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Predictive pressure control

in deep geothermal systems

Moritz Schulze Darup† and Jörg Renner‡

Abstract

We present a predictive control scheme to regulate the fluid pressure in the reservoir rock
of deep geothermal systems. Controlling the fluid pressure profile is important to avoid
strong seismic events during hydraulic stimulation. The introduced predictive controller
builds on a nonlinear, uncertain, and non-differentiable model describing the pressurization
and seismicity in the reservoir. Since measurements of system states are limited, we
additionally design an unscented Kalman filter to solve the observation problem.

1 Introduction

Geothermal systems become more and more important for the generation of electrical
energy. The total worldwide installed capacity of geothermal power plants currently is
12.635GW with an increase of about 350MW per year (see [1] for details). Geother-
mal power plants are, in general, environmentally friendly. However, the development of
enhanced geothermal systems (EGS, see Fig. 1) requires to artificially increase the perme-
ability in the reservoir rock such that water can circulate. The permeability increase is
effectuated by hydraulic stimulation that causes seismic activity. While the magnitudes
of the induced seismic events are typically small, strong events were recognized during
some hydraulic stimulations (see, e.g., Tab. 1 or [2]). Although such induced seismicity is
usually short lived, the activities in Soultz and Basel have raised public concern due to
their proximity to populated areas. The goal is thus to safely develop an EGS without
provoking massive seismicity.

In this paper, we introduce a predictive control scheme to regulate the fluid pressure
profile in the reservoir rock of an EGS. Controlling the pressure profile is the key to
manage the induced seismicity. We stress, however, that the presented method is not
yet capable of directly regulating the seismi-city. The procedure to be presented should
thus be understood as a preparatory work for a more complex predictive control scheme
explicitly including the induced seismicity. We refer to [3] for a first approach towards the
active regulation of seismic activity during hydraulic stimulation.
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Figure 1: Schematic illustration of an enhanced geothermal system. The injected
water is heated up in the reservoir rock and extracted through the production well.
The permeability in the reservoir can be artificially increased by hydraulic stimulations
causing the creation of new and the extension of existent fractures.

In principle, the fluid pressure in the reservoir rock can be controlled by adapting the
fluid flow in two wells (that, during power plant operation, will serve as injection and
production well). The pressurization in the reservoir will be delayed and alleviated due to
diffusion processes. We thus consider a model predictive control (MPC) scheme to account
for this behavior. The repeated solution of the underlying optimal control problem (OCP)
requires the knowledge of (an estimation of) the current system state. Since it is not
possible to completely measure the system state (including pressures, permeabilities, and
stresses), the design of an state observer is required. We implement an unscented Kalman
Filter (UKF) for this purpose since the considered model of an EGS is nonlinear, uncertain,
and non-differentiable.

Table 1: Maximum magnitude earthquakes induced by fluid injection.

Location Magnitude Year Reference

Soultz-sous-Forêts (France) 2.9 2003 [2, Tab. 1]
Basel (Switzerland) 3.4 2006 [2, Tab. 1]
Cooper Basin (Australia) 3.7 2003 [2, Tab. 1]
Berĺın Field (El Salvador) 4.4 2003 [4, Tab. 1]

The paper is organized as follows. We state basic notation in the remainder of this
section. In Section 2, we introduce a rudimentary model (that is inspired by [4]) to
describe the pressurization and seismic activity in an EGS.We analyze the derived model in
Section 3 and show that elementary characteristics of an EGS are reproduced by the model.
The main result of the paper, i.e., the predictive pressure control and state observation
for an EGS, is presented in Section 4. Finally, conclusions are stated in Section 5.

1.1 Notation

We denote reals, positive reals, and natural numbers (including 0) by R, R+, and N,
respectively. In addition, we define N[i,k] := {j ∈ N | i ≤ j ≤ k}. Beside the Euclidean

vector norm ‖x‖2, we frequently use ‖x‖P :=
√
xTPx, where P is a positive semi-definite
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square matrix. We write diag(d1, . . . , dn) for a diagonal matrix with elements d1 ∈ R

through dn ∈ R on its main diagonal. Finally, N (v, ς2) denotes a normal distribution with
expectation v ∈ R and standard deviation ς ∈ R+.

2 Modeling the fluid pressure

2.1 Diffusion equation and Darcy’s law

The spatial and temporal evolution of the fluid pressure p(ξ, t) in the reservoir can be
approximately described by the diffusion equation

∂p(ξ, t)

∂t
=

κ(ξ, t)

ζη

∂2p(ξ, t)

∂ξ2
, (1)

where ζ is the specific storage capacity, η is the fluid viscosity and κ is the (spatially
and temporally varying) rock permeability (see, e.g., [5, p. 215 and p. 340] or [6]). Using
Darcy’s law (see, e.g., [5, p. 119 ff.]), the injected and extracted fluid at the boundaries
result in (Neumann) boundary conditions of the form

∂p(0, t)

∂ξ
= − η qin(t)

S κ(0, t)
and

∂p(l, t)

∂ξ
= − η qex(t)

S κ(l, t)
, (2)

where S refers to the cross section of the reservoir (see Fig. 1). The initial-boundary value
problem is completed by the initial condition p(ξ, 0) = p∗, where p∗ is the hydrostatic fluid
pressure depending on the depth of the reservoir.

2.2 Discretization

The partial differential equation (1) can be easily discretized using finite differences. How-
ever, taking into account that the permeability (and therefore the hydraulic diffusivity
Λ := κ/ζη) is affected by spatial and temporal variations, conventional forward Euler,
backward Euler, or Crank-Nicolson schemes are not suitable. Following [5, Eq. (7.9.8)],
we consequently use the adapted scheme

1∑

∆j=−1

α∆j

pk+1
j+∆j − pkj+∆j

κk+1
j+∆j ∆t

=
1∑

∆k=0

pk+∆k
j−1 − 2 pk+∆k

j + pk+∆k
j+1

ζ η∆ξ2
, (3)

where pkj := p(ξj , tk) and κkj := κ(ξj , tk) with ξj := j∆ξ and tk := k∆t, and where ∆ξ and

∆t denote the spatial1 and temporal step sizes, respectively. Following [5, Eq. (7.9.8)], we
chose the weights

α−1 := 1/6, α0 := 5/3, and α1 := 1/6.

Clearly, (3) can only be applied to inner nodes of the discretization grid and thus does not
apply for j ∈ {0, ν}, where ν := l/∆ξ. However, for the outer nodes, we obtain

qki =
S κk+1

0

η

3 pk+1
0 − 4 pk+1

1 + pk+1
2

2∆ξ
and (4)

qke =
S κk+1

ν

η

−pk+1
ν−2 + 4 pk+1

ν−1 − 3 pk+1
ν

2∆ξ
(5)

1 The spatial step size ∆ξ is assumed to be chosen such that l/∆ξ ∈ N.
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by approximating (2) using a second-order difference quotient and by taking into ac-
count that qi(t) and qe(t) are constant in the time-interval [tk, tk+1). Obviously, Equa-
tions (3), (4), and (5) can be summarized in the matrix equation

Ψ(κk+1)pk+1 = Φ(κk+1)pk+1 +Υ(κk+1)qk, (6)

where Ψ,Φ ∈ R
(ν+1)×(ν+1), Υ ∈ R

(ν+1)×2, and

κ
k :=



κk0
...
κkν


 , p

k :=



pk0
...
pkν


 , and q

k :=

(
qkin
qkex

)
.

2.3 Fracturing and seismic events

Hydraulic stimulation can cause seismic events (see, e.g, [2]). The occurrence of an
injection-induced seismic event is generally understood to result from a reduction of the
effective normal stress due to the increase in fluid pressure on pre-existing faults to the
point where their stress states reaches the critical condition for frictional failure (cf. [4]).
We discretize the shear stress profile using the same spatial grid as for the discretization
of the diffusion equation. We associate the shear stress τkj := τ(ξj, tk) with every point on
the discretization grid. Now, a seismic event occurs around a grid point, if the condition

µ (σ − pkj ) < τkj (7)

holds, where µ is the friction coefficient and where σ denotes the (constant) normal stress
(cf. [4, Eq. (1)]). A seismic event is assumed to have two side effects. First, the stress field
will locally change. More precisely, the stress τkj will be reduced by an uncertain amount
∆τ and some of the released stress will be transferred to neighboring regions. Second, the
permeability κkj will be increased by a factor (1 + ǫ), where the rate ǫ is again uncertain.
The stress transfer may cause elements to satisfy condition (7) although we initially found
µ (σ − pkj ) ≥ τkj . This behavior may lead to chain reactions and thus may result in major
seismic events (see [7] for details). Formally, the shear stress and permeability update
from time tk to tk+1 is described by the following algorithm inspired by the procedure
in [4, Sect. 3].

Algorithm 1: Pressure, stress and permeability update.

1. Set J ← ∅, κk+1 ← κ
k, and τ

k+1 ← τ
k.

2. Generate ǫ ∼ N (ǫ̂, ς2ǫ ) and ∆τ ∼ N (∆τ̂ , ς2∆τ ).

3. Repeat the following steps until ∆J = ∅.
(a) Set ∆J ← {j ∈ N[0,ν] \ J | (7) holds}.
(b) For every j ∈ ∆J \ {0, ν}, set τk+1

j−1 ← τk+1
j−1 + 0.45∆τ , τk+1

j ← τk+1
j −∆τ , and

τk+1
j+1 ← τk+1

j+1 + 0.45∆τ .

(c) For every j ∈ ∆J ∩{0, ν}, set τk+1
j ← τk+1

j −0.6∆τ and τk+1
|j−1| ← τk+1

|j−1|+0.45∆τ .

(d) For every j ∈ ∆J , set κk+1
j ← (1 + ǫ)κk+1

j .

(e) Set J ← J ∪∆J .
4. Set sk+1 ← |J | and compute p

k+1 according to (6).

Step 3.(b) describes the stress transfer. Similar to [4, Fig. 4], we assume that 90% =
2 · 45% of the stress reduction ∆τ is transferred to neighboring regions. Step 3.(c) uses
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an adapted stress transfer to account for boundary effects. Now, after evaluating step 3
in Algorithm 1, the set J contains the indices j of all locations ξj, where seismic events
occur in the time interval [tk, tk+1). The seismic moment roughly is proportional to the
slip-plane area (see, e.g., [4, Eq. (2)]). Thus, in our model, |J | provides a measure of the
strength of the seismic event, which we store in the variable sk := s(tk).

2.4 Model parameters

The values for the various model parameters (see Table 2) are not chosen to represent a
specific geothermal site. However, the assumed size and depth of the reservoir, the stress
field, and the rock and fluid parameters roughly match the conditions at Soultz-sous-Forêts
(cf. [4, Tab. 2]). Finally note that the spatial step size satisfies the condition in footnote 1.
In fact, we have ν = l/∆ξ = 120.

Table 2: Model parameters.

Parameter Symbol Value Unit

length of the reservoir l 600 m
cross section of the reservoir S 5000 m2

storage coefficient ζ 10−9 1/Pa
fluid viscosity η 2.4 · 10−4 Pa s
initial rock permeability κ∗ 2 · 10−14 m2

initial fluid pressure p∗ 48 MPa
temporal step size ∆t 5 s
spatial step size ∆ξ 5 m
normal stress σ 79 MPa
friction coefficient µ 0.8 1
permeability update ǫ̂ 0.02 1
permeability update uncertainty ςǫ 0.002 1
shear stress update ∆τ̂ 0.8 MPa
shear stress update uncertainty ς∆τ 0.02 MPa

3 Model analysis

The model introduced in Sect. 2 can be understood as a nonlinear state space model with
uncertainty. In fact, introducing the state and input vectors

x(tk) =




p
k

κ
k

τ
k

sk


 ∈ R

364 and u(tk) = q
k ∈ R

2,

respectively, the transition from x(tk) to x(tk+1) can be written as

x(tk+1) = f(x(tk), u(tk), v(tk)), (8)

where v represents the uncertain variables ǫ and ∆τ from step 2 in Algorithm 1. The
function f is in general not differentiable (due to the switching behavior of the system).
Furthermore, the pressure control in Section 4 only accounts for the pressures at the
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Figure 2: Illustration of (a) inputs, (b) related outputs, (c) pressure profiles, and (d)
the seismic activity of the introduced models. In (a), the injected and extracted flow
rates u1 = qi (blue) and u2 = qe (red) are shown, respectively. In (b), the pressures y1
(blue) and y5 (red) for the nonlinear (solid) and linear (dashed) model are illustrated.
In (c), p(ξ, t) is shown for t = 12h (gray) and t = 7d (black) for the nonlinear (solid)
and linear (dashed) model. In (d), the strongest seismic events per hour are illustrated.

locations ξ20(i−1)+1 with i ∈ N[1,7]. We thus introduce the system output y(tk) = Cy x(tk)

with Cy :=
∑7

i=1 ei ε
T
20(i−1)+1 ∈ R

7×364, where ei ∈ R
7 and εj ∈ R

364 are Cartesian unit
vectors. Note that y1 and y7 refer to the pressures in the wells, i.e., at ξ = 0m and
ξ = 600m. The nonlinear uncertain system becomes linear and deterministic if steps 2
and 3 are skipped in Algorithm 1. In this case, f from (8) can be rewritten as

f(x, u, v) = Ax+B u (9)

with appropriate matrices A ∈ R
364×364 and B ∈ R

364×2 (to be specified further below).
We will make use of the linear approximation2 to predict the system behavior within the
MPC in Section 4. As a preparation, we analyze the response of the nonlinear system and

2 Clearly, only the states related to the pressures pk change in the linear model. We can thus eliminate
the remaining 364− 121 = 243 states without loosing information. This observation is, however, only
important for the numerical evaluation of the MPC in Section 4.
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the linear approximation for the inputs in Figure 2.(a). We obviously have u1(t) = −u2(t)
for every t ∈ [0 d, 5 d] and u1(t) = u2(t) for every t ∈ (5 d, 10 d].

The evolution of the pressures y1 and y5 at ξ = 0m and ξ = 400m are qualitatively
comparable for the nonlinear model with uncertainty and the linear deterministic one (see
Figs. 2.(b) and 2.(c)). More important, both models show typical characteristics of EGS.
In fact, the pressure y1 at the injection reacts immediately and intensely to changes of the
flow rate. In contrast, the pressure y5 in the reservoir (at ξ = 400m) shows a delayed and
damped reaction due to diffusion. Moreover, the largest seismic event occurs (shortly)
after the time interval [60 h, 72 h] with the highest injection rate (see Fig. 2.(d)). This so-
called post-injection seismicity (see, e.g., [4, Sect. 5.4]) is typical for hydraulic stimulations
in EGS.

4 Predictive pressure control

We now introduce the predictive control scheme to regulate the fluid pressure in the deep
geothermal system. In particular, we intend to control the system such that

lim
t→∞

y2(t) = y̆2 and lim
t→∞

y5(t) = y̆5, (10)

where y̆2 and y̆5 are reference values for the pressures at ξ = 100m and ξ = 400m,
respectively. Thereby, input and output constraints of the form u ≤ u(t) ≤ u and y ≤
y(t) ≤ y should be satisfied (at least point-wise in time). The described control task does
not exactly match the situation in practical application. In fact, we are mainly interested
in presenting a first approach for predictive pressure control in deep geothermal systems.
We stress, however, that the control scheme can be easily adapted to similar control tasks.

4.1 MPC with linear prediction

The control task can be intuitively formulated in the framework of MPC. The associated
OCP may, however, be hard to solve for naive implementations. First, the usage of the
nonlinear uncertain model to predict the system behavior results in a non-convex OCP.
Second, the high number of states implies a high number of equality constraints (which
could, of course, be eliminated). Third, the slow dynamics of the system require long
prediction horizons resulting in a high number of decision variables.

We make some simplifications to facilitate the numerical solution of the OCP. First, we
use a linear approximation of the nonlinear prediction model. Regarding the analysis in
Section 3, this simplification is justifiable for moderate prediction horizon lengths. Second,
we apply a quadratic performance index. As a consequence, the OCP can be rewritten
as a quadratic program (QP). Third, we (later) eliminate equality constraints to reduce
the number of constraints. Fourth, we employ move blocking strategies (see, e.g., [8]) to
reduce the number of decision variables. In particular, we assume that the inputs only
change every M ∈ N time steps (i.e., u(tMi+k) = u(tMi) for every i ∈ N and k ∈ N[1,M−1]).
Moreover, we require the output constraints to be fulfilled only at the times tMi for i ∈ N.
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In summary, we consider the MPC scheme

V (x∗) := min
u,x,y

Ny∑

i=1

‖y(tMi)− y̆‖2Q +

Nu−1∑

i=0

‖u(tMi)− ŭ‖2R (11)

s.t. x(t0) = x∗,

x(tk+1) = A∗x(tk) +B∗u(tk), ∀k ∈ N[0,MNy−1],

y(tMi) = Cy x(tMi), ∀i ∈ N[1,Ny],

u(tMi) = u(tM(Nu−1)), ∀i ∈ N[Nu,Ny−1],

u(tMi+k) = u(tMi), ∀i ∈ N[0,Ny−1], ∀k ∈ N[1,M−1],

u ≤ u(tMi) ≤ u, ∀i ∈ N[0,Nu−1],

y ≤ y(tMi) ≤ y, ∀i ∈ N[1,Ny],

where Ny and Nu refer to the output and input prediction horizon, respectively. The
positive (semi-) definite matrices Q and R determine the output and input weights. The
vector ŭ ∈ R

2 defines the input reference. The value V (x∗) is the optimal cost for the
initial condition x∗ and

u :=




u(t0)
u(t1)
...

u(tMNy−1)


, x :=




x(t0)
x(t1)
...

x(tMNy)


, y :=




y(tM )
y(t2M )

...
y(tMNy)




denote the decision variables of the OCP. Finally, inspired by (6) and (9), the linearization
around x∗ is described by

A∗:=

(
Ψ−1(κ∗)Φ(κ∗) 0

0 I243

)
and B∗:=

(
Ψ−1(κ∗)Υ(κ∗)

0

)
,

where κ
∗ :=

(
x∗122 . . . x∗242

)T
. Now, by eliminating all equality constraints according to

the procedure in [9], (11) can be equivalently rewritten as the QP

V (x∗) =min
z

1

2
z
TH z + (Gx∗ + g)Tz + ‖Fx∗ + c‖22 (12)

s.t. E z ≤ Dx∗ + d

with appropriate matrices (and vectors) H, G, g, F , E, D, d, and c (see [9] for details)
and the decision variables

z :=




u(t0)
u(tM )

...
u(tM(Nu−1))


 ∈ R

2Nu . (13)

During runtime of the controller, the OCP (12) (or, alternatively (11)) is repeatedly solved
for the current state x∗ and the first input of the optimal input sequence is applied to the
system. Formally, this procedure leads to the control law

̺(x∗) := u∗(t0),

where u∗(t0) is the first entry of the optimizer z∗ for (12) at x∗.
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It remains to specify the choice of the weighing matrices and the reference signals.
Regarding the control task in (10), the choice Q = e2 e

T
2 + e5 e

T
5 ∈ R

7×7 is suitable to
penalize deviations from the output references y̆2 and y̆5. Clearly, this choice of Q implies
that the deviations yj(t)− y̆j for j ∈ N[1,7] \{2, 5} do not influence the performance index.
Consequently, y̆ := y̆2 e2 + y̆5 e5 ∈ R

7 is a suitable choice for the output reference. An
appropriate choice for the input reference requires some preparation. Obviously, the inputs
ŭ should support stationarity of the system if y2(t

∗) = y̆2 and y5(t
∗) = y̆5 hold for some

t∗ ∈ R+. From (1), we infer that stationarity requires

0 =
∂2p(ξ, t∗)

∂ξ2
for every ξ ∈ [0, l], (14)

which can only be fulfilled if p(ξ, t∗) is affine. By definition of the system outputs y,
we have y2(t

∗) = p(100, t∗) and y5(t
∗) = p(400, t∗). Thus, the affine pressure profile is

uniquely defined by y̆2 and y̆5. In fact, p(ξ, t∗) can be written as p(ξ, t∗) = a ξ + b with

a :=
y̆5 − y̆2
300

and b :=
4 y̆2 − y̆5

3
.

We thus require the injection and extraction flow rates

qin(t
∗) = −S a

η
κ(0, t∗) and qex(t

∗) = −S a

η
κ(l, t∗)

to ensure stationarity (see (2)). Now, assuming that the permeability does not change
in the future (which is, by definition, true for a stationary state), we choose the input
references

ŭ1 := −
S a

η
x∗122 and ŭ2 := −

S a

η
x∗242 (15)

depending on the current state x∗. Finally, we choose the input weighting R = r I2, where
r ∈ R+ is a tuning parameter.

4.2 UKF with nonlinear prediction

The application of the introduced MPC scheme requires (an estimation of) the current
system state x∗. Clearly, measuring the complete profiles of pressure, permeability, and
shear stress in the reservoir is not feasible. In fact, very few measurements can be realized
in practice. Here, we assume that the fluid pressures in both wells, i.e., p(ξ0, ·) = x1
and p(ξν , ·) = x121 can be measured. Moreover, we assume that the current magnitude
of the seismic events is accessible via s = x364. This assumption is reasonable since the
induced seismicity is usually tracked during hydraulic stimulations (see, e.g., [4, Sect. 2]).
All measurements are, however, effected by (white) noise. Specifically, we assume that the
measurements m(tk) ∈ R

3 at time tk are described by

m(tk) = Cm x(tk) + w(tk)

where Cm := e1 ε
T
1 + e2 ε

T
121 + e3 ε

T
364 ∈ R

3×364 and where w1 ∼ N (0, ς2p ), w2 ∼ N (0, ς2p ),
and w3 ∼ N (0, ς2s ).

Many methods exist that compute an estimate x̂∗ of the current state x∗ given an esti-
mation of the former state x̂−, the former input u−, and the current (noisy) measurement
m∗. Here, we design a UKF (see, e.g., [10] or [11]) to observe the system state. The UKF
is capable of handling nonlinear uncertain systems with non-differentiable functions f .
Moreover, it can be applied to large scale systems since the estimation procedure builds
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on a small number of test (or sigma) points (compared to particle filters). It is thus a
well-suited choice for the system described in Section 2. To handle the uncertainties, the
UKF exploits information on the distribution of the uncertain variables. In particular, we
require (estimations of) the mean v̂ and the covariance matrix Pvv of the process uncer-
tainty v as well as the covariance matrix Pww of the measurement noise. Obviously, based

on the assumed distributions of v and w, we have v̂ =
(
ǫ̂ ∆τ̂

)T
, Pvv = diag(ς2ǫ , ς

2
∆τ ),

and Pww = diag(ς2p , ς
2
p , ς

2
s ). The UKF can now be implemented according to Algorithm 2,

which is based on [10, Box 3.1] and [11, Alg. 3.1]. As a preparation, we define the weighting
coefficients

β0 :=
λ

366 + λ
and βi :=

1

2 (366 + λ)
(16)

for every i ∈ N[1,732] and some λ ∈ R (with λ 6= −366). Thereby, 366 = 364 + 2 refers to
the dimension of the augmented state vector that concatenates the original state and the
process noise (see [10, Eq. (15)]). In addition to the weighting coefficients, we precalculate
the v coordinates3 of the 733 = 2 · 366 + 1 sigma points according to Vi := v̂ for every
i ∈ N[0,728] as well as

V728+i := v̂− +
√
366 + λ eTi Lv and

V730+i := v̂− −
√
366 + λ eTi Lv

for every i ∈ {1, 2}, where Lv := diag(ςǫ, ς∆τ ). Note that Lv obeys LvL
T
v = Pvv . Now,

Algorithm 2 first computes the x coordinates of the 733 sigma points. In step 2, the
nonlinear model is used to compute state and output predictions for every sigma point
(with the components X−

i and Vi). In step 3 and 4, these predictions are used to calculate
the expectations for the current state and output, and the covariance matrices P̃xx, Pxm,
and Pmm, respectively. Finally, in step 5, the filter gain W is computed, which is used to
adapt the estimations for the current state and the associated covariance matrix.

Algorithm 2: UKF implementation.

1. Compute Lx such that LxL
T
x = P−

xx and set sigma points.

(a) For every i ∈ {0} ∪N[729,732], set X−
i ← x̂−.

(b) For every i ∈ N[1,364], set X−
i ← x̂− +

√
366 + λ εTi Lx and

X−
364+i ← x̂− −

√
366 + λ εTi Lx.

2. For every i ∈ N[0,732], compute predictions Xi ← f(X−
i , u−,Vi) and Mi ← CmXi.

3. Compute x̃←∑732
i=0 βiXi and m̃←∑732

i=0 βiMi.

4. Compute approximations of covariance matrices.

(a) P̃xx ←
∑732

i=0 βi(Xi − x̃) (Xi − x̃)T .

(b) Pxm ←
∑732

i=0 βi(Xi − x̃) (Mi − m̃)T .

(c) Pmm ← Pww +
∑732

i=0 βi(Mi − m̃) (Mi − m̃)T .

5. Compute filter gain W ← Pxm P−1
mm and set x̂∗ ← x̃+W (m∗ − m̃) and

Pxx ← P̃xx −WPmmW T .

We refer to [10] and [11] for details on the implementation of UKF. We stress, how-
ever, that the choice of the weighting coefficients in (16) refers to the unscaled unscented
transformation as introduced in [10, Eq. (12)]. The performance of the UKF can often

3 Neglecting a potential covariance between the state estimation and the process uncertainty, the sigma
points in the augmented space can be computed independently in the x and v coordinates.
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be improved by considering the scaled unscented transformation as discussed in [12] and
applied in [11, Eq. (15)]. Here, we do not make use of this improvement in order to keep
the number of observer parameters at a minimum (i.e., only λ).

MPC
EGS

UKF

y̆
u

x̂

y

m
M∆t = 1h

∆t = 5 s

Figure 3: Schematic illustration of the control loop consisting of the geothermal system
with underground reservoir and well doublet (i.e., the EGS), the controller (i.e., the
MPC), and the observer (i.e., the UKF). The listed periods refer to sampling times of
the controller and the observer.

4.3 Combination and simulation

We briefly explain the combination of the controller (i.e., the MPC) and the observer (i.e.,
the UKF) for the system of interest (i.e., the EGS). The MPC generates the input u based
on the output reference, the (current) input reference, and the estimation of the current
system state (see Fig. 3). Note that, according to (15), the input reference is not a design
parameter since it depends on (an approximation of) the current system state. Now, the
UKF estimates x̂ based on the input u and the (noisy) measurements m (see Alg. 2). The
sampling time of the observer is chosen to equal the temporal step size ∆t of the model. In
contrast, the controller is only evaluated every M time steps following the move blocking
strategy in Section 4.1.

Table 3: Controller and observer parameters.

Parameter Symbol Value Unit

first reference pressure y̆2 57 MPa
second reference pressure y̆5 50 MPa
output prediction horizon Ny 72 1
input prediction horizon Nu 24 1
maximum injection rate u1 40 l/s
minimum injection rate u1 −30 l/s
maximum production rate u2 30 l/s
minimum production rate u2 −40 l/s
maximum pressure y1, . . . , y7 70 MPa
minimum pressure y

1
, . . . , y

7
44 MPa

sample time multiplier M 720 1
pressure measurement noise ςp 0.2 MPa
seismicity measurement noise ςs 0.5 1
observer parameter λ 50 1

We implemented the controller and observer using the parameters in Tab. 3. With
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M = 720, we obtain a controller sampling time of M∆t = 1h. In addition, the choice
Ny = 72 implies that the outputs are predicted for NyM∆t = 3d. Moreover, the input
prediction horizon Nu = 24 sets the number of decision variables equal to 48 (see Eq. (13)).
Regarding the observer, we found λ = 50 to be suitable to describe the unscented trans-
formation. Finally, we randomly initialized the observer state x̂(t0) in the hyperrectangle
[0.98, 1.02]x(t0), i.e., with a maximal relative error of 2%.

(a) (b)

(c) (d)
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Figure 4: Illustration of (a) inputs (injection and production flow), (b) outputs (fluid
pressures at ξ = 100m and ξ = 400m), (c) pressure profiles, and (d) the seimic
activity of the controlled system. In (a), the computed inputs u1 = qin (blue, solid)
and u2 = qex (red, solid) are shown. The dotted curves refer to the (time-dependent)
input references according to (15). In (b), the controlled outputs y2 (blue, solid)
and y5 (red, solid) are illustrated. The dotted lines depict the output references y̆2
and y̆5. In (c), p(ξ, t) is shown for t = 2d (gray, solid) and t = 5d (black, solid).
The dotted lines indicate the reference pressures y̆2 (blue) and y̆5 (red) as well as the
affine pressure profile a ξ+ b (black). In (d), the strongest seismic events per hour are
illustrated. Gray circles refer to quantities estimated by the observer.

The resulting control scheme is capable of solving the considered control task (see
Figs. 4.(a) and 4.(b)). The reference pressures are matched after t ≈ 6 d without vio-
lating the input and state constraints. Moreover, as expected, the pressure profile tends
to the affine profile determined by y̆2 and y̆5 for t → ∞ (see Fig. 4.(c)). As apparent
from Fig. 4.(d), the state transition causes a number of seismic events. Since seismicity
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involves permeability increases, the hydraulic diffusity is permanently changing. These
(inhomogeneous) changes in the permeability also explain that the injected and extracted
fluid flows do not match for t → ∞. In fact, taking the reference inputs (15) into ac-
count, the mismatch is obviously caused by different permeabilities around the injection
and production well.

5 Conclusions and Outlook

We presented a predictive control scheme for the regulation of the fluid pressure profile in
deep geothermal systems during hydraulic stimulation. The MPC builds on a rudimentary
model (inspired by [4]) describing the pressurization and seismicity in the reservoir. Since
only the fluid pressure in the two wells as well as the seismic activity can be measured
directly, a UKF was designed to solve the observation problem. Numerical simulations
showed the effectiveness of the approach.

During hydraulic stimulations of reservoir rocks, one intends to avoid strong seismic
events since geothermal sites are often located in the proximity of populated areas. Con-
trolling the fluid pressure profile in the reservoir is a first step in this direction. Neverthe-
less, future work has to address the explicit inclusion of seismic activity in the predictive
control scheme. This extension is non-trivial, since the linear approximation (currently
used in the MPC), does not incorporate seismicity. Clearly, the nonlinear uncertain model
can instead be used to predict the system behavior. However, doing so leads to a large-scale
non-convex OCP that we cannot solve efficiently so far.
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