 0},max{λ†

g, 0}] + [λ†
h] L∪ ⊂ N ∧ Lh ⊂ Lg

8 [min{λ†
g, 0},max{λ†

g, 0}] + [min{λ†
h, 0},max{λ†

h, 0}] L∪ ⊂ N ∧ Lg * Lh ∧ Lh * Lg

Proof. We prove the fourth case in Table 3 since it will be instrumental for Example 2. All
other cases in Table 3 can be proven analogously. The reduced Hessian of f reads ∇2

Lc
f
f(x) =

∇2
Lc
f
g(x)+∇2

Lc
f
h(x). From Lg ⊂ N , Lh ⊂ N , and L∪ = Lg ∪Lh = N , we infer ∅ ⊂ Lg ⊂ N and

∅ ⊂ Lh ⊂ N and consequently ∅ ⊂ Lc
g ⊂ N and ∅ ⊂ Lc

h ⊂ N . Thus, the cardinalities r = |Lc
g|

and s = |Lc
h| satisfy 0 < r < n and 0 < s < n. Moreover, Lg ∪ Lh = N implies Lc

g ∩ Lc
h = ∅.

Hence, there does not exist any index i ∈ N such that both i ∈ Lc
g and i ∈ Lc

h. We assume
Lc
g = N[1,r] and Lc

h = N[r+1,r+s] without loss of generality. Note that Lc
f = Lc

g ∪ Lc
h implies

Lc
f = N[1,r+s] and m = |Lc

f | = r + s under this assumption. Thus, ∇2
Lc
f
f(x) equals

(

∇2
Lc
g
g(x) 0r,s

0s,r 0s,s

)

+

(

0r,r 0r,s
0s,r ∇2

Lc
h
h(x)

)

=

(

∇2
Lc
g
g(x) 0r,s

0s,r ∇2
Lc
h
h(x)

)

. (4.11)

The block-diagonal structure implies

λmin(∇2
Lc
f
f(x)) = min{λmin(∇2

Lc
g
g(x)), λmin(∇2

Lc
h
h(x))} and (4.12)

λmax(∇2
Lc
f
f(x)) = max{λmax(∇2

Lc
g
g(x)), λmax(∇2

Lc
h
h(x))} (4.13)

for an arbitrary but fixed x ∈ B. Bounding (4.12) below and bounding (4.13) above for all x ∈ B
yields

[min
x∈B

λmin(∇2f(x)),max
x∈B

λmax(∇2f(x))] ⊆ [min{λ†
g, λ

†
h},max{λ†

g, λ
†
h}],

where we used (4.12) and (4.13) and Conditions 4.5. Thus, the eigenvalues of ∇2
Lc
f
f(x) on B lie

in the interval [λ†
f] = [min{λ†

g, λ
†
h},max{λ†

g, λ
†
h}] as claimed in Table 3. �

9

We anticipated the bounds from Lemma 4.7 can be shown to be as tight as or tighter than
those from the original method proposed in [9] that does not account for sparsity. This can now
be shown in Lemma 4.8 below. Recall that the bounds in [9] result in [λf] = [λg] + [λh] for
f(x) = g(x) + h(x) according to [9, Proposition 3.2(iii)].

Table 4: Fundamental cases underlying Table 3.

Case Reduced Hessian ∇2
Lc
f
f(x) Contribution Condition

(i) 00,0 none Lc
g = ∅ ∧ Lc

h = ∅
(ii) ∇2

Lc
f
g(x) first Hessian Lc

g ⊃ ∅ ∧ Lc
h = ∅

(iii) ∇2
Lc
f
h(x) second Hessian Lc

g = ∅ ∧ Lc
h ⊃ ∅

(iv) ∇2
Lc
f
g(x) +∇2

Lc
f
h(x) both Hessians Lc

g ⊃ ∅ ∧ Lc
h ⊃ ∅

Lemma 4.8 (improved bounds for sums): Assume Conditions 4.5 hold and let f , [λ†
f], and Lf

be as in Lemma 4.7. Let [λf], [λg], and [λh] be the eigenvalue bounds for the Hessians ∇2f(x),
∇2g(x), and ∇2h(x) on B, calculated according to (4.5). Then,

[λf] ⊆ [λg] + [λh]. (4.14)

Proof. We prove the relation for the fourth case in Table 3. The remaining cases can be proven
analogously. As pointed out in the proof of Lemma 4.7, we have ∅ ⊂ Lg ⊂ N and ∅ ⊂ Lh ⊂ N .
Thus, the right-hand side in (4.14) yields

[λg] + [λh] = [min{λ†
g, 0},max{λ†

g, 0}] + [min{λ†
h, 0},max{λ†

h, 0}]
= [min{λ†

g, 0} +min{λ†
h, 0},max{λ†

g, 0} +max{λ†
h, 0}],

= [min{λ†
g + λ†

h, λ
†
g, λ

†
h, 0},max{λ†

g + λ
†
h, λ

†
g, λ

†
h, 0}], (4.15)

where the equations hold according to the third case in (4.5), by definition of the sum of two
intervals (see Table 1), and by definition of min{·} and max{·}, respectively. To evaluate the left-
hand side in (4.14), we have to analyze the index set Lf . We obviously have Lf = Lg ∩Lh ⊂ N .
Thus, the second case in (4.5) does not apply. However, from the conditions characterizing the
fourth case in Table 3, it is not clear whether Lf = ∅ or Lf ⊃ ∅. Thus, according to (4.5), the
left-hand side in (4.14) results in

[λf] =

{

[λ†
f] if Lf = ∅,

[min{λ†
f , 0},max{λ†

f , 0}] if ∅ ⊂ Lf ⊂ N .

However, since [a] ⊆ [min{a, 0},max{a, 0}], the relation [λf] ⊆ [min{λ†
f , 0},max{λ†

f , 0}] holds
in both cases. Since [λ†

f] = [min{λ†
g, λ

†
h},max{λ†

g, λ
†
h}] according to Lemma 4.7 (resp., Table 3),

we obtain

[λf] ⊆ [min{min{λ†
g, λ

†
h}, 0},max{max{λ†

g, λ
†
h}, 0}],

= [min{λ†
g, λ

†
h, 0}max{λ†

g, λ
†
h, 0}]. (4.16)

Comparing (4.15) and (4.16) yields

[min{λ†
g, λ

†
h, 0},max{λ†

g, λ
†
h, 0}] ⊆ [min{λ†

g + λ†
h, λ

†
g, λ

†
h, 0},max{λ†

g + λ
†
h, λ

†
g, λ

†
h, 0}],

which proves (4.14). �

10

Lemmas 4.7 and 4.8 are based on the eight cases listed in Table 3. Since they are not
obvious at first sight, it is instructive to see how these eight cases arise from the four simpler
ones listed in Table 4. The first case in Table 4 applies if both ∇2

Lc
f
g(x) and ∇2

Lc
f
h(x) vanish

because of Lc
g = Lc

h = ∅. Since these two conditions, i.e., Lc
g = ∅ ∧ Lc

h = ∅, are equivalent to
Lg = N ∧Lh = N , case (i) in Table 4 is equivalent to case 1 in Table 3. Analogously, cases (ii)
and (iii) in Table 4, where either ∇2

Lc
f
g(x) or ∇2

Lc
f
h(x) contribute to ∇2

Lc
f
f(x), are equivalent to

cases 2 and 3 in Table 3, respectively. It remains to relate case (iv) in Table 4 to cases 4–8 in
Table 3. In fact, the conditions of the cases 4–8 in Table 3 all imply Lc

g ⊃ ∅ and Lc
h ⊃ ∅, which

are the defining conditions for case (iv) in Table 4. Figure 1 illustrates that every instance of
case (iv) from Table 4 actually uniquely belongs to one of the cases 4–8 from Table 3.

case 4 case 5 case 6 case 7 case 8

Figure 1: Illustration of the sparsity patterns of the reduced Hessians ∇2
Lc
f
g(x) and ∇2

Lc
f
h(x)

for cases 4–8 in Table 3 and Lemma 4.7. White areas correspond to zero blocks in the
Hessians, black areas to nontrivial blocks. The black areas in case 4 correspond to the
nontrivial submatrices ∇2

Lc
g
g(x) and ∇2

Lc
h
h(x) on the left-hand side of (4.11).

4.3. Improved eigenvalue bounds for the composition of two functions

We collect some recurring conditions again first.

Conditions 4.9: Assume Conditions 4.5 hold. Let r : V → R be a twice differentiable function
on an open set V ⊂ R and assume g(x) ∈ V for every x ∈ U . Moreover, assume there exist
intervals [r′] ⊂ R and [r′′] ⊂ R and a hyperrectangle [∇g] ⊂ Rn such that

r′ ≤ r′(g(x)) ≤ r′, r′′ ≤ r′′(g(x)) ≤ r′′, and ∇g
i
≤ (∇g(x))i ≤ ∇gi (4.17)

for every x ∈ B and every i ∈ N , where r′(z) and r′′(z) refer to the first and the second derivative
of r(z), respectively.

The following lemma, which we state without proof, provides rules for the identification of at
most linear dependencies and independencies of compositions.

Lemma 4.10 (index sets for compositions): Assume Conditions 4.9 hold and consider the func-
tion f : U → R, f(x) = r(g(x)). Let

If = Ig and Lf =

{

Lg if r is an affine function,
Ig otherwise.

(4.18)

Then, f depends at most linearly on xi for all i ∈ Lf and f is independent of xi for all i ∈ If .

Bounds for compositions can now be calculated as follows.

Lemma 4.11 (spectral bounds for reduced Hessian of compositions): Assume Conditions 4.9
hold and consider the function f : U → R, f(x) = r(g(x)). Let Lf be defined as in Lemma 4.10.

Then the bounds (4.10) hold for [λ†
f] computed according to the rules listed in Table 5.

11

Table 5: Rules for the computation of eigenvalue bounds [λ†
f] for the reduced Hessian

∇2
Lc
f
f(x) of compositions f(x) = r(g(x)).

Case [λ†
f] Condition

1 [r′′] [Λs([∇Lc
f
g])] Lg = N

2 [r′′] [Λs([∇Lc
f
g])] + [r′] [λ†

g] Lg ⊂ N ∧ Lf = Lg

3 [r′′] [Λs([∇Lc
f
g])] + [r′] [min{λ†

g, 0},max{λ†
g, 0}] Lg ⊂ N ∧ Lf ⊂ Lg

Proof. We prove the last case in Table 5. The remaining cases can be proven analogously. The
reduced Hessian of f reads∇2

Lc
f
f(x) = r′′(g(x))∇Lc

f
g(x)∇T

Lc
f
g(x)+r′(g(x))∇2

Lc
f
g(x). Combining

the two conditions of case 3 in Table 5 yields Lf ⊂ Lg ⊂ N , which implies Lc
f ⊃ Lc

g ⊃ ∅. Thus,
m = |Lc

f | and r = |Lc
g| satisfy m > r > 0. We assume Lc

f = N[1,m] and Lc
g = N[1,r] without loss

of generality. Under these assumptions, we obtain

∇2
Lc
f
f(x) = r′′(g(x))∇Lc

f
g(x)∇T

Lc
f
g(x) + r′(g(x))

(

∇2
Lc
g
g(x) 0r,s

0s,r 0s,s

)

, (4.19)

where s = m− r > 0. Since ∇g(x) ∈ [∇g] for every x ∈ B, we find

Λs([∇Lc
f
g]) ≤ λmin(∇Lc

f
g(x)∇T

Lc
f
g(x)) and λmax(∇Lc

f
g(x)∇T

Lc
f
g(x)) ≤ Λs([∇Lc

f
g])

for every x ∈ B according to [9, Lemma 2.2]. Combining this intermediate result with the
bounds on r′(g(x)) and r′′(g(x)) from Conditions 4.9 yields the eigenvalue bounds

[λ†
f] = [r′′] [Λs([∇Lc

f
g])] + [r′] [min{λ†

g, 0},max{λ†
g, 0}]

on B. �

Finally, Lemma 4.12 below shows that for the composition of two functions, the bounds from
Lemma 4.11 are as tight as or tighter than those from the original method proposed in [9].
Recall the bounds in [9] result in [λf] = [r′′] [Λs([∇g])] + [r′] [λg] for f(x) = r(g(x)) according to
[9, Prop 3.4].

Lemma 4.12 (improved bounds for compositions): Assume Conditions 4.9 hold and let f , [λ†
f],

and Lf be as in Lemma 4.11. Let [λf] and [λg] be the eigenvalue bounds for the Hessians ∇2f(x)
and ∇2g(x) on B, calculated according to (4.5). Then,

[λf] ⊆ [r′′] [Λs([∇g])] + [r′] [λg].

Since the proof is very similar to the proof of Lemma 4.8, we omit it.

4.4. Improved eigenvalue bounds for the product of two functions

We begin by collecting recurring conditions again.

Conditions 4.13: Assume Conditions 4.5 hold and assume there exist intervals [g] ⊂ R and
[h] ⊂ R and hyperrectangles [∇g] ⊂ Rn and [∇h] ⊂ Rn such that

g ≤ g(x) ≤ g, h ≤ h(x) ≤ h, ∇g
i
≤ (∇g(x))i ≤ ∇gi, and ∇hi ≤ (∇h(x))i ≤ ∇hi

for every x ∈ B and every i ∈ N .

12

The following lemma provides rules for the identification of at most linear dependencies and
independencies of products.

Lemma 4.14 (index sets for products): Assume Conditions 4.13 hold and consider the function
f : U → R, f(x) = g(x)h(x). Let If = Ig ∩ Ih and Lf = Ig ∩ Ih. Then, f depends at most
linearly on xi for all i ∈ Lf and f is independent of xi for all i ∈ If .
Based on Conditions 4.13 and Lemma 4.14, we are able to compute bounds on the spectrum

of ∇2
Lc
f
f(x) according to the rules summarized in Lemma 4.15 and Table 6. As a preparation,

we introduce the interval operators

[Λr([a], [b])] := [min{a, b},max{a, b}] and (4.20)

[Λ⋆([a], [b], [c])] :=
1

2

[

a+ b−
√

(a− b)2 + d, a+ b+

√

(a− b)2 + d

]

(4.21)

for real intervals [a], [b], [c] ⊂ R, where d = 4 max{c2, c2}. Definition (4.20) is introduced only
for the sake of a compact notation. Whenever it is more instructive, we use the notation on the
right-hand side of (4.20).

Lemma 4.15 (spectral bounds for reduced Hessian of products): Assume Conditions 4.13 hold
and consider the function f : U → R with f(x) = g(x)h(x). Let Lf be defined as in Lemma 4.14.

Then the bounds (4.10) hold for [λ†
f] computed according to the rules listed in Table 6.

Proof. We prove case 10 from Table 6. Cases 4 and 7 can be shown analogously. The remaining
cases can be proven in the same fashion as those treated in the proofs of Lems. 4.7 and 4.11.
The reduced Hessian of f , which reads

∇2
Lc
f
f(x) = ∇Lc

f
g(x)∇T

Lc
f
h(x) +∇Lc

f
h(x)∇T

Lc
f
g(x) + h(x)∇2

Lc
f
g(x) (4.22)

in all cases, is a two-by-two matrix with a particularly simple block structure in case 10. To
see this, first note that g and h are independent of all but one variable each (the conditions
|Ig| = n − 1 and |Ih| = n − 1 imply |Ic

g| = 1 and |Ic
h| = 1). Moreover, Ig ∪ Ih = N implies

Ic
g ∩ Ic

h = ∅, which implies that g and h depend on two different variables. Without loss of
generality we assume g depends on x1, and h depends on x2, i.e., Ic

g = {1} and Ic
h = {2}. As

a further preparation note that Lf = Ig ∩ Ih, which holds according to Lemma 4.14, implies
Lc
f = Ic

g ∪ Ic
h, which evaluates to Lc

f = {1, 2}. Since Lc
f = {1, 2} and g only depends on x1

(resp., h only depends on x2), we have

∇Lc
f
g(x) =

(

∂
∂x1

g(x)
∂

∂x2
g(x)

)

=

(

∂
∂x1

g(x)

0

)

and ∇2
Lc
f
g(x) =

(

∂2

∂x2

1

g(x) 0

0 0

)

, (4.23)

respectively,

∇Lc
f
h(x) =

(

∂
∂x1

h(x)
∂

∂x2
h(x)

)

=

(

0
∂

∂x2
h(x)

)

and ∇2
Lc
f
h(x) =

(

0 0

0 ∂2

∂x2

2

h(x)

)

. (4.24)

Substituting (4.23) and (4.24) into (4.22) yields

∇2
Lc
f
f(x) =

(

h(x) ∂2

∂x2

1

g(x) ∂
∂x1

g(x) ∂
∂x2

h(x)

∂
∂x1

g(x) ∂
∂x2

h(x) g(x) ∂2

∂x2

2

h(x)

)

,

where all entries are scalars. Now, consider the matrix set

H = {H ∈ R2×2 |H11 ∈ [h] [λ†
g], H22 ∈ [g] [λ†

h], H12 ∈ [∇Ic
g
g][∇Ic

h
h], H = HT }

13

and observe {∇2
Lc
f
f(x) ∈ R2×2 |x ∈ B} ⊆ H. To see this, note that {∇2

Lc
g
g(x) ∈ R |x ∈ B} ⊆ [λ†

g]

and {∇2
Lc
h
h(x) ∈ R |x ∈ B} ⊆ [λ†

h], since the eigenvalue of a matrix M ∈ R1×1 is λ = M1,1.

According to Lemma A.1 stated in the appendix, eigenvalue bounds for the matrix set H and
consequently for∇2

Lc
f
f(x) on B read [Λ⋆([h] [λ

†
g], [g] [λ

†
h], [∇Ic

g
g][∇Ic

h
h])] as claimed in Table 6. �

Table 6: Rules for the computation of eigenvalue bounds [λ†
f] for the reduced Hessian

∇2
Lc
f
f(x) of a product f(x) = g(x)h(x). The expressions [λt], [λg,0], [λh,0], L∪, and

L∩ are short for [λt] = [Λt([∇Lc
f
g], [∇Lc

f
h])], [λg,0] = [min{λ†

g, 0},max{λ†
g, 0}], [λh,0] =

[min{λ†
h, 0},max{λ†

h, 0}], L∪ = Lg ∪ Lh and L∩ = Lg ∩ Lh. Condition C⋆ reads (Ig ∪ Ih =
N) ∧ (|Ig| = n− 1) ∧ (|Ih| = n− 1).

Case [λ†
f] Condition

1 [λt] Lg = N ∧ Lh = N
2 [λt] + [h] [λ†

g] Lg ⊂ N ∧ Lh = N ∧ Lf = Lg

3 [λt] + [h] [λg,0] Lg ⊂ N ∧ Lh = N ∧ Lf ⊂ Lg ∧ ¬C⋆

4 [Λ⋆([h] [λ
†
g], [0, 0], [∇Ic

g
g][∇Ic

h
h])] Lg ⊂ N ∧ Lh = N ∧ C⋆

5 [λt] + [g] [λ†
h] Lg = N ∧ Lh ⊂ N ∧ Lf = Lh

6 [λt] + [g] [λh,0] Lg = N ∧ Lh ⊂ N ∧ Lf ⊂ Lh ∧ ¬C⋆

7 [Λ⋆([0, 0], [g] [λ
†
h], [∇Ic

g
g][∇Ic

h
h])] Lg = N ∧ Lh ⊂ N ∧ C⋆

8 [λt] + [Λr([Λr([h] [λ
†
g], [g] [λ

†
h])], [0, 0])] Lg ⊂ N ∧ Lh ⊂ N ∧ L∪ = N ∧ Lf ⊂ L∩

9 [λt] + [Λr([h] [λ
†
g], [g] [λ

†
h])] Lg ⊂ N ∧ Lh ⊂ N ∧ L∪ = N ∧ Lf = L∩ ∧ ¬C⋆

10 [Λ⋆([h] [λ
†
g], [g] [λ

†
h], [∇Ic

g
g][∇Ic

h
h])] Lg ⊂ N ∧ Lh ⊂ N ∧ C⋆

11 [λt] + [h] [λ†
g] + [g] [λ†

h] L∪ ⊂ N ∧ Lf = Lg = Lh

12 [λt] + [h] [λ†
g] + [g] [λh,0] L∪ ⊂ N ∧ Lf = Lg ⊂ Lh

13 [λt] + [h] [λg,0] + [g] [λ†
h] L∪ ⊂ N ∧ Lf = Lh ⊂ Lg

14 [λt] + [Λr([h] [λ
†
g] + [g] [λ†

h], [0, 0])] L∪ ⊂ N ∧ Lf ⊂ Lg = Lh

15 [λt] + [Λr([h] [λ
†
g] + [g] [λh,0], [0, 0])] L∪ ⊂ N ∧ Lf ⊂ Lg ⊂ Lh

16 [λt] + [Λr([h] [λg,0] + [g] [λ†
h], [0, 0])] L∪ ⊂ N ∧ Lf ⊂ Lh ⊂ Lg

17 [λt] + [h] [λg,0] + [g] [λh,0] L∪ ⊂ N ∧ Lg * Lh ∧ Lh * Lg

Note that Lems. 4.14 and 4.15 can, in principle, also be applied if one function, say, h, is
constant (i.e., h(x) = c). In this case, however, Lems. 4.10 and 4.11 for the choice r(z) = c z
provide better results.
Finally, Lemma 4.16 shows that for the product of two functions, the bounds from Lemma 4.15

are as tight as or tighter than those from the original method proposed in [9]. Recall that the
bounds in [9] result in [λf] = [Λt([∇g], [∇h])] + [h] [λg] + [g] [λh] for f(x) = g(x)h(x) according
to [9, Proposition 3.2(iv)]. We omit the proof of Lemma 4.16, since it is similar to its counterparts
in section 4.2.

Lemma 4.16 (improved bounds for products): Assume Conditions 4.13 hold and let f , [λ†
f],

and Lf be as in Lemma 4.15. Let [λf], [λg], and [λh] be the eigenvalue bounds for the Hessians
∇2f(x), ∇2g(x), and ∇2h(x) on B, calculated according to (4.5). Then,

[λf] ⊆ [Λt([∇g], [∇h])] + [h] [λg] + [g] [λh].

14

4.5. Numerical computation of improved eigenvalue bounds

In this section, we combine the results from Sects. 4.1 through 4.4 in order to compute im-
proved eigenvalue bounds using a codelist. Formally, this leads to the extended codelist in
Proposition 4.17.

Proposition 4.17 (algorithm for the computation of eigenvalue bounds using sparsity): Assume
ϕ is twice continuously differentiable on U and can be written as a codelist (3.1) with t ∈ N
operations. Let B = [x1] × · · · × [xn] ⊂ U be arbitrary. Then, for all x ∈ B, we have ϕ(x) ∈
[ϕ], ∇ϕ(x) ∈ [∇ϕ], and [λmin(∇2ϕ(x)), λmax(∇2ϕ(x))] ⊆ [λϕ], where [ϕ], [∇ϕ], and [λϕ] are
calculated by the following algorithm:

1. For k = 1, . . . , n, set Ik = N \ {k}, Lk = N , [yk] = [xk, xk], [∇yk] = [ek, ek], and

[λ†
k] = [0, 0].

2. For k = n+ 1, . . . , n+ t, evaluate Ik and Lk according to the third and fourth columns of
Table 7, respectively. Calculate [yk] and [∇yk] according to the third and fourth columns of

Table 2, respectively. Compute [λ†
k] depending on Li, Lj , and Lk according to the second

column of Table 8.

3. Compute [λn+t] from [λ†
n+t] and Ln+t according to (4.5) and set [ϕ] = [yn+t], [∇ϕ] =

[∇yn+t], and [λϕ] = [λn+t].

Table 7: Rules for the computation of the sets Ik and Lk in the kth line of the codelist
(3.1) for variables and binary operations (left) and compositions (right). Rules for yk are
repeated here for convenience.

op Φk yk Ik Lk

var xk N \ {k} N
add yi + yj Ii ∩ Ij Li ∩ Lj

mul yi yj Ii ∩ Ij Ii ∩ Ij
a

a

a

a

op Φk yk Ik Lk

powNat ymi Ii Ii
oneOver 1/yi Ii Ii
sqrt

√
yi Ii Ii

exp exp(yi) Ii Ii
ln ln(yi) Ii Ii
addC yi + c Ii Li

mulByC c yi Ii Li

Proof. The claims ϕ(x) ∈ [ϕ] and ∇ϕ(x) ∈ [∇ϕ] for all x ∈ B are covered by Theorem 3.1.
It remains to prove that [λmin(∇2ϕ(x)), λmax(∇2ϕ(x))] ⊆ [λϕ] for all x ∈ B. Since yk(x) =
xk for k = 1, . . . , n, the functions yk(x), k ∈ N , are independent of xj for every j ∈ Ik =
N \ {k} and at most linearly dependent on xj for every j ∈ Lk = N . Thus, the reduced

Hessian reads ∇2
Lc
k
yk(x) = ∇2

∅yk(x) = 00,0 and [λ†
k] = [0, 0] for every k ∈ N . Now assume

eigenvalue bounds [λ†
1], . . . , [λ

†
l] for the reduced Hessians ∇2

Lc
1

y1(x), . . . ,∇2
Lc
l
yl(x) and index sets

I1, . . . ,Il and L1, . . . ,Ll have been calculated for some l ∈ N[n,n+t−1], and let k = l + 1.
Since Φk(y1, . . . , yk−1) is one of the unary or binary functions listed in Table 2 (and therefore
Tabs. 7 and 8), it depends on either one (say, yi) or two (say, yi and yj) of the intermediate
variables y1, . . . , yk−1. The remainder of the proof must be carried out for each type of operation
Φk separately. We state the proof for one of the mul cases and claim the remaining cases
can be shown accordingly. Let g(x) = yi(x), h(x) = yj(x), and f(x) = yk(x), which implies
f(x) = g(x)h(x), since the operation in the kth line is of type mul. In order to compute

15

eigenvalue bounds [λ†
f] for the reduced Hessian ∇2

Lc
f
f(x), we first evaluate the index sets If and

Lf . According to Lemma 4.14, we obtain

If = Ig ∩ Ih = Ii ∩ Ij and Lf = Ig ∩ Ih = Ii ∩ Ij,

where we used Ig = Ii and Ih = Ij, which hold by construction. Assuming we have Lg∪Lh ⊂ N
and Lf = Lg ⊂ Lh, applying Lemma 4.15 (specifically, rule 12 in Table 6) results in

[λ†
f] = [Λt([∇Lc

f
g], [∇Lc

f
h])] + [h] [λ†

g] + [g] [min{λ†
h, 0},max{λ†

h, 0}]
= [Λt([∇Lc

k
yi], [∇Lc

k
yj])] + [yj] [λ

†
i] + [yi] [min{λ†

j , 0},max{λ†
j , 0}],

(4.25)

where the second equation results from substituting the codelist notation [g] = [yi], [h] = [yj],

[∇g] = [∇yi], [∇h] = [∇yj], [λ
†
g] = [λ†

i], and [λ†
h] = [λ†

j]. Finally, since Lk = Lf and consequently

∇2
Lc
k
yk(x) = ∇2

Lc
f
f(x), the eigenvalues of∇2

Lc
k
yk(x) are confined to [λ†

k] = [λ†
f] for all x ∈ B. Since

the second equation in (4.25) is equal to the rule in Table 8 for the case mul and Li ∪ Lj ⊂ N
and Lk = Li ⊂ Lj, this proves the claim for the selected case. �

Proposition 4.17 is illustrated with two examples. First, we revisit the motivating Example 1.
Recall that we evaluated the conservative eigenvalue bounds [λϕ] = [0, 4] using the original
method from [9].

Example 2 (improved method applied to ϕ(x) = x21+x22 from Example 1): Consider the function
ϕ from Example 1 again. Proposition 4.17 results in the following extended codelist. Note that we
do not list the expressions for [yk] and [∇yk] in (4.26) since they are identical to the corresponding
expressions in (4.1). Further note that Ik and Lk are independent of B.

k Ik Lk [λ†
k]

1 N \ {1} = {2} N = {1, 2} [0, 0]
2 N \ {2} = {1} N = {1, 2} [0, 0]
3 I1 = {2} I1 = {2} 2 [Λs([∇Lc

3
y1])] = 2 [Λs([∇{1}y1])]

4 I2 = {1} I2 = {1} 2 [Λs([∇Lc
4
y2])] = 2 [Λs([∇{2}y2])]

5 I3 ∩ I4 = ∅ L3 ∩ L4 = ∅ [min{λ†
3, λ

†
4},max{λ†

3, λ
†
4}]

[λϕ] = [λ†
5]

(4.26)

The expressions for [λ†
k] in lines 3 and 4 of the extended codelist in (4.26) refer to the first

rule associated with the powNat-operation in Table 8 since L1 = N and L2 = N , respectively.
Since L3 = {2} ⊂ N , L4 = {1} ⊂ N , and L3 ∪ L4 = N , we obtain the bounds [λ†

5] =

[min{λ†
3, λ

†
4},max{λ†

3, λ
†
4}] according to the last rule for the add-operation in Table 8. Finally,

since L5 = ∅, we have [λϕ] = [λ5] = [λ†
5] according to (4.5).

Evaluating the extended codelist (4.26) for the hyperrectangle B = [0, 1] × [0, 1] (as in Exam-

ple 1) by computing [yk] and [∇yk] according to (4.1) and [λk] according to (4.26) yields [λ†
1] =

[λ†
2] = [0, 0] and [λ†

3] = [λ†
4] = [λ†

5] = [2, 2], where we used [Λs([∇{1}y1])] = [Λs([1, 1])] = [1, 1] and
[Λs([∇{2}y2])] = [Λs([1, 1])] = [1, 1] (see (4.2) for numerical results on [yk] and [∇yk]). Thus,

using the improved method, we obtain the tight eigenvalue bounds [λϕ] = [λ†
5] = [λ∗

ϕ] = [2, 2].

16

Table 8: Rules for the calculation of the eigenvalue bounds [λ†
k] in the kth line of the

codelist (3.1) according to Proposition 4.17. The intervals [λt], [λi,0], and [λj,0] are shorthand

notation for [λt] = [Λt([∇Lc
k
yi], [∇Lc

k
yj])], [λi,0] = [min{λ†

i , 0},max{λ†
i , 0}], and [λj,0] =

[min{λ†
j, 0},max{λ†

j, 0}]. The index sets L∪ and L∩ are shorthand notation for L∪ = Li∪Lj

and L∩ = Li ∩ Lj . Condition C⋆ reads (Ii ∪ Ij = N) ∧ (|Ii| = n− 1) ∧ (|Ij | = n− 1).

op Φk [λ†
k] Condition

add [0, 0] Li = N ∧ Lj = N
[λ†

i] Li ⊂ N ∧ Lj = N
[λ†

j] Li = N ∧ Lj ⊂ N
[Λr([λ

†
i], [λ

†
j])] Li ⊂ N ∧ Lj ⊂ N ∧ L∪ = N

[λ†
i] + [λ†

j] L∪ ⊂ N ∧ Li = Lj

[λ†
i] + [λj,0] L∪ ⊂ N ∧ Li ⊂ Lj

[λi,0] + [λ†
j] L∪ ⊂ N ∧ Lj ⊂ Li

[λi,0] + [λj,0] L∪ ⊂ N ∧ Li * Lj ∧ Lj * Li

mul [λt] Li = N ∧ Lj = N
[λt] + [yj] [λ

†
i] Li ⊂ N ∧ Lj = N ∧ Lk = Li

[λt] + [yj] [λi,0] Li ⊂ N ∧ Lj = N ∧ Lk ⊂ Li ∧ ¬C⋆

[Λ⋆([yj] [λ
†
i], [0, 0], [∇Ic

i
yi][∇Ic

j
yj])] Li ⊂ N ∧ Lj = N ∧ C⋆

[λt] + [yi] [λ
†
j] Li = N ∧ Lj ⊂ N ∧ Lk = Lj

[λt] + [yi] [λj,0] Li = N ∧ Lj ⊂ N ∧ Lk ⊂ Lj ∧ ¬C⋆

[Λ⋆([0, 0], [yi] [λ
†
j], [∇Ic

i
yi][∇Ic

j
yj])] Li = N ∧ Lj ⊂ N ∧ C⋆

[λt] + [Λr([Λr([yj] [λ
†
i], [yi] [λ

†
j])], [0, 0])] Li ⊂ N ∧ Lj ⊂ N ∧ L∪ = N ∧ Lk ⊂ L∩

[λt] + [Λr([yj] [λ
†
i], [yi] [λ

†
j])] Li ⊂ N ∧ Lj ⊂ N ∧ L∪ = N ∧ Lk = L∩ ∧ ¬C⋆

[Λ⋆([yj] [λ
†
i], [yi] [λ

†
j], [∇Ic

i
yi][∇Ic

j
yj])] Li ⊂ N ∧ Lj ⊂ N ∧ C⋆

[λt] + [yj] [λ
†
i] + [yi] [λ

†
j] L∪ ⊂ N ∧ Lk = Li = Lj

[λt] + [yj] [λ
†
i] + [yi] [λj,0] L∪ ⊂ N ∧ Lk = Li ⊂ Lj

[λt] + [yj] [λi,0] + [yi] [λ
†
j] L∪ ⊂ N ∧ Lk = Lj ⊂ Li

[λt] + [Λr([yj] [λ
†
i] + [yi] [λ

†
j], [0, 0])] L∪ ⊂ N ∧ Lk ⊂ Li = Lj

[λt] + [Λr([yj] [λ
†
i] + [yi] [λj,0], [0, 0])] L∪ ⊂ N ∧ Lk ⊂ Li ⊂ Lj

[λt] + [Λr([yj] [λi,0] + [yi] [λ
†
j], [0, 0])] L∪ ⊂ N ∧ Lk ⊂ Lj ⊂ Li

[λt] + [yj] [λi,0] + [yi] [λj,0] L∪ ⊂ N ∧ Li * Lj ∧ Lj * Li

powNat m (m−1) [yi]
m−2 [Λs([∇Lc

k
yi])] Li = N

m [yi]
m−2((m−1)[Λs([∇Lc

k
yi])]+[yi] [λ

†
i]) Li ⊂ N ∧ Lk = Li

m [yi]
m−2((m−1)[Λs([∇Lc

k
yi])]+[yi] [λi,0]) Li ⊂ N ∧ Lk ⊂ Li

oneOver 2 [yk]
3 [Λs([∇Lc

k
yi])] Li = N

[yk]
2 (2 [yk] [Λs([∇Lc

k
yi])]− [λ†

i]) Li ⊂ N ∧ Lk = Li

[yk]
2 (2 [yk] [Λs([∇Lc

k
yi])]− [λi,0]) Li ⊂ N ∧ Lk ⊂ Li

sqrt 1/(−4 [yk]
3) [Λs([∇Lc

k
yi])] Li = N

1/(2 [yk])(1/(−2 [yi])[Λs([∇Lc
k
yi])]+[λ†

i]) Li ⊂ N ∧ Lk = Li

1/(2 [yk])(1/(−2 [yi])[Λs([∇Lc
k
yi])]+[λi,0]) Li ⊂ N ∧ Lk ⊂ Li

exp [yk] [Λs([∇Lc
k
yi])] Li = N

[yk] ([Λs([∇Lc
k
yi])] + [λ†

i]) Li ⊂ N ∧ Lk = Li

[yk] ([Λs([∇Lc
k
yi])] + [λi,0]) Li ⊂ N ∧ Lk ⊂ Li

ln −1/[yi]
2 [Λs([∇Lc

k
yi])] Li = N

1/[yi] ([λ
†
i]− 1/[yi] [Λs([∇Lc

k
yi])]) Li ⊂ N ∧ Lk = Li

1/[yi] ([λi,0]− 1/[yi] [Λs([∇Lc
k
yi])]) Li ⊂ N ∧ Lk ⊂ Li

addC [0, 0] Li = N
[λ†

i] Li ⊂ N
mulByC [0, 0] Li = N

c [λ†
i] Li ⊂ N

17

We analyze another example to demonstrate that the new method results in considerable
improvements for all functions that involve multiplications. In fact, we know from [9, Rem. 4.3]
that 0 ∈ [λϕ] for the original method if the mul-operation is required in the codelist of any ϕ with
n ≥ 2. This is a severe drawback of the original method, since it implies that any convex (resp.,
concave) function ϕ : Rn → R involving mul-operations will never be identified to be convex
(resp., concave) using the method from [9]. The following example shows that this restriction
does not apply for the improved method.

Example 3 (comparison of [9] and improved method for ϕ(x) = x21 + x2 exp(x2)): Consider
the function ϕ : R2 → R with ϕ(x) = x21 + x2 exp(x2) on a B ⊂ R2. Theorem 3.1 (i.e., the
original method from [9]) results in the following extended codelist, where the expressions for yk
are listed only for illustration of the codelist (3.1) of ϕ. We skip the first three lines, since they
are identical to those in (4.1).

k yk [yk] [∇yk] [λk]

4 exp(y2) [exp([y2])] [y4] [∇y2] [y4] ([Λs([∇y2])] + [λ2])
5 y2 y4 [y2] [y4] [y4][∇y2]+[y2][∇y4] [y4][λ2]+[y2][λ4]+[Λt([∇y2], [∇y4])]
6 y3 + y5 [y3] + [y5] [∇y3] + [∇y5] [λ3] + [λ5]

ϕ = y6 [ϕ] = [y6] [∇ϕ] = [∇y6] [λϕ] = [λ6]

(4.27)

Evaluating this codelist for B = [0, 1] × [0, 1] yields

[λϕ] = [λ6] = [− exp(1) + 1, 3 exp(1) + 2] ≈ [−1.7183, 10.1548].

Proposition 4.17 (i.e., the improved method) results in the following extended codelist. The
first three lines are identical to those in (4.26) in this case. Further note that the expressions
for [yk] and [∇yk] can be found in (4.1) (lines 1-3) and (4.27) (lines 4-6).

k Ik Lk [λ†
k]

4 I2 = {1} I2 = {1} [y4] [Λs([∇Lc
4
y2])] = [y4] [Λs([∇{2}y2])]

5 I2 ∩ I4 = {1} I2 ∩ I4 = {1} [Λt([∇Lc
5
y2], [∇Lc

5
y4])]+[y4] [λ

†
2]+[y2] [λ

†
4]

= [Λt([∇{2}y2], [∇{2}y4])]+[y4] [λ
†
2]+[y2] [λ

†
4]

6 I3 ∩ I5 = ∅ L3 ∩ L5 = ∅ [min{λ†
3, λ

†
5},max{λ†

3, λ
†
5}]

[λϕ] = [λ†
6]

(4.28)

Evaluating (4.28) for B = [0, 1] × [0, 1] yields

[λϕ] = [λ†
6] = [2, 3 exp(1)] ≈ [2, 8.1548],

Just as in Example 3, the improved method results in tight spectral bounds while the original
method from [9] provides loose outer approximations. In particular, 0 ∈ [−1.7183, 10.1548] for
the original method as predicted by [9, Rem. 4.3] but 0 /∈ [2, 8.1548] for the improved method
presented here. Convexity of ϕ on B can therefore be established with the improved but not with
the original method.

More generally, the improved method results in eigenvalue bounds that are always as tight
as, or tighter than, the original method from [9], as stated in the following proposition.

Proposition 4.18 (accuracy of the improved method): Assume ϕ is twice continuously differ-
entiable on U and can be written as a codelist (3.1). Let B = [x1]× · · · × [xn] ⊂ U be arbitrary

18

and denote the eigenvalue bounds for ∇2ϕ(x) on B computed according to Theorem 3.1 and

Proposition 4.17 by [λ
(Theorem 3.1)
ϕ] and [λ

(Proposition 4.17)
ϕ], respectively. Then,

[λ(Proposition 4.17)
ϕ] ⊆ [λ(Theorem 3.1)

ϕ].

Proof. The proof immediately follows from Lems. 4.8, 4.11, and 4.15. �

In [9, Proposition 4.4] it was shown that the numerical complexity for evaluating the extended
codelist resulting from Theorem 3.1 is of order O(n)N(ϕ), where N(ϕ) denotes the number of
operations needed to evaluate ϕ at a point in its domain. It is remarkable that this order of
complexity can be maintained for the improved method. This is summarized in the following
proposition.

Proposition 4.19 (numerical complexity of the improved method): Assume ϕ is twice continu-
ously differentiable on U and can be written as a codelist (3.1) with t = N(ϕ) operations. Let
N([ϕ], [∇ϕ], [λϕ]) denote the number of operations that are necessary to calculate the bounds
[ϕ] ⊂ R, [∇ϕ] ⊂ Rn, and [λϕ] ⊂ R for a given hyperrectangle B ⊂ U using the extended codelist
from Proposition 4.17. Then,

N([ϕ], [∇ϕ], [λϕ]) = O(n)N(ϕ).

Since the proof of Proposition 4.19 is very similar to that of [9, Proposition 4.4], we only
sketch it. The extended codelist that results from Proposition 4.17 involves the index sets Ik
and Lk, which were not required in the original method. These index sets do not depend on
the particular hyperrectangle B as illustrated in Example 2, but they are uniquely determined
by the function ϕ itself. Consequently, all index sets need to be determined only once. This
step can be carried out at the time of construction of the extended codelist. In particular, it
need not be repeated at the time of evaluating the codelist for a particular B. Once Ik and Lk

have been determined, each line of the extended codelist is specified by the rules in Table 8 (and
Table 2). It is easy to show that the evaluation of every expression in the second column of
Table 8 requires at most O(n) basic operations (like additions, multiplications, or comparisons
of two real numbers; see [9, section 4.1] for further details). Thus, under the assumption that
[ϕ] and [∇ϕ] are known, we need O(n)N(ϕ) basic operations for the computation of [λϕ]. Since
the calculation of [ϕ] and [∇ϕ] requires O(1) and O(n) basic operations according to standard
results in AD and IA (see, e.g., [4, 7]), we obtain

N([ϕ], [∇ϕ], [λϕ]) = O(1)N(ϕ) +O(n)N(ϕ) +O(n)N(ϕ) = O(n)N(ϕ).

5. Numerical experiments for a large number of examples

In this section, we analyze 1522 numerical examples taken from the COCONUT collection of
optimization problems [14]. We consider all COCONUT problems with 1 < n ≤ 10 variables
and extract those cost and constraint functions that can be decomposed into the operations
listed in Tabs. 2 and 8. For each function ϕ : Rn → R, we consider 100 random hyperrectangles
B ⊂ D in the domain D of ϕ specified in the respective COCONUT probLemma For ease of
comparison, the set of examples as well as the associated hyperrectangles are identical to the
examples considered in [13].
For each of the resulting 1522·100 sample problems, we solve problem (1.1) using the improved

algorithm (A† for short) in Proposition 4.17. We compare the resulting eigenvalue bounds with
those obtained from two established methods using interval Hessians (see problem (1.3)) and
either Gershgorin’s circle criterion (G for short) or Hertz and Rohn’s method (H for short)

19

for the computation of spectral bounds of interval matrices (see problem (1.4)). We choose G
and H as reference procedures due to the favorable computational complexity of G and since
H provides tight eigenvalue bounds for problem (1.4) (cf. section 1). We refer to the original
papers [2, 5, 6, 12] or the summaries in [9, 13] for a detailed description of methods G and H.

Table 9: Classes used to aggregate results in Table 10. Symbols [λA†] = [λA† , λA†],
[λG] = [λG, λG], and [λH] = [λH, λH] denote eigenvalue bounds calculated by the improved
algorithm A† (see Proposition 4.17), Gershgorin’s circle criterion, and Hertz and Rohn’s
method, respectively.

Class Verbal definition Formal definition

Lower bound λ Upper bound λ

1 A† worse than G (and H) λA† < λG ≤ λH λH ≤ λG < λA†

2 A† equal to G but worse than H λG ≈ λA† < λH λH < λA† ≈ λG

3 A† better than G but worse than H λG < λA† < λH λH < λA† < λG

4 A† equal to H (and equal to or better than G) λG ≤ λH ≈ λA† λA† ≈ λH ≤ λG

5 A† better than H (and G) λG ≤ λH < λA† λA† < λH ≤ λG

For each sample problem, we analyze whether A† performs better than, equally good as, or
worse than G and H. We independently compare the lower and upper eigenvalue bounds of the
particular methods and categorize the results according to the five classes in Table 9. Note that
G never performs better than H (since H provides tight bounds for (1.4)). Consequently, the
relations λG ≤ λH and λH ≤ λG always hold. Hence, the list of classes in Table 9 is complete in
the sense that every example can be uniquely classified into one of the five classes. It remains
to comment on the precise meaning of a > b and a ≈ b as used for the classification in Table 9.
To this end, we introduce the function

dev(a, b) =
a− b

1 + 0.5 |a + b| ,

which evaluates a weighted difference of a, b ∈ R. Based on dev(a, b), we specify

a > b is understood as dev(a, b) > ǫ and (5.1)

a ≈ b is understood as |dev(a, b)| ≤ ǫ, (5.2)

where ǫ ∈ R+ represents an error bound. Note that |dev(a, b)| is approximately equal to the
relative difference (i.e., 2 |a − b| |a + b|−1) for two large but almost equal numbers a, b ∈ R and
almost equal to the absolute difference (i.e., |a − b|) for two small but almost equal numbers
a, b ∈ R. This behavior is useful since the absolute values of the computed eigenvalue bounds
range across several magnitudes.
We summarize numerical results for the analyzed examples in Table 10 (with ǫ = 10−6). We

list the percentage of samples that fall into classes 1 to 5 from Table 9 separated by dimension n
of the underlying example. In order to compare the improved algorithm in Proposition 4.17 to
the original method from [9] (see Theorem 3.1), we also list the classification results using the
original algorithm (A for short). The numerical results confirm that the consideration of sparsity
significantly improves the tightness of the computed eigenvalue bounds. To see this, note that
for each dimension n, the percentages in class 1 (where the established approaches outperform
the direct computation of eigenvalue bounds) decrease, while the percentages in classes 4 and 5
(where the direct computation of eigenvalue bounds performs as good as or better than Hertz
and Rohn’s method) increase using the improved algorithm A† instead of the original A. In
particular, it is remarkable that the improved algorithm A† results in worse eigenvalue bounds

20

than G in only 9.09% of all cases in contrast to 17.77% for the original method A. Moreover,
A† provides equally good or better eigenvalue bounds than H in 82.20% = 77.90%+4.30% of all
cases, while the corresponding percentage only reads 20.83% = 16.86% + 3.95% for A.

Table 10: Numerical results for 1522 ·100 sample problems. For each problem, we computed
eigenvalue bounds using the original algorithm A from [9] and the improved variant A†

taking sparsity into account. The obtained spectral bounds were classified according to
Table 9 and (5.1)–(5.2) with ǫ = 10−6. The table shows, separately for methods A and A†,
percentages of problems that fall into the various classes.

Examples 1 2 3 4 5

n # A A† A A† A A† A A† A A†

2 62 56.37 29.06 1.07 1.08 12.24 16.06 18.89 41.27 11.43 12.54
3 1078 2.98 0.95 77.53 0.31 0.85 1.01 17.70 96.72 0.95 1.01
4 67 60.75 35.28 4.84 4.63 8.45 16.76 15.04 32.14 10.92 11.19
5 88 56.80 35.34 3.32 0.21 10.16 14.90 14.91 34.47 14.81 15.09
6 95 35.05 25.65 5.31 4.13 31.91 34.25 13.87 21.38 13.86 14.58
7 27 65.80 27.07 11.93 8.50 0.02 19.44 22.26 44.98 0.00 0.00
8 15 94.23 63.83 3.20 4.23 1.27 29.80 1.30 1.53 0.00 0.60
9 24 57.27 25.02 8.29 0.02 18.71 34.94 4.25 22.58 11.48 17.44

10 66 51.17 12.24 1.00 0.22 22.12 34.11 15.86 41.54 9.86 11.89

All 1522 17.77 9.09 56.11 0.94 5.32 7.78 16.86 77.90 3.95 4.30

Another observation is that the ratios in the particular classes seem to be independent of
the dimension n (i.e., there is no trend). This is important since the numerical complexities
of the established approaches G and H vary between O(n)N(ϕ) + O(n2) and O(n2)N(ϕ) +
O(2n n3) operations (see section 1 and the benchmark in [13]), while the direct eigenvalue bound
computation requires O(n)N(ϕ). Thus, methods A and A† become numerically very attractive
for high dimensions n.

Table 11: Last line of Table 10 for different choices of the error bound ǫ in (5.1) and (5.2).

1 2 3 4 5

ǫ A A† A A† A A† A A† A A†

10−5 17.16 8.78 54.11 0.91 4.29 6.57 20.78 79.74 3.66 4.01
10−6 17.77 9.09 56.11 0.94 5.32 7.78 16.86 77.90 3.95 4.30
10−7 18.04 9.28 57.62 0.66 5.61 8.24 14.67 77.41 4.06 4.41

According to (5.1) and (5.2), the classification in Table 10 depends on the choice of the error
bound ǫ. We repeated all calculations for various choices of ǫ and present the results reported
in the last line of Table 10 for ǫ = 10−5 and ǫ = 10−7 in Table 11. As expected, the ratios
in classes 1 and 5 increase for decreasing ǫ, since we detect λA† < λG (as well as λG < λA† ,
λH < λA† , and λA† < λH) for a larger number of examples (cf. (5.1) and (5.2)). However, beside
this observation, the results are robust w.r.t. the value of ǫ.

21

6. Conclusion

We significantly improved a method recently introduced in [9] for the efficient computation of
spectral bounds for Hessian matrices of twice continuously differentiable functions on hyperrect-
angles. The improvements build on the identification and utilization of sparsity that naturally
arises in the first lines of every codelist for a function ϕ : Rn → R.
The improved method was applied to a set of 1522 examples previously analyzed in [13]. The

numerical results show that the consideration of sparsity results in significantly tighter eigenvalue
bounds. In fact, the improved method provided equally good or better eigenvalue bounds than
Hertz and Rohn’s method in 82.20% of the examples, while the corresponding percentage reads
only 20.83% for the original procedure.
In addition to illustrating the practical usefulness of the proposed improvements, we provided

an important theoretic result. In fact, it is well-known that the original method from [9] results
in spectral bounds with 0 ∈ [λϕ] for any function that involves the multiplications of two or more
variables (see [9, Rem. 4.3]). Consequently, convex functions that involve such a multiplication
cannot be detected to be convex with the original method. We showed that this restriction does
not apply for the improved method.

Acknowledgments

Funding by Deutsche Forschungsgemeinschaft grant MO-1086/9 is gratefully acknowledged.

References

[1] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, A global optimization method, αBB,
for general twice-differentiabe constrained NLPs – II. Implementation and computational
results. Computers Chemical Engineering, 22(9):1159–1179, 1998.

[2] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier, A global optimization method,
αBB, for general twice-differentiable constrained NLPs – I. Theoretical advances. Comput-
ers Chemical Engineering, 22(9):1137–1158, 1998.

[3] I. P. Androulakis, C. D. Maranas, and C. A. Floudas, αBB: A global optimization method
for general constrained nonconvex problems. J. Global Optim., 7(4):337–363, 1995.

[4] H. Fischer, Automatisches Differenzieren, in Wissenschaftliches Rechnen: Eine Einführung
in das Scientific Computing, J. Herzberger, ed., Akademie-Verlag, Berlin, pp. 53–103, 1995.

[5] S. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR,
Ser. Fizmat., 6:749–754, 1931.

[6] D. Hertz, The extreme eigenvalues and stability of real symmetric interval matrices. IEEE
Trans. Automat. Control, 37(4):532–535, 1992.

[7] R. B. Kearfott, Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, The
Netherlands, 1996.

[8] M. Mönnigmann, Positive invariance tests with efficient Hessian matrix eigenvalue bounds,
in Proceedings of the 17th IFAC World Congress, 2008.

[9] M. Mönnigmann, Fast calculation of spectral bounds for Hessian matrices on hyperrectan-
gles. SIAM J. Matrix Anal. Appl., 32(4):1351–1366, 2011.

22

[10] A. Neumaier, Interval Methods for Systems of Equations. Encyclopedia Math. Appl.,
Cambridge University Press, Cambridge, UK, 2008.

[11] L. B. Rall, Automatic Differentiation: Techniques and Applications, volume 120 of Lecture
Notes in Comput. Sci. 120, Springer, Berlin, 1981.

[12] J. Rohn, Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal.
Appl., 15(1):175–184, 1994.

[13] M. Schulze Darup, M. Kastsian, S. Mross, and M. Mönnigmann, Efficient computation of
spectral bounds for Hessian matrices on hyperrectangles for global optimization. J. Glob.
Optim., 58:631–652, 2014.

[14] O. Shcherbina, A. Neumaier, D. Sam-Haroud, X.-H. Vu, and T.-V. Nguyen, Benchmarking
global optimization and constraint satisfaction codes. in Global Optimization and Constraint
Satisfaction, C. Bliek, C. Jermann, and A. Neumaier, eds. , Springer-Verlag, Berlin, pp.
211–222, 2003.

A. Supplementary results

Lemma A.1: Let [a], [b], [c] ⊂ R be real intervals, let [Λ⋆([a], [b], [c])] be defined as in (4.21), and
consider the matrix set

H = {H ∈ R2×2 |H11 ∈ [a], H22 ∈ [b], H12 ∈ [c], H = HT }.

Then,
Λ⋆([a], [b], [c]) = min

H∈H
λmin(H) and max

H∈H
λmax(H) = Λ⋆([a], [b], [c]). (A.1)

Proof. The eigenvalue bounds of a symmetric matrix H = (a c
c b) ∈ H read

λmin(H) =
1

2

(

a+ b−
√

(a− b)2 + 4 c2
)

, λmax(H) =
1

2

(

a+ b+
√

(a− b)2 + 4 c2
)

.

We therefore have to show that

a+ b−
√

(a− b)2 + d = min
a∈[a],b∈[b],c∈[c]

a+ b−
√

(a− b)2 + 4 c2 and (A.2)

a+ b+

√

(a− b)2 + d = max
a∈[a],b∈[b],c∈[c]

a+ b+
√

(a− b)2 + 4 c2, (A.3)

where the left-hand side results from (4.21) and where d = 4 max{c2, c2}. We show that (A.2)
holds and claim (A.3) can be proven analogously. First note that the right-hand side in (A.2)
can be simplified to

min
a∈[a],b∈[b],c∈[c]

a+ b−
√

(a− b)2 + 4 c2 = min
a∈[a],b∈[b]

a+ b−
√

(a− b)2 + d (A.4)

since c occurs only in the radicand. Consider the function f : R2 → R, f(a, b) = a + b −
√

(a− b)2 + d, which occurs on the right-hand side of (A.4), and note that f(a, b) is concave
(since g(a, b) =

√

(a− b)2 + d is convex). Since the hyperrectangle B = [a] × [b] is convex, the
minimum on the right-hand side of (A.4) is attained at one of the vertices of B. Among the
candidate tuples (a, b), (a, b), (a, b), and (a, b), it is easy to show that (a, b) results in the smallest
function value, i.e., f(a, b) ≤ min{f(a, b), f(a, b), f(a, b)}. Thus, (A.2) holds. �

23

	Introduction
	Notation and preliminaries
	Direct computation of eigenvalue bounds for Hessian matrices on hyperrectangles
	Improved computation of eigenvalue bounds using sparsity
	Sparsity handling using reduced Hessians and reduced gradients
	Improved eigenvalue bounds for the sum of two functions
	Improved eigenvalue bounds for the composition of two functions
	Improved eigenvalue bounds for the product of two functions
	Numerical computation of improved eigenvalue bounds

	Numerical experiments for a large number of examples
	Conclusion
	Supplementary results

