
Nur-Text-Version

Dies ist der Cache von Google von http://xerces.apache.org/xerces-c/faq-parse-2.html. Es handelt sich
dabei um ein Abbild der Seite, wie diese am 17. März 2015 21:07:04 GMT angezeigt wurde. Die aktuelle
Seite sieht mittlerweile eventuell anders aus. Weitere Informationen
Tipp: Um Ihren Suchbegriff schnell auf dieser Seite zu finden, drücken Sie Strg+F bzw. ⌘-F (Mac) und
verwenden Sie die Suchleiste.

Xerces-C++
Installation
Build
Programming
Samples
FAQs
API
DOM C++
Migration

Questions

Does Xerces-C++ support Schema?
Why Xerces-C++ does not support this particular Schema
feature?
Why does my application crash when instantiating the parser?
Is it OK to call the XMLPlatformUtils::Initialize/Terminate pair of
routines multiple times in one program?
Why does my application crash or hang if
XMLPlatformUtils::Initialize()/Terminate() pair is called more
than once?
Why does my application crash after calling
XMLPlatformUtils::Terminate()?
I'm suddenly getting segfaults with Xerces-C 2.3.0; why might
this be?
Is Xerces-C++ thread-safe?
I am seeing memory leaks in Xerces-C++. Are they real?
I find memory leaks in Xerces-C++. How do I eliminate it?
Can Xerces-C++ create an XML skeleton based on a DTD
Can I use Xerces-C++ to perform write validation
Can I validate the data contained in a DOM tree?
How to write out a DOM tree into a string or an XML file?
Why does DOMNode::cloneNode() not clone the pointer
assigned to a DOMNode via DOMNode::setUserData()?
How are entity reference nodes handled in DOM?
What kinds of URLs are currently supported in Xerces-C++?
How can I add support for URLs with HTTP/FTP protocols?
Can I use Xerces-C++ to parse HTML?
I keep getting an error: "invalid UTF-8 character". What's
wrong?
What encodings are supported by Xerces-C / XML4C?
What character encoding should I use when creating XML
documents?
Is EBCDIC supported?
Why does deleting a transcoded string result in assertion on
windows?
How do I transcode to/from something besides the local code
page?

Programming/Parsing FAQs

1 of 16 20.03.2015 14:31

Why does setProperty not work?
Why does getProperty not work?
Why does the parser still try to locate the DTD even validation
is turned off and how to ignore external DTD reference?
Why do I get segmentation fault when running on Redhat
Linux?
Why does the XML data generated by the DOMWriter does
not match my original XML input?
Why does my application crash when deleting the parser after
releasing a document?
Why do we have two versions of some XMLString methods
(one with memory manager and one without)?

 Does Xerces-C++ support Schema?

Yes. The Xerces-C++ 2.8.0 contains an implementation of the W3C
XML Schema Language, a recommendation of the Worldwide Web
Consortium available in three parts: XML Schema: Primer and XML
Schema: Structures and XML Schema: Datatypes. We consider this
implementation complete. See the Schema page for limitations.

 Why Xerces-C++ does not support this particular
Schema feature?

The Xerces-C++ 2.8.0 contains an implementation of the W3C XML
Schema Language, a recommendation of the Worldwide Web
Consortium available in three parts: XML Schema: Primer and XML
Schema: Structures and XML Schema: Datatypes. We consider this
implementation complete. See the Schema page for limitations.

If you find any Schema feature which is specified in the W3C XML
Schema Language Recommendation does not work with
Xerces-C++ 2.8.0, we encourage the submission of bugs as
described in Bug-Reporting page.

Why does my application crash when instantiating the
parser?

In order to work with the Xerces-C++ parser, you have to first
initialize the XML subsystem. The most common mistake is to forget
this initialization. Before you make any calls to Xerces-C++ APIs,
you must call XMLPlatformUtils::Initialize():

Programming/Parsing FAQs

2 of 16 20.03.2015 14:31

try {
 XMLPlatformUtils::Initialize();
}
catch (const XMLException& toCatch) {
 // Do your failure processing here
}

This initializes the Xerces system and sets its internal variables.
Note that you must the include xercesc/util/PlatformUtils.hpp file
for this to work.

Is it OK to call the
XMLPlatformUtils::Initialize/Terminate pair of routines
multiple times in one program?

Yes. Since Xerces-C++ 1.5.2, the code has been enhanced so that calling
XMLPlatformUtils::Initialize/Terminate pair of routines multiple times in one process is now
allowed.

But the application needs to guarantee that only one thread has entered either the method
XMLPlatformUtils::Initialize() or the method XMLPlatformUtils::Terminate() at any one time.

If you are calling XMLPlatformUtils::Initialize() a number of times, and then follow with
XMLPlatformUtils::Terminate() the same number of times, only the first
XMLPlatformUtils::Initialize() will do the initialization, and only the last
XMLPlatformUtils::Terminate() will clean up the memory. The other calls are ignored.

To ensure all the memory held by the parser are freed, the number of
XMLPlatformUtils::Terminate() calls should match the number of XMLPlatformUtils::Initialize()
calls.

Consider the following code snippets (for illustration simplicity the following sample code is not
coded in try/catch clause):

// The XMLPlatformUtils::Initialize/Terminate calls are paired.
{
 // Initialize the parser
 XMLPlatformUtils::Initialize();

 SAXParser* parser = new SAXParser;
 parser->parse(xmlFile);
 delete parser;

 // Free all memory that was being held by the parser
 XMLPlatformUtils::Terminate();

 // Initialize the parser
 XMLPlatformUtils::Initialize();

 parser = new SAXParser;
 parser->parse(xmlFile);
 delete parser;

 // Free all memory that was being held by the parser

Programming/Parsing FAQs

3 of 16 20.03.2015 14:31

 XMLPlatformUtils::Terminate();
}

// calls XMLPlatformUtils::Initialize() three times
// then calls XMLPlatformUtils::Terminate() numerous times
{
 // Initialize the parser
 XMLPlatformUtils::Initialize();

 // The next two calls are no-op
 XMLPlatformUtils::Initialize();
 XMLPlatformUtils::Initialize();

 SAXParser* parser = new SAXParser;
 parser->parse(xmlFile);
 delete parser;

 // The first two XMLPlatformUtils::Terminate() calls are no-op
 XMLPlatformUtils::Terminate();
 XMLPlatformUtils::Terminate();

 // This third XMLPlatformUtils::Terminate() will free all memory that was being held by the par
 XMLPlatformUtils::Terminate();

 // This extra fourth XMLPlatformUtils::Terminate() call is no-op.
 // However calling XMLPlatformUtils::Terminate() without a matching XMLPlatformUtils::Initializ
 // is dangerous and should be avoided.
 XMLPlatformUtils::Terminate();
}

Why does my application crash or hang if
XMLPlatformUtils::Initialize()/Terminate() pair is called
more than once?

Please make sure you are using the Xerces-C++ 1.5.2 or up.

Earlier version of Xerces-C++ does not allow
XMLPlatformUtils::Initialize()/Terminate() pair to be called more than
once or has a problem.

Why does my application crash after calling
XMLPlatformUtils::Terminate()?

Please make sure the XMLPlatformUtils::Terminate() is the last
Xerces-C++ function to be called in your program. NO explicit nor
implicit Xerces-C++ destructor (those local data that are destructed
when going out of scope) should be called after
XMLPlatformUtils::Terminate().

For example consider the following code snippets which is incorrect
(for illustration simplicity the following sample code is not coded in
try/catch clause):

Programming/Parsing FAQs

4 of 16 20.03.2015 14:31

1: {
2: XMLPlatformUtils::Initialize();
3: DOMString c("hello");
4: XMLPlatformUtils::Terminate();
5: }

The DOMString object "c" is destructed when going out of scope at
line 5 before the closing brace. As a result, DOMString destructor is
called at line 5 after XMLPlatformUtils::Terminate() which is wrong.
Correct code should be:

1: {
2: XMLPlatformUtils::Initialize();
2a: {
3: DOMString c("hello");
3a: }
4: XMLPlatformUtils::Terminate();
5: }

The extra pair of braces (line 2a and 3a) ensures that all implicit
destructors are called before terminating Xerces-C++.

In addition the application also needs to guarantee that only one
thread has entered either the method XMLPlatformUtils::Initialize()
or the method XMLPlatformUtils::Terminate() at any one time.

I'm suddenly getting segfaults with Xerces-C 2.3.0;
why might this be?

The introduction of pluggable memory management into Xerces-C,
one of the main features of 2.3.0, means that application writers
have to be more conscious about destructors being invoked
implicitly after a call to XMLPlatformUtils::Terminate(). For example,
the following code is guaranteed to produce a segmentation fault
under Xerces-C 2.3.0, while it happened to work under previous
versions (in fact, this was how our SAXPrint sample was formerly
written; try-catch blocks removed for brevity):

void myParsingFunction()
{
 XMLPlatformUtils::Initialize();
 SAXParser parser;
 //parser.various method calls
 XMLPlatformUtils::Terminate();
} // seg fault here!

The reason this will produce a segmentation fault is that any
dynamic memory the SAXParser (or any other of Xerces's parsers)
needs to allocate is now allocated by default by a static object

Programming/Parsing FAQs

5 of 16 20.03.2015 14:31

owned by XMLPlatformUtils. When the
XMLPlatformUtils::Terminate() call is made, this object is
destroyed--and, consequently, so are all the objects that it directly
created. This includes all the objects dynamically allocated by the
SAXParser. When the parser object goes out of scope, its destructor
is invoked, and this attempts to destroy all the objects that it
created--which have of course just been destroyed by the static
MemoryManager in XMLPlatformUtils.

To avoid this, one must either explicitly scope the parser object
inside calls to XMLPlatformUtils::Initialize() and
XMLPlatformUtils::Terminate(), or dynamically allocate the parser
object and destroy it explicitly before the call to
XMLPlatformUtils::Terminate() is made.

Another way of producing segmentation faults--that again,
unfortunately, was employed by some of our samples--is to have
calls to XMLPlatformUtils::Terminate() in a catch block that catches
any of Xerces's exceptions. Since the destructor of the exception
will implicitly be invoked upon exit from the catch block, and since
some of the exceptions' destructors call on Xerces's default memory
manager to destroy dynamically-allocated objects, their destruction
will provoke a segmentation fault even if a return statement is
placed in the catch block since the default memory manager will no
longer exist. This practice is now avoided in all our samples.

Is Xerces-C++ thread-safe?

This is not a question that has a simple yes/no answer. Here are the
rules for using Xerces-C++ in a multi-threaded environment:

Within an address space, an instance of the parser may be used
without restriction from a single thread, or an instance of the parser
can be accessed from multiple threads, provided the application
guarantees that only one thread has entered a method of the parser
at any one time.

When two or more parser instances exist in a process, the instances
can be used concurrently, without external synchronization. That is,
in an application containing two parsers and two threads, one parser
can be running within the first thread concurrently with the second
parser running within the second thread.

The same rules apply to Xerces-C++ DOM documents. Multiple
document instances may be concurrently accessed from different
threads, but any given document instance can only be accessed by
one thread at a time.

DOMStrings allow multiple concurrent readers. All DOMString const

Programming/Parsing FAQs

6 of 16 20.03.2015 14:31

methods are thread safe, and can be concurrently entered by
multiple threads. Non-const DOMString methods, such as
appendData(), are not thread safe and the application must
guarantee that no other methods (including const methods) are
executed concurrently with them.

The application also needs to guarantee that only one thread has
entered either the method XMLPlatformUtils::Initialize() or the
method XMLPlatformUtils::Terminate() at any one time.

I am seeing memory leaks in Xerces-C++. Are they
real?

The Xerces-C++ library allocates and caches some commonly
reused items. The storage for these may be reported as memory
leaks by some heap analysis tools; to avoid the problem, call the
function XMLPlatformUtils::Terminate() before your application exits.
This will free all memory that was being held by the library.

For most applications, the use of Terminate() is optional. The system
will recover all memory when the application process shuts down.
The exception to this is the use of Xerces-C++ from DLLs that will
be repeatedly loaded and unloaded from within the same process.
To avoid memory leaks with this kind of use, Terminate() must be
called before unloading the Xerces-C++ library

To ensure all the memory held by the parser are freed, the number
of XMLPlatformUtils::Terminate() calls should match the number of
XMLPlatformUtils::Initialize() calls.

If you are using XML4C where ICU is used, you may call ICU
function u_cleanup() to clean up ICU static data. Please see ICU
documentation for details.

I find memory leaks in Xerces-C++. How do I eliminate
it?

The "leaks" that are reported through a leak-detector or
heap-analysis tools aren't really leaks in most application, in that the
memory usage does not grow over time as the XML parser is used
and re-used.

What you are seeing as leaks are actually lazily evaluated data
allocated into static variables. This data gets released when the
application ends. You can make a call to
XMLPlatformUtil::terminate() to release all the lazily allocated
variables before you exit your program.

Programming/Parsing FAQs

7 of 16 20.03.2015 14:31

To ensure all the memory held by the parser are freed, the number
of XMLPlatformUtils::Terminate() calls should match the number of
XMLPlatformUtils::Initialize() calls.

If you are using XML4C where ICU is used, you may call ICU
function u_cleanup() to clean up ICU static data. Please see ICU
documentation for details.

Is there a function that I have totally missed that
creates an XML file from a DTD, (obviously with the
values missing, a skeleton, as it were)?

No. This is not supported.

Can I use Xerces-C++ to perform "write validation"
(which is having an appropriate Grammar and being
able to add elements to the DOM whilst validating
against the grammar)?

No. This is not supported.

The best you can do for now is to create the DOM document, write it
back as XML and re-parse it.

Is there a facility in Xerces-C++ to validate the data
contained in a DOM tree? That is, without saving and
re-parsing the source document?

No. The best option for now is to generate XML source from the
DOM and feed that back into the parser.

How to write out a DOM tree into a string or an XML
file?

Please make sure you are using Xerces-C++ 2.8.0 or up.

You can use the DOMWriter::writeToString, or
DOMWriter::writeNode to serialize a DOM tree. Please refer to the
sample DOMPrint or the API documentation for more details of
DOMWriter.

Programming/Parsing FAQs

8 of 16 20.03.2015 14:31

Why does DOMNode::cloneNode() not clone the
pointer assigned to a DOMNode via
DOMNode::setUserData()?

Xerces-C++ supports the DOMNode::userData specified in the
DOM level 3 Node interface. As is made clear in the description of
the behaviour of cloneNode(), userData that has been set on the
Node is not cloned. Thus, if the userData is to be copied to the new
Node, this copy must be effected manually. Note further that the
operation of importNode() is specified similarly.

How are entity reference nodes handled in DOM?

If you are using the native DOM classes, the function
setCreateEntityReferenceNodes controls how entities appear in the
DOM tree. When setCreateEntityReferenceNodes is set to true (the
default), an occurrence of an entity reference in the XML document
will be represented by a subtree with an EntityReference node at
the root whose children represent the entity expansion. Entity
expansion will be a DOM tree representing the structure of the entity
expansion, not a text node containing the entity expansion as text.

If setCreateEntityReferenceNodes is false, an entity reference in the
XML document is represented by only the nodes that represent the
entity expansion. The DOM tree will not contain any entityReference
nodes.

What kinds of URLs are currently supported in
Xerces-C++?

The XMLURL class provides for limited URL support. It understands
the file://, http://, and ftp:// URL types, and is capable or
parsing them into their constituent components, and normalizing
them. It also supports the commonly required action of
conglomerating a base and relative URL into a single URL. In other
words, it performs the limited set of functions required by an XML
parser.

Another thing that URLs commonly do are to create an input stream
that provides access to the entity referenced. The parser, as
shipped, only supports this functionality on URLs in the form
file:/// and file://localhost/, i.e. only when the URL refers to a
local file.

You may enable support for HTTP and FTP URLs by implementing
and installing a NetAccessor object. When a NetAccessor object is
installed, the URL class will use it to create input streams for the
remote entities referred to by such URLs.

Programming/Parsing FAQs

9 of 16 20.03.2015 14:31

How can I add support for URLs with HTTP/FTP
protocols?

Support for the http: protocol is now included by default on all
platforms.

To address the need to make remote connections to resources
specified using additional protocols, ftp for example, Xerces-C++
provides the NetAccessor interface. The header file is src/xercesc
/util/XMLNetAccessor.hpp. This interface allows you to plug in your
own implementation of URL networking code into the Xerces-C++
parser.

Can I use Xerces-C++ to parse HTML?

Yes, but only if the HTML follows the rules given in the XML
specification. Most HTML, however, does not follow the XML rules,
and will generate XML well-formedness errors.

I keep getting an error: "invalid UTF-8 character".
What's wrong?

Most commonly, the XML encoding = declaration is either incorrect or
missing. Without a declaration, XML defaults to the use utf-8
character encoding, which is not compatible with the default text file
encoding on most systems.

The XML declaration should look something like this:

<?xml version="1.0" encoding="iso-8859-1"?>

Make sure to specify the encoding that is actually used by file. The
encoding for "plain" text files depends both on the operating system
and the locale (country and language) in use.

Another common source of problems is that some characters are
not allowed in XML documents, according to the XML spec. Typical
disallowed characters are control characters, even if you escape
them using the Character Reference form. See the XML spec,
sections 2.2 and 4.1 for details. If the parser is generating an
Invalid character (Unicode: 0x???) error, it is very likely that there's
a character in there that you can't see. You can generally use a
UNIX command like "od -hc" to find it.

What encodings are supported by Xerces-C / XML4C?

Programming/Parsing FAQs

10 of 16 20.03.2015 14:31

Xerces-C has intrinsic support for ASCII, UTF-8, UTF-16 (Big/Small
Endian), UCS4 (Big/Small Endian), EBCDIC code pages IBM037,
IBM1047 and IBM1140 encodings, ISO-8859-1 (aka Latin1) and
Windows-1252. This means that it can parse input XML files in
these above mentioned encodings.

XML4C -- the version of Xerces-C available from IBM -- combines
Xerces-C and International Components for Unicode (ICU) and
extends the encoding support to over 100 different encodings that
are allowed by ICU. In particular, all the encodings registered with
the Internet Assigned Numbers Authority (IANA) are supported in
XML4C.

Some implementations or ports of Xerces-C provide support for
additional encodings. The exact set will depend on the supplier of
the parser and on the character set transcoding services in use.

What character encoding should I use when creating
XML documents?

The best choice in most cases is either utf-8 or utf-16. Advantages
of these encodings include:

The best portability. These encodings are more widely
supported by XML processors than any others, meaning that
your documents will have the best possible chance of being
read correctly, no matter where they end up.
Full international character support. Both utf-8 and utf-16
cover the full Unicode character set, which includes all of the
characters from all major national, international and industry
character sets.
Efficient. utf-8 has the smaller storage requirements for
documents that are primarily composed of characters from the
Latin alphabet. utf-16 is more efficient for encoding Asian
languages. But both encodings cover all languages without
loss.

The only drawback of utf-8 or utf-16 is that they are not the native
text file format for most systems, meaning that common text file
editors and viewers can not be directly used.

A second choice of encoding would be any of the others listed in the
table above. This works best when the xml encoding is the same as
the default system encoding on the machine where the XML
document is being prepared, because the document will then
display correctly as a plain text file. For UNIX systems in countries
speaking Western European languages, the encoding will usually be
iso-8859-1.

Programming/Parsing FAQs

11 of 16 20.03.2015 14:31

The versions of Xerces distributed by IBM, both C and Java (known
respectively as XML4C and XML4J), include all of the encodings
listed in the above table, on all platforms.

A word of caution for Windows users: The default character set on
Windows systems is windows-1252, not iso-8859-1. While
Xerces-C++ does recognize this Windows encoding, it is a poor
choice for portable XML data because it is not widely recognized by
other XML processing tools. If you are using a Windows-based
editing tool to generate XML, check which character set it
generates, and make sure that the resulting XML specifies the
correct name in the encoding="..." declaration.

Is EBCDIC supported?

Yes, Xerces-C++ supports EBCDIC with the ibm1140, ibm037 and
ibm1047 encodings. When creating EBCDIC encoded XML data,
the preferred encoding is ibm1140. The ibm037 encoding, and its
alternate name, ebcdic-cp-us, is almost the same as ibm1140, but it
lacks the Euro symbol.

These three encodings, ibm1140, ibm037 and ibm1047, are
available on both Xerces-C and IBM XML4C, on all platforms.

On IBM System 390, XML4C also supports three alternative forms,
ibm037-s390, ibm1140-s390, and ibm1047-s390. These are similar
to the base ibm037, ibm1140, and ibm1047 encodings, but with
alternate mappings of the EBCDIC new-line character, which allows
them to appear as normal text files on System 390. These
encodings are not supported on other platforms, and should not be
used for portable data.

XML4C on System 390 and AS/400 also provides additional
EBCDIC encodings, including those for the character sets of
different countries. The exact set supported will be platform
dependent, and these encodings are not recommended for portable
XML data.

Why does deleting a transcoded string result in
assertion on windows?

Both your application program and the Xerces-C++ DLL must use
the same *DLL* version of the runtime library. If either statically links
to the runtime library, the problem will still occur.

For example, for a Win32/VC6 build, the runtime library build setting
MUST be "Multithreaded DLL" for release builds and "Debug

Programming/Parsing FAQs

12 of 16 20.03.2015 14:31

Multithreaded DLL" for debug builds.

Or for example for a Win32/BCB6 build, application need to switch
to Multithreaded runtime to avoid such memory access violation.

To bypass such problem, instead of calling operator delete[] directly,
you can use the provided function XMLString::release to delete any
string that was allocated by the parser. This will ensure the string is
allocated and deleted by the same DLL and such assertion problem
should be resolved.

How do I transcode to/from something besides the
local code page?

XMLString::transcode() will transcode from XMLCh to the local code page, and other APIs
which take a char* assume that the source text is in the local code page. If this is not true, you
must transcode the text yourself. You can do this using local transcoding support on your OS,
such as Iconv on Unix or IBM's ICU package. However, if your transcoding needs are simple,
you can achieve some better portability by using the Xerces-C++ parser's transcoder wrappers.
You get a transcoder like this:

Call XMLPlatformUtils::fgTransServer->MakeNewTranscoderFor() and provide the name
of the encoding you wish to create a transcoder for. This will return a transcoder to you,
which you own and must delete when you are through with it. NOTE: You must provide a
maximum block size that you will pass to the transcoder at one time, and you must pass
blocks of characters of this count or smaller when you do your transcoding. The reason for
this is that this is really an internal API and is used by the parser itself to do transcoding.
The parser always does transcoding in known block sizes, and this allows transcoders to
be much more efficient for internal use since it knows the max size it will ever have to deal
with and can set itself up for that internally. In general, you should stick to block sizes in
the 4 to 64K range.
The returned transcoder is something derived from XMLTranscoder, so they are all
returned to you via that interface.
This object is really just a wrapper around the underlying transcoding system actually in
use by your version of Xerces, and does whatever is necessary to handle differences
between the XMLCh representation and the representation used by that underlying
transcoding system.
The transcoder object has two primary APIs, transcodeFrom() and transcodeTo(). These
transcode between the XMLCh format and the encoding you indicated.
These APIs will transcode as much of the source data as will fit into the outgoing buffer
you provide. They will tell you how much of the source they ate and how much of the
target they filled. You can use this information to continue the process until all source is
consumed.
char* data is always dealt with in terms of bytes, and XMLCh data is always dealt with in
terms of characters. Don't mix up which you are dealing with or you will not get the correct
results, since many encodings don't have a one to one relationship of characters to bytes.
When transcoding from XMLCh to the target encoding, the transcodeTo() method provides
an 'unrepresentable flag' parameter, which tells the transcoder how to deal with an
XMLCh code point that cannot be converted legally to the target encoding, which can

Programming/Parsing FAQs

13 of 16 20.03.2015 14:31

easily happen since XMLCh is Unicode and can represent thousands of code points. The
options are to use a default replacement character (which the underlying transcoding
service will choose, and which is guaranteed to be legal for the target encoding), or to
throw an exception.

Here is an example:

// create an XMLTranscoder that is able to transcode between Unicode and Big5
// ASSUMPTION: assumes your underlying transcoding utility supports this encoding Big5
XMLTranscoder* t =
 XMLPlatformUtils::fgTransService->makeNewTranscoderFor("Big5", failReason, 16*1024, MemoryManag

// source string is in Unicode, wanna to transcode to Big5
t->transcodeTo(source_unicode, length, result_Big5, length, charsEaten, XMLTranscoder::UnRep_Throw

// source string in Big5, wanna to transcode to Unicode
t->transcodeFrom(source_Big5, length, result_unicode, length, bytesEaten, (unsigned char*)charSz);

Why does setProperty not work?

The function SAX2XMLReader::setProperty(const XMLCh* const name,
void* value) and DOMBuilder::setProperty(const XMLCh* const name,
void* value) takes a void pointer for the property value. Application
is required to initialize this void pointer to a correct type. See SAX2
Programming Guide and DOM Programming Guide to learn exactly
what type of property value that each property expects for
processing. Passing a void pointer that was initialized with a wrong
type will lead to unexpected result.

Why does getProperty not work?

The function void* SAX2XMLReader::getProperty(const XMLCh* const
name) and void* DOMBuilder::getProperty(const XMLCh* const name)
returns a void pointer for the property value. See SAX2
Programming Guide and exactly what type of object each property
returns.

The parser owns the returned pointer. The memory allocated for the
returned pointer will be destroyed when the parser is deleted. To
ensure accessibility of the returned information after the parser is
deleted, callers need to copy and store the returned information
somewhere else; otherwise you may get unexpected result. Since
the returned pointer is a generic void pointer, see SAX2
Programming Guide and DOM Programming Guide to learn exactly
what type of property value each property returns for replication.

Why does the parser still try to locate the DTD even
validation is turned off and how to ignore external DTD

Programming/Parsing FAQs

14 of 16 20.03.2015 14:31

reference?

When DTD is referenced, the parser will try to read it, because
DTDs can provide a lot more information than just validation. It
defines entities and notations, external unparsed entities, default
attributes, character entities, etc... So it will always try to read it if
present, even if validation is turned off.

To ignore the DTD, with Xerces-C++ 2.8.0 or up, you can call
setLoadExternalDTD(false) (or
setFeature(XMLUni::fgXercesLoadExternalDTD, false) to disable the
loading of external DTD. The parser will then ignore any external
DTD completely if the validationScheme is set to Val_Never.

Note: This flag is ignored if the validationScheme is set to
Val_Always or Val_Auto.

To ignore the DTD in earlier version of Xerces-C++, the only way to
get around this is to install an EntityResolver (see the Redirect
sample for an example of how this is done), and reset the DTD file
to "".

Why do I get segmentation fault when running on
Redhat Linux?

There were some problems with Redhat Linux 7.x with C++
exception handling across shared libraries. More details can be
found here. Please try to upgrade your Redhat Linux gcc to the
latest patch level and see if it helps.

Why does the XML data generated by the DOMWriter
does not match my original XML input?

If you parse an xml document using XercesDOMParser or
DOMBuilder and pass such DOMNode to DOMWriter for
serialization, you may not get something that is exactly the same as
the original XML data. The parser may have done normalization,
end of line conversion, or has expanded the entity reference as per
the XML 1.0 spec, 4.4 XML Processor Treatment of Entities and
References. From DOMWriter perspective, it does not know what
the original string was, all it sees is a processed DOMNode
generated by the parser. But since the DOMWriter is supposed to
generate something that is parsable if sent back to the parser, it will
not print the DOMNode node value as is. The DOMWriter may do
some "touch up" to the output data for it to be parsable.

See How does DOMWriter handle built-in entity Reference in node
value? to understand further how DOMWriter touches up the entity

Programming/Parsing FAQs

15 of 16 20.03.2015 14:31

reference.

Why does my application crash when deleting the
parser after releasing a document?

In most cases, the parser handles deleting documents when the
parser gets deleted. However, if an application needs to release a
document, it shall adopt the document before releasing it, so that
the parser knows that the ownership of this particular document is
transfered to the application and will not try to delete it once the
parser gets deleted.

XercesDOMParser *parser = new XercesDOMParser;
...
try
{
 parser->parse(gXmlFile);
}
catch ()
{
...
}
DOMNode *doc = parser->getDocument();
...
parser->adoptDocument();
doc->release();
...
delete parser;

The alternative to release document is to call parser's
resetDocumentPool(), which releases all the documents parsed.

Why do we have two versions of some XMLString
methods (one with memory manager and one without)?

With the introduction of the configurable memory manager, we didn't
want to break users by changing the signature of the existing
methods (for example, transcode and replicate). Also, we did not
want to provide a default memory manager as it would introduce a
side effect with users experiencing some strange core dumps. The
latter will occur when the scope of the string allocated is beyond that
of XMLPlatformUtils::Terminate (i.e. a string is allocated using the
default memory manager which is deleted when
XMLPlatformUtils::Terminate is called, but the allocated string is
deleted later). We plan to deprecate the methods without a memory
manager in a later release.

Copyright © 1999-2010 The Apache Software Foundation. All Rights Reserved.

Programming/Parsing FAQs

16 of 16 20.03.2015 14:31

