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Rigorous constraint satisfaction
for sampled linear systems

Moritz Schulze Darup!

Abstract

We address a specific but recurring problem related to sampled linear systems. In partic-
ular, we provide a numerical method for the rigorous verification of constraint satisfaction
for linear continuous-time systems between sampling instances. The proposed algorithm
combines elements of classical branch and bound schemes from global optimization with
a recently published procedure to bound the exponential of interval matrices.

1 Introduction and Problem Statement
We consider continuous-time linear systems
z(t) = Ax(t) + Bu(t), x(0) =z (1)
with state and input constraints of the form
xz(t) e X and wu(t) el for every t € Ry (2)
under piecewise constant control
u(t) = u(ty) for every t € [k At, (k+ 1) At), (3)

where At > 0 denotes the sampling time and where t; := k At for every k € N. The sets
X C R" and U C R™ are assumed to be convex and compact polytopes containing the
origin as an interior point. During controller design (and controller evaluation), system ()
is usually replaced by the discrete-time system

#(teyr) = Ax(te) + Bu(ty),  2(0) = o (4)

with A := exp(AAt) and B := fOAt exp(A7)dr B. While the discretized system and
the continuous-time system coincide at all sampling instances, it is well-known that the
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continuous-time trajectory may violate the state constraints even though the discrete-
time counterpart does not (see, e.g., the motivating example in [I]). This problem can
be prevented by considering adapted constraints for the discretized system such that con-
straint satisfaction of ({]) w.r.t. the adapted constraints implies constraints satisfaction
of (@) w.r.t. the original constraints (2]). Suitable methods for the computation of adapted
constraints can, for example, be found in [TH5].

Comparing the methods in [IH5], it is peculiar that the procedures in [2,[3}/5] all rely
on a similar non-convex optimization problem (OP). In fact, the central element of [2]
Thm. 5], [3, Eq. (15.16)], and [5, Eq. (15)] is an OP, which can be characterized as
follows. For a finite number of tuples (zg,up) € X x U that satisfy gxo + Euo e X
(i.e., the successor of the discretized system satisfies the state constraints), we have to
guarantee that the associated trajectory of the continuous-time system does not violate
the state constraints for any ¢ € (0, At). Having this guarantee for a single trajectory is
not very meaningful. However, guaranteeing constraint satisfaction for, say, s € N tuples
(zi,u;) € X x U implies that the continuous-time trajectory associated with any initial
condition (zg,up) € conv{(z1,u1),...,(zs,us)} does not violate the original constraints
(see [B, Prop. 2]) for details). The computation of adapted constraints for the discretized
system () can thus be reduced to the analysis of a finite number of continuous-time
trajectories (see [2L3L5]).

The problem of guaranteeing constraint satisfaction of the continuous-time trajectory
associated with a given tuple (zg,up) € X x U can be described more precisely along the
following lines. First note that the polytope X can be written in the form

X ={z€R"|Hz <1},

where H € RP*™ and where 1 € RP is a vector with all entries equal to 1. Now, let
©(t,zo,up) denote the solution of (I]) at time ¢ € [0, At] for an initial condition zg € X
and a control action ug € U. Then, the trajectory of the continuous-time system does
obviously not violate the state constraints for any ¢ € [0, A¢] if

T
max max e; H o(t, xg,ug) <1, 5
ety Ry € H ol o 2 ®)
where e; € RP is the j-th Euclidean unit vector. Taking into account that ¢(t,zo,uo)
reads

t
p(t.z0,u0) = exp(At)ao + | exp(Ar)dr Bug (6)
0

for every t € [0, At], it is easy to see that e?H ©(t,xo,up) is, in general, not concave (nor
convex) in t. Hence, verifying whether (Bl) holds (or not) is a multivariate non-convex OP.
Fortunately, the Lh.s. in (B) can be easily decomposed into p univariate OPs of the form

fr= 2 [, (7)
where f : [0, At] — R is given by
f(t):=hnT (exp(A t) xo + /t exp(AT)dr B u0> (8)
0

with h € R™. Clearly, (B)) holds if f* < 1 results from (7)) for every h € {H ey,...,H ep} C
R™.

As indicated above, the solution of the non-convex OP () for different (xq,ug) € X xU
and different h € R™ is essential for the methods introduced in [2,[BL/5]. However, the



authors of [2Bl5] do not spend much effort on an efficient solution of (7). In fact, they
argue that, although the OP (7)) is generally non-convex, it can be solved reliable (using
local optimization solvers) since it is the search of the maximum of a scalar function on a
scalar compact domain. While this observation is true, we can provide more elaborated
solution strategies for (7)) based on the special structure of the objective function in (g]). In
this paper, we thus address the rigorous (or global) solution of ([7]) using interval arithmetic
(IA, see [6l[7] for an overview). More precisely, we intend to identify non-decreasing, non-
increasing, convex, and concave segments of f(¢) on [0, At] based on interval inclusions
for the first and second time-derivative of f(t). Clearly, for such segments, local maxima
can be easily computed and subsequently finding the global maximum is straightforward.
The proposed solution scheme for (7)) can be readily integrated into the methods in [21/3l/5]
and thus improves these procedures for the computation of adapted constraints.

The paper is organized as follows. We state basic notation and preliminaries in Sect. 2
The main result of the paper, i.e., a tailored branch and bound algorithm for the rigorous
solution of () is presented in Sect. Bl Finally, the proposed method is illustrated with
some examples in Sect. 4 before giving conclusions in Sect. [l

2 Notation and Preliminaries

As mentioned in the introduction, we exploit IA to provide interval inclusions for f(¢) and

its derivatives )
df(?) d*f(t)

TR f'(t)  and o ().

IA can be understood as the extension of operations associated with real numbers, like
addition or multiplication, to intervals (see, e.g., [6, Sect. 2.2]). In this paper, we only
require a few interval operations summarized in the following lemma.

Lemma 1 ([0, Egs. (2.14) and (2.19)]): Let [c]=]c,¢] C R and [d] = [d,d] C R be intervals

with ¢ < ¢ and d < d. Define the intervals

[+ [d]:==[c+d,c+d] and
[c] x [d] := [min{cd, cd,ed,ed}, max{cd,cd,cd,cd}].

Then, c+d € [c] + [d] and c¢d € [c] x [d] for every ¢ € [¢] and every d € [d].

The rules in Lem. [I] can also be applied to compute the sum (or the multiplication) of
an interval [¢] and a real number d € R. In this case, [d] can be construed as a degenerated
interval with d = d = d. Moreover, by setting [d] = [c], the interval multiplication can be
used to evaluate [c] raised to the power of k € N. However, tighter inclusions result for
the calculation rule given in [6, Eq. (3.10)]. In fact, we find ¢ € [¢]*® for every ¢ € [¢],
where

—

¢ if ¢>0 or kis odd,
¢ c¢"] if €<0 and kis even,

=1 [
[0,|[c]|*] if O € [¢] and & is even,

—

and where the magnitude of [c] is defined as |[c]| := max{]c|, |¢|}. In addition, we define
the width of an interval as w([c]) := ¢—¢. TA can be easily extended to interval vectors and
interval matrices. For two interval matrices [C] = [C, C] and [D] = [D, D] of appropriate
size, the sum [C] + [D] and the multiplication [C][D] are understood component-wise.
Analogously, the magnitude |[C]| is defined component-wise, i.e., (|[C]])i; := [[C;;, Cyll-
Finally, the infinity norm of an interval matrix is defined as the maximum of the norms



of the contained real matrices, i.e., [|[C]|l := maxce(c) [|C|leo- It is easy to see, that this
definition implies ||[C]|loc = |||[C]||loo- Computing interval inclusions for (§) will mainly
build on interval inclusions for matrix exponentials, which can be calculated as follows.

Theorem 2 ([8, Thm. 4.3]): Let [C] = [C,C] be an interval matriz with C,C € RI%4. Let
k,1 € N be such that 2 (k +2) > ||[C]|lsc. Define [C*] := %[C],

(D] =1, + [(’1*] (Iq + [C;] ( . (Iq + K?) >> + T 1“)[51]!%@) [—1I,,1,),

and [D] := [D*]?. Then exp(C) € [D] for every C € [C].

Note that there exist many ways to evaluate [D*]Ql as occurring in Thm. 21 In [§ p.
61], the authors propose to use [ successive interval square operations, i.e.,

D = (L (o))

An efficient procedure for the computation of the square of an interval matrix is presented
in [9 Sect. 6].

3 Rigorous Solution via Interval Arithmetic

In the following, we present a tailored method for the rigorous solution of the non-convex
OP (7). Before describing the algorithm, we have to stress that there exists a number
of situations where ([7l) can be solved analytically. In this context, note that (8]) can be
rewritten as

f(t)=nt </Otexp(A 7)dr (Azo 4+ Bug) + x0> (9)

using the identity fg exp(AT)dr A 4+ I, = exp(At). Obviously, trivial solutions result
if Azg+ Bug = 0, A = 0, or h = 0. In addition, an analytical solution of () is
straightforward if h is an eigenvector of AT i.e., if AT A = AAT for some X\ € R. To see
this, note that the time-derivatives of () are given by

f'(t) = hT exp(At) (Azo 4+ Bug) and (10)
f"(t) = hT Aexp(At) (Azo + Buo). (11)

Thus, h being an eigenvector implies f”(t) = Af'(t) for every ¢ € [0, At], which eventually
leads to a monotone function f. Consequently, we obtain f* = max{h Tz, f(At)}. Finally,
the solution of (7)) may be trivial if A is nilpotent, i.e., if there exists an r € N (with
1 <r < n) such that A% # 0 for k € {0,...,r — 1} and A% = 0 for k > r. In this case, f
can be rewritten as the polynomial

r—1
Akxo + Ak_lBuO Ar_lBuO r
Ft)=nT (mo—i—; . th 4+ —t" . (12)
=1

If an analytical solution is not obvious, a numerical procedure to solve (7)) may be
required. We propose Alg. [[l further below to compute e-optimal solutions to () according
to Def. [l

Definition 1: Let ¢ > 0. We call ?* € R an e-optimal solution to (M) if 0 < ?* — f*<e



As mentioned in the introduction, Alg. [1 relies on identifying non-decreasing, non-
increasing, convex and concave segments of f(¢) on [0, At] based on interval inclusions for
the derivatives (I0) and (III). As stated in the following proposition, such inclusions can
be easily computed based on Thm. 2l

Proposition 3: Let [t] C [0, At] with |[t]| > 0 and consider the interval matriz [C] = A[t].
Let k,1 € N be such that 2! (k +2) > ||[C]|lec and define [D] as in Thm. 2 Then, the
interval inclusions

1 =[fF] =h"[D](Azo + Bug),  and (13)

/") =", 7" = K" A[D] (Ao + B ug), (14)
are such that

') €[f] and f"(t) € [f"] for every t € [t]. (15)

Proof. According to Thm. 2] we have exp(At) € [D] for every ¢ € [t]. Thus, (I3]) and (I4])
contain the r.h.s. in (I0) and (II) for every ¢ € [t], respectively. Consequently, (I3
holds. | [

Clearly, if f' > 0 results from (I4)), then f(¢) is non-decreasing on the time-interval [¢].

Analogously, 71 <0, i” > 0, or f” < 0 guarantees f(t) to be non-increasing, convex,
or concave on [t|, respectively. In each of these cases, it is easy to compute the local
maximum of f(¢) on [t], i.e.,

F = max £(1 (16)

te(t]

In fact, f(t) being convex, non-decreasing, or non-increasing implies f = max{f(t), f(f)},
= f(@), or fI = f(%). Finally, if f(t) is concave, solving (I8 is a convex OP. In contrast,
if /<0< ?I and f’ <0< 7”, a straightforward computation of fT may not be possible.
However, even in this case, the bounds on the derivatives can be used to compute an upper
bound for the local maximum according to Def. 2 and Lem. [

Definition 2: Let [t] C [0, At] with w([t]) > 0. We call a function g : [t] — R a suitable
overestimator for f on [t] if f(t) < g(t) for everyt € [t] and if the optimizer

th == arg max g(t) (17)
teft]

can either be computed analytically or by solving a convex optimization problem.

Lemma 4: Let [t] C [0,At] with w([t]) > 0 and assume [f'] and [f"] with f' < 0 < 7

and f” > 0 are such that ([IX) holds. Then, the following three functions g : [t] — R are
suitable overestimations for f on [t].

1. The piecewise affine function

ott) = {

where t. = S O-) ki;fj](j)ff@).

"(t—t) if t <t

t—1
t—t) otherwise,



2. The piecewise quadratic function

o(0) = { FO+FOE-D+ G -1 ift<t,
f@&) = f'&)E—1t)+ %(f — )2 otherwise,

where

0.5 @Ot OHFD-FO o L OSQ _ F"
toi={ 7041 O—1'(0) if =<
4 otherwise.

/!

3. The concave function g(t) = f(t) + %(f —1)(t—1).

The overestimators listed in Lem. [ are adopted from [10], [I1], and [I2, Sect. 4]. In
fact, |[f']| and |[f"]| can be understood as local Lipschitz constants for f(t) and f’(t)
as exploited in [I0] and [I1], respectively. We thus omit a detailed proof of Lem. [ and
refer to [I0HIZ]. It is, however, important to note that the solution to (7)) reads t = ¢,
for the overestimator g of type 1. For type 2, we find t' € {t,t.,7}, which renders (I7)
trivial. Finally, for type 3, solving (I7)) is a convex OP. Based on Prop. Bl and Lem. [, we
are finally able to formulate the following algorithm for the computation of an e-optimal
solution to (7).

Algorithm 1: Solution of () via branch and bound.

INPUTS: A, B, xg, ug, h, and At as in (7)) and (&).

OUTPUT: e-optimal solution [ to @ .

1. Initialize the lower bound on the global mazimum as f* < hTzy. Initialize the list
L of tuples ([t], [fT]), each containing a time-interval [t_] and bounds [f1] on the local
mazimum of f on [t], as L + {([0, At],[—o0, 0])}.

2. FOREACH tuple ([t],[fT]) in L, for which the bounds on the local mazimum read [fT] =
[—00, 00|, repeat the following steps.

a) Compute [f'] and [f"] according to Prop.[d and define a suitable overestimator g for
f on [t] (e.g., according to Lem. [J]).
b) IF f' >0, set [fT] < [f(@), f(D)]-
ELSEIF | <0, set [f] « [f(2), f(1)]-
ELSEIFi"z 0, compute fT =max{f(t), f(£)} and set [fT] < [fT, f1].
ELSEIF ' <0, solve @) and set [fT]<« [fT, f1].
ELSE, solve (IT) and set [f1] < [f(t1), g(t1)].
c) IFﬂ > f*, set f* <—ﬂ.

3. Compute the upper bound ?* on the global maximum by taking the maximum of all local
upper bounds fT of the tuples ([t],[f1]) in L.

4. IF w([f*]) <, RETURN " and terminate.

5. FOREACH tuple in L repeat the following step.
a) IF TTg 1 and w([fT])> €, remove tuple from L.
6. Select the tuple ([t], [fT]) with the largest width w([fT]) in L and remove it from L.

Compute t,, = % and insert the tuples ([t, ty], [—00,o0]) and ([tm,t], [—00,o0]) in L.

GOTO step 2.

In principle, Alg. [l is similar to established branch and bound procedures for global
optimization (see, e.g., [10], [13} Sects. 6 to 13], [11l Sect. 3], [12, Sect. 6], or [14], Sect.



3]). The main difference is that Alg. Il makes use of bounds on the first and second
derivative. First, this allows to identify a number of segments where the local maximum
can be computed exactly. Second, it gives some flexibility w.r.t. the choice of suitable
overestimators for the remaining segments. In fact, overestimators of type 1 (in Lem. M)
depend on [f’] while type 2 and 3 build on [f”]. Regarding the computational effort,
the strategy to compute both interval inclusions may be inefficient in general. Here,
however, the simultaneous calculation of [f'] and [f”] does not significantly increase the
computational load compared to solely calculating [f'] or [f”]. In fact, due to the special
structure of f, we easily evaluate [f'] = h'[d] and [f”] = hTA[d] given the interval vector
[d] := [D] (Azo + Bug). Obviously, the computational effort to calculate [d] is dominated
by the computation of the interval inclusion [D] for the matrix exponential.

As stated in Prop. B Alg. [lis guaranteed to compute an e-optimal solution to () for
every € > 0. In many cases, however, Alg. [Ilis capable to solve (1) exactly, i.e., for e = 0
(see Exmps. [l through Bl in Sect. @).

Proposition 5: Let € > 0 and let k,1 € N be such that 2 (k 4+ 2) > ||A[0, At]||eo. Then
Alg. [0 terminates after finite time and returns an e-optimal solution to ().

Proof. Tt is easy to see that Alg. [ provides an e-optimal whenever it terminates. Hence,
it is sufficient to prove finite termination of the algorithm. Clearly, Alg. [ terminates if
(but not only if) we have w([fT]) < e for every tuple ([t],[f]) in the list £. In fact, the
upper bound on the global maximum then satisfies

7= max TT< max fT+e:i*+e,

([ELlrihec (tL,lfhec™

i.e., w([f*]) < e. Asadirect consequence, the time-interval [t] of a tuple ([t], [fT]) satisfying
w([f1]) < e will never be bisected in step 6 of Alg. [ (since this would contradict reaching
step 6 after passing step 4 without termination). In the following, denote by [f{] and [f{]
the interval inclusions for f’ and f” on [0, At] and let j € N be such that

17 —/I!
max {w([fé]) AT, w([2fO]) AT? %Aﬁ} <k, (18)
where AT := % We obviously have
271
0,A) = | J [i,i + 1]AT (19)
=0

by construction. Consider any i € {0,...,27 — 1}, set [t] = [i,i + 1] A7, and note that
w([t]) = A7. Further note that the inclusions [f’] and [f”] on [t] satisfy [f'] C [f{] and
[f"] € [f{] since [t] C [0, At] (and since all involved operations are inclusion increasing;
see [8] for details). Now assume an overestimator of type 1 (as in Lem. M) is applied. We
then find

9(th) = F(t1) < maxg(t) = /(1) = max f() + T (t = 1) = £(2)

<max f(t) + F(t—t) — f(t) — f'(t— 1)

te(t]

= w({fN) w(ft]) <w((fo]) AT <e,



where the first and second relation hold due to ¢I € [t] and by definition of g, respectively.
The third relation holds since

F(0) = ) + /t Sy dr > f@) + 1)

for every ¢ € [t]. Finally, the last relations hold due to [f'] C [f{] and according to (IS]).
Using analogous arguments, we obtain g(t!) — f(t7) < € also for overestimators of type 2
or 3. We thus find w([f1]) < € for the bounds on the local maximum of f on [t] according
to step 2.(b) of Alg. [l Since i € {0,...,27 — 1} was arbitrary, this observation holds for
every time interval [i,7 + 1JA7 on the r.h.s. of (I9). As a consequence, the number of
required bisections in step 6 of Alg. [l is limited and the algorithm terminates after finite
time. To see this, first note that j and ¢ can be understood as the height and the position
of a leaf node in a perfect binary tree, respectively. The binary tree can be associated
with the bisection procedure. In fact, every inner node can be linked to the bisection
of a time-interval. Now, the perfect binary tree with height j refers to the worst-case
scenario, where the bisection continues until we obtain the partition on the r.h.s. of (I9).
Since this tree contains zg;& 2! = 2/ — 1 inner nodes, we obtain a maximum of 2/ — 1
bisections. | |

Understanding the role of the list £ and its entries is essential for understanding Alg. [
and the proof of Prop. Bl We thus summarize some important characteristics of £ in the
following remark.

Remark 1: Following the steps in Alg. [, it is easy to see that, during the whole runtime,
the list L is such that
U &acoAt (20)

([ELlrihec

Moreover, the time intervals of the tuples ([t],[f1]) € £ have mutually disjoint interiors,
i.e., (t1,t1) N (ty,t2) = O for every two tuples ([ti1], [f;r]), ([ta], [f;r]) € L with [t1] # [t2].
Obviously, relation [20)) holds with equality for the partitioning used in the proof of Prop. 5
(see Eq. ) ). In most cases, however, the l.h.s. in [20)) is a proper subset of the r.h.s. since
some tuples ([t],[f1]) are usually removed from the list £ during step 5.(a) of Alg. [
Finally, it is tmportant to note that, whenever we initialize local bounds on the maximum
of f(t) as [fT] = [~o0,00] (in steps 1 and 6), this only marks tuples to be checked in
step 2. The initialization does not reflect prior knowledge on the bounds [fT]. In fact,
in step 1, we could initialize [f1] as [f*, 00]. Similar, in step 6, we could insert the

tuples ([t, tm], [—oo,fT]) and ([t t], [—oo,?T]) in L. However, it is easy to see that both
changes do neither improve the performance nor the results of Alg.[l but (may) reduce the
readability of the algorithm.

4 Numerical Examples

We analyze four examples in the following. The first two examples address technical
systems taken from [I] and [15]. In contrast, Exmps. Bl and @l are of academic nature. In
fact, these examples were purely designed to challenge Alg. Il The application of Alg. [I]
requires to specify an error bound e. Moreover, the underlying computation of interval
inclusions for matrix exponentials depends on the parameters k,I € N (see Thm. 2]). We
set € = 107% and k = [ = 10 for all examples.



Example 1: We first analyze the double integrator in [15] with the system matrices

) ()

and the constraints X = {x € R?||z1| < 25, |z2| < 5} and U = [—1,1]. As in [15], we
consider the sampling time At = 1 and obtain the discretized system matrices

A= <(1) i) and B = (gg)

Obviously, for the initial state xo = (25.0 0.5)T € X, the only input ug € U for which
the discretized system satisfies the state constraints at the next sampling instant (i.e., for
which Amo + Buo € X)isuy = —1. In fact, for any uy € (—1,1], the state constraint
x1 < 25 will be violated. However, even for the choice ug = —1, the continuous-time system
may violate the state constraints for some t € (0,At). To check whether the constraint
x1 < 25 will be violated (or not), we set h = (0.04 0.00)T and solve (). Clearly, since A
is nilpotent, ([) can be easily solved analytically. We initially ignore this observation and
apply Alg. [

Following the steps in Alg. [, we first initialize the lower bound for the global mazimum
as f* = hTxg =1 and the list of tuples as L = {([0, At], [~00,00])}. Since [fT] = [~o0, o0],
we then evaluate inclusions for f' and f" on [0,At] in step 2.(a) and obtain the (exact)
intervals

[f'] =[-0.02,0.02] and [f"]=[-0.04,-0.04].

Since 7” < 0, the algorithm recognizes that f is concave in step 2.(b), solves the convex
OP (@8)), obtains f = 1.005, and sets [f1] = [fT, f1]. Now, due to fT =1.005 > f*, the
lower bound on the global mazimum is updated in step 2.(c). Since ([0, At],[1.005,1.005])
is the only tuple in L, we move to step 8 and set 7* = 1.005. Finally, the algorithm
terminates in step 4 since w([f*]) =0 <e.

For this example, it is easy to verify the computed result by analytically solving ([@). In
fact, since A is nilpotent with degree r = n = 2, we obtain

F(t) = hTzo + hT (Azo + Bug)t + 0.5 hTABug £
=1+0.02¢ — 0.02¢

according to (). We thus find f* = f(0.5) = 1.005 = [ = f*. Clearly, since f* > 1,
the continuous-time system will violate the state constraint for some (here all) t € (0,A).
This can also be observed in Figs. [l (a) and [.(b), where f(t) and p(t) are illustrated,
respectively.

As indicated in the introduction, we usually check all state constraints. For this example,
the remaining constraints —25 < x1, x9 < 5, and —5 < x9 are described by the vectors
h = (—-0.04 0.00)T, h = (0.0 0.2)T, and h = (0.0 —0.2)T, respectively. Evaluating
Alg. [ for these parameters yields the (exact) results 7* = -1, 7* = 0.1, and 7* = 0.1.
Since we obtain ?* <1 in all three cases, the remaining state constraints are not violated.
Clearly, this observation can be easily confirmed based on Fig. [d.(b).

Example 2: We consider the example in [1] with

—07 0.1 2.0
A‘( 2.0 —0.1> and B = (1.0)



(a) (b)
0.5
£ 0.0
—0.5
25.0 25.1
t T
(c) (d)
—1.8
1.00 - — =
. |
S i :
0.94 I 2.0
I
0.00 0.25 0.50 —-1.0 —0.5 0.0
t T
(f)
1.0
£ 00 @
—-1.0
—1.0 0.0 1.0
t T
(h)
&
. 0.0
0.0 0.1 0.2 0.0 2.0 4.0
t projection on xi-x2

Figure 1: Illustration of f(¢) (left figures) and ¢(t) (right figures) for Exmps. [I] through
[ (from top to bottom). In each figure, the point where the maximum f* is attained is
marked with a filled circle. Open circles and crosses refer to initial states zy and final
states ¢(At), respectively. State constraints are violated outside the gray regions.
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plus X = {x € R" | ||z]l0o <2} and U = [-1,1]. As in [1], the sampling time is chosen as
At = 0.5. We analyze whether the continuous-time system violates the constraint xo > —2
for the initial state xo = (—1.1135 — 1.8708)7 and the input vy = 0.9355. To this end,
we solve (@) with h = (0.0 —0.5)T and obtain 7= f* =0.9999 using Alg. [ Thus, the
continuous-time system does not violate the state constraint zy > —2 for any t € [0, A].
This observation is important, since (o ug )’ marks a vertez of the adapted constraint set
Z as computed in [5, Sect. IV]. In other words, f* < 1 is required to confirm the results
in [5]. An illustration of f(t) and ¢(t) can be found in Figs. [l (c) and[dl.(d), respectively.

t

Figure 2: Illustration of some overestimators for f(t) as in Exmp. [ after three bisec-
tions in Alg. [[l The dashed lines refer to the piecewise linear and quadratic overesti-
mators as introduced in Lem. [ (type 1 and 2), respectively. The dash-dotted curves
show the concave overestimators (type 3).

Example 3: We consider the system matrices

A= (j _I) and B = (‘é)

the constraints X = {x € R" | ||z]l00 <1, =221 + 229 < 1} and U = [—1,1], and the sam-
pling time At = 1.0. To check whether the continuous-time systems violates the constraint
—2x1 + 229 < 1 for o = (0.6 0.7)7 and ug = 1.0, we solve (@) with h = (=2 2)T and
obtain ?* = f* = 1.5465 using Alg. 1. Thus, the continuous-time systems violates the
state constraints for some t € (0, At) as confirmed in Figs. [ () and[.(f). In contrast to
Exmps. [ and[2, Alg. [ does not terminate without any bisection. In fact, as itemized in
Tab. [, we require eight bisections and the solution of three convex OP to identify 7* using
the second overestimator proposed in Lem.[4 A snapshot of the computed overestimators
after three bisections is shown in Fig. [2

Example 4: We consider the system matrices

0 6 5 1
A=15 1 0 and B = 0],
3 21 -2
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the constraints X = {x € R"|||z]lc < 0.2} and U = [-1,1], and the sampling time
At = 0.2. To check whether the continuous-time systems violates the constraint s < 0.2
for xg = (2.6724 —2.3762 0.1105)" and ug = 1.0, we solve (@) with h = (0 0 5)T and
obtain f* = 1.0000 using Alg.[Q In contrast to Exmps. 0 through[3, the result f = 1.0000
is not guaranteed to be exact. In fact, we obtain 7* — f*=0.3123 - 1075 using the second
overestimator in Lem. [} The inexactness can be eacp_laz'ned as follows. The example is
constructed in such a way that f* = f(At) and f'(At) = f"(At) = 0. In other words, the
mazximum on [0, At] is a saddle point of f(t). Thus, for any time-interval containing At,
one of the interval inclusions [f'] and [f"] has to be exact (at least f’ or 7/) in order to
identify f being non-decreasing or concave. However, since interval inclusions are inezact
i general and in particular for this example, ?* has to be identified solely by using the
overestimators g. Consequently, the number of required bisections is high compared to
Exzmps. Ul through[3 (see Tab. ).

Table 1: Statistics on the application of Alg. [[] to Exmps. Il through @l For every
example and every overestimator ¢ as in Lem. [, we list the number of bisections and
the number of solved convex OP required to identify f . The itemized errors refer to
(?* — f*)-10° (i.e., we have 7 —f*=0.8149-1076 < ¢ for Exmp. H and overestimators
of type 1). B

g  bisections convex OP  error

Exmp. 0 1-3 0 1 0
Exmp. B 13 0 1 0
1 11 4 0
Exmp.B 2 8 3 0
3 7 15 0
1 109 90 0.8149
Exmp. @ 2 15 0 0.3123
3 14 29 0.3022

5 Conclusion

We presented a numerical method for the rigorous verification of constraint satisfaction
for sampled linear systems. In particular, we proposed a tailored branch and bound
algorithm for the solution of the non-convex OP (@) (resp. (B))). The core of the algorithm
is a recently published procedure for the inclusion of interval matrix exponentials (see [§]).
Being able to solve () for different xy and ug allows us to (offline) compute adapted state
and input contstraints according to [2] Prop. 4 and Thm. 5], [3] Thm. 15.11], or [5, Prop.
2]. Satisfying these adapted constraints for the discretized system () finally guarantees
constraint satisfaction of the continuous-time system (II) w.r.t. the original constraints (2)).

The new method was illustrated with four examples. For every example, the proposed
algorithm successfully computed an e-optimal solution to the non-convex OP () (with
¢ = 107%). For three examples, the OP has even been solved exactly. For the two
technical examples taken from [I] and [I5], the algorithm terminated instantaneously
without branching (i.e., without bisections). In fact, branching (and bounding) was only
required for the two academic examples, which were designed to challenge Alg. Il Such
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challenges are unlikely to appear in practice, however, since they were either caused by an
inappropriately high sampling time At (see Fig. [[L(f)) or an extremely rare feature of f
in terms of a saddle point at the boundary of [0, At] (see Fig. Il (g)).

Algorithm [[ was particularly designed to solve problems of the form (7]). However, it can
be used to solve any univariate OP on a convex domain, for which the objective function
f is of class C? and for which interval inclusions for the first and second derivative of f can
be computed efficiently. In this context, note that the list of suitable overestimators in
Lem. M is not complete. The overestimator of type 2, which performed most successfully
for the analyzed examples (see Tab. [I] and Fig. @) can for example be further improved
using the results in [14].
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