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Abstra
tThis work presents the appli
ation of Signal Theoreti
al Methodsto Side Channel leakage of Cryptographi
 Devi
es, parti
ularly withregard to power 
onsumption and ele
tromagneti
 radiation. We pro-foundly analyse the Template Atta
k and the Sto
hasti
 Model and
ompare their e�
ien
ies in various parameter settings. Finally, wesuggest and verify improvements of both atta
ks whi
h yield su

essprobabilities in
reased by a fa
tor of up to 5.
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1 INTRODUCTION, OVERVIEW1 Introdu
tion, Overview�Cryptanalysis is the study of mathemati
al te
hniques for attempting todefeat 
ryptographi
 te
hniques, and, more generally, information se
urityservi
es� [8, p.15℄.�Cryptography is the study of mathemati
al te
hniques related to aspe
ts ofinformation se
urity su
h as 
on�dentiality, data integrity, [...℄� [8, p.4℄.Together, Cryptography and Cryptanalysis 
omprise the s
ien
e Cryp-tology wherein they 
an be illustrated as oppositions. Cryptanalysis hasa strong impa
t on Cryptography as it poses as evaluation. Continuous at-tempts to thwart prote
tion of information provided by 
ryptographi
 meansexpose their weaknesses and enhan
e knowledge about them. This leads tothe development of improved 
ryptographi
 tools whose se
urity, in turn,will be questioned. Simultaneously, knowledge gained from 
ryptanalyti
 ap-proa
hes leads to enhan
ed analyti
al methods. This phenomenon is knownas the 
ontinuous 
ompetition between designers and analysts, or more fa-miliar, the 
at-and-mouse-game. It motivates progress on both sides and sofar, none of the opponents has been able to do the ultimate move that ends�the game�.In (
lassi
al) Cryptanalysis, the se
urity level of a 
ryptographi
 te
hnique isdetermined purely theoreti
ally. Therefore, an algorithm that des
ribes theoperation of the te
hnique is 
onsidered. Basi
ally, the 
omplexity of an at-ta
k against an algorithm is determined from only looking at the underlyinglogi
al stru
tures and is given by a workload estimation. The 
omplexity ofthe most e�
ient atta
k against an algorithm de�nes its se
urity level.But in the last de
ade, the �eld of Cryptanalysis has experien
ed major
hanges. Cryptanalysts do not only look at abstra
t algorithms anymore but
onsider their 
on
rete implementations in ele
troni
 devi
es, too. Sin
e thedis
overy of implementation atta
ks, 
ryptographers have to wat
h 
ryptan-alysts 
oming up with atta
ks whi
h easily defeat 
ryptographi
 prote
tionsof implemented algorithms whi
h are regarded as se
ure from a 
lassi
 pointof view. The di�eren
e is 
ru
ial: an e�e
tive implementation atta
k does1



1 INTRODUCTION, OVERVIEWnot a�e
t the se
urity level of the 
ryptographi
 algorithm but the se
urityprovided by its implementation. Hen
e, there are many algorithms that arestill 
onsidered as se
ure, although there exist e�e
tive atta
ks against non-prote
ted implementations.Implementation atta
ks expand 
ryptanalysis into the world of physi
s. Realdevi
es that exe
ute 
ryptographi
 operations deliver mu
h more informa-tion than only the intended output of the algorithm. The term Side Channelabstra
ts all unintended information leakage, e.g. power 
onsumption of thedevi
e. Atta
ks based on this information are Side Channel Atta
ks. SideChannel Atta
ks have also raised new problems within Cryptanalysis, ina
-
ura
y has entered the �eld. While the e�
ien
y of a 
lassi
 atta
k is mostlyexpressed by 
omputational 
omplexity and therefore 
omparable to that ofother atta
ks against the same algorithm, the situation is somewhat di�erentfor Side Channel Atta
ks. They pro
ess measured data of physi
al observ-ables to a
hieve their goal and physi
s does not only know 0 and 1 but oftenprefers numbers like 68,17469. Amongst other fa
tors, the e�
ien
y (or
omplexity) of a Side Channel Atta
k signi�
antly depends on the quality ofthe side 
hannel information whi
h in turn is in�uen
ed by numerous sour
es.These 
oheren
es let strong statements on e�
ien
y appear a quite daunt-ing task and in fa
t, many publi
ations in this area evade pre
ision whenan atta
k's e�
ien
y is � estimated (
p. [16, 14℄). So far there exists nomeasure for side 
hannel quality (or the resulting 
omplexity) whi
h for themoment abstra
ts environmental, devi
e spe
i�
, implementation spe
i�
,and measurement spe
i�
 in�uen
es on an atta
k's e�
ien
y. A 
ompari-son of two Side Channel Atta
ks whi
h obviously requires not only that thesame 
ryptographi
 algorithm is atta
ked, but as well that the underlyingside 
hannel 
omplexity is 
onsidered, pra
ti
ally means a 
omparison underidenti
al physi
al 
onditions.In this 
ontext, we1 regard further investigation of known side 
hannel at-ta
ks as valuable. We think that understanding more detailed how, why,and under whi
h 
ir
umstan
es a 
ertain atta
k works (better than anotherone) will lead to more pre
ise 
on
lusions and to progress in Side Channel1Although I prefer to write �we� than �I�, this thesis presents my personal work.2



1 INTRODUCTION, OVERVIEWCryptanalysis.Therefore, the primary goal of this diploma thesis is a profound analysisand 
omparison of Template Atta
ks and the Sto
hasti
 Model. In additionto a 
omparison of key dis
losure su

ess rates, we aim at understanding theresults in order to learn more about ea
h atta
k's nature.Finally, it turned out that we learned enough about the atta
ks to suggestand verify improvements for both of them.This do
ument is stru
tured as follows. Se
tion 2 brie�y introdu
esCryptanalysis and Side Channel Cryptanalysis. Se
tion 3 provides the theo-reti
al fundamentals used in this thesis, while Se
tions 4 and 5 give insightsinto the pra
ti
al work whi
h was performed and present the obtained re-sults. Se
tion 6 
omprises the analysis of the results and our suggestion ofimprovements, whose revised results are given in Se
tion 7. Se
tion 8 
ov-ers our work on EM and Multi
hannel atta
ks. Our 
on
lusion and furtherresear
h topi
s are given in Se
tion 9.

3



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSIS2 Classi
al and Side Channel CryptanalysisIn this se
tion, a transition from 
lassi
al 
ryptanalyti
 to re
ent side 
hannelte
hniques is given. After an introdu
tion to 
lassi
al Cryptanalysis and thegeneral idea of side 
hannel atta
ks, the latter ones will be explored moredetailed. The state of the art is presented and re
ent problems are outlined.2.1 Classi
al CryptanalysisFrom a histori
al point of view, Cryptanalysis is related to the analysis ofemployed 
ryptographi
 algorithms in order to �nd and exploit weaknesseswithin their logi
al stru
ture. Con
rete atta
ks whi
h apply su
h knowledgeare referred to as Logi
al Atta
ks or Cryptanalyti
 Atta
ks in literature.Cryptanalyti
 approa
hes are always embedded into a model, often referredto as atta
k s
enario, that de�nes a framework, in parti
ular the atta
kersabilities and goals. The general approa
h of 
lassi
al Cryptanalysis is de-pi
ted in Figure 1. In this setting, the atta
ker of a 
ryptographi
 primitive,
Cryptographic

Algorithm
Input OutputFigure 1: Model for 
lassi
al Cryptanalysise.g. en
ryption, has the following abilities: he knows the 
ryptographi
 algo-rithm, he 
an 
hoose inputs to the algorithm at his will, and he 
an observeits output. For example, in the 
ase of en
ryption (resp. de
ryption) anadversary 
an observe the output that was 
omputed from 
hosen input by aknown algorithm using unknown key data. His task is to dedu
e the unknownkey with the help of all available information. There are many variations ofthis atta
k s
enario, whi
h 
onstri
t the amount or the nature of usable data.With the atta
k framework being de�ned, the se
urity provided by the 
ryp-tographi
 primitive 
an be evaluated under several se
urity models. In thestyle of varying atta
k s
enarios, se
urity models (un-)limit the atta
kers
omputational resour
es. A 
ryptographi
 primitive is said to be se
ure un-4



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISder a 
ertain model, if it resists an adversary with the appropriate powers.We refer the interested reader to [8, pp.41℄, whi
h is a ri
h sour
e for furtherdetails.For the reason of this introdu
tion, the attention is restri
ted to the main
hara
teristi
 of 
lassi
al Cryptanalysis: The a
tual devi
e performing the
ryptographi
 operation is regarded as a bla
k box. It generates output (e.g.
iphertext) from the 
orresponding given input (e.g. plaintext) using theknown employed algorithm and (se
ret) key data. No further properties ofthe bla
k box, in parti
ular its internal operating mode, are known or 
on-sidered2.A 
lassi
al example for Cryptanalysis of a message that has been en-
rypted with a monoalphabeti
al substitution 
ipher (e.g. the Caesar Cipher[8, p.239℄) is the observation of the frequen
y of letters' o

urren
e. Sin
ethe substitution is monoalphabeti
, the plaintext's 
hara
teristi
 in termsof frequen
y distribution of the alphabet, whi
h is 
hara
terisiti
 for manylanguages, remains inta
t. Hen
e it is a reasonable approa
h to assume that,for a text of reasonable size, the most 
ommon letter in the 
iphertext 
or-responds to the most 
ommon letter in the plaintext. Then, the key 
an be
on
luded by determining the o�set by whi
h a letter gets displa
ed in thealphabet.Two other well-known and more re
ent examples for (
lassi
al) Crypt-analysis of an employed algorithm are Linear Cryptanalysis and Di�erentialCryptanalysis. Both of them arose in the 
ontext of the Data En
ryptionStandard (DES) [3℄.Linear Cryptanalysis was dis
overed by Mitsuru Matsui in 1992, althoughthe premisies of its prin
iple were initiated by Henri Gilbert. One year laterhe published �Linear 
ryptanalysis method for the DES 
ipher� [1℄, whi
h was2Note that for redu
ed versions of algorithms, whi
h in a way make use of intermediatestates, we might 
reate a �smaller� bla
k-box performing only the redu
ed algorithm su
hthat the image holds. 5



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISthe �rst su

essful Cryptanalysis of the 
ipher reported in the open 
ommu-nity. In the broadest sense, it analyses the non-linearity of a given algorithmand 
omes up with a linear approximation. Matsui dis
overed that one ofthe eight Sboxes used in DES was less balan
ed than the others whi
h madeit possible for him to mount his atta
k.The dis
overy of Di�erential Cryptanalysis in the late 1980s is attributedto Eli Biham and Adi Shamir. In 1991 they published the results of theiranalysis of DES in �Di�erential Cryptanalysis of the full 16-Round DES�[2℄. Simpli�ed, an adversary 
reates pairs of plaintexts 
omprising a 
ertaindi�eren
e and observes the di�eren
e in the 
orresponding 
iphertexts afteren
ryption. Statisti
al means are then used to dete
t patterns in the distri-bution of the di�eren
es.Sin
e their dis
overy, both atta
ks are a basi
 
on
ern for 
ryptographers andnewly designed 
iphers are pra
ti
ally required to be provably resistant tothem, as is for example DES' su

essor, the Advan
ed En
ryption Standard(see Se
tion 3.1).2.2 Side Channel CryptanalysisSide Channel Cryptanalysis is another step in the 
ontinuous 
ompetitionbetween designers and analysts. But it is not only an atta
k that su

ess-fully operates where prior atta
ks are ine�e
tive. Side Channel Cryptanalysis(abbr.: SCC) is an entire new �eld within 
ryptanalyti
 resear
h whi
h haspotential for various atta
ks and even atta
k styles.SCC is based on side 
hannel information whi
h abstra
ts all informationpreservable from the 
ryptographi
 devi
e that is not 
overed in the atta
ks
enarios of (
lassi
al) Cryptanalysis. In other words, it is information whi
his observable additionally to the intended output of the 
ryptographi
 algo-rithm. These leakages 
arry valuable information about the devi
e's internalstate. Furthermore it is known that every ele
troni
 devi
e3 is not only in-�uen
ed by an intended input but as well by other fa
tors as for example3whi
h is not espe
ially prote
ted 6



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISexternal environmental 
onditions or physi
al phenomenons in the devi
e.Figure 2 shows a model that gives 
onsideration to these fa
ts by newly in-trodu
ed dimensions. In this model, the devi
e 
arrying out a 
ryptographi

Cryptographic

Algorithm
Input Output

Environmental
Influences

Physical
ObservablesFigure 2: Model for Side Channel Cryptanalysisoperation is no longer a disregarded bla
k-box. An algorithm's tangible im-plementation on the physi
al devi
e is the 
entral point. The 
ommon basisof all Side Channel Atta
ks (abbr.: SCAs) is to determine the devi
e's inter-nal state from measurements of physi
al observables in order to dedu
e thedata whi
h is pro
essed by the devi
e.The �rst atta
k based on side 
hannel information was published in 1995by Paul Ko
her. He showed, how timing information of 
ryptographi
 oper-ations 
an be used to break implementations of several 
ryptosystems [13℄.In 1998, Ko
her et al. published �Simple and Di�erential Power Analysis�[14℄, two atta
ks that use measurements of the 
ryptographi
 devi
e's power
onsumption to dis
lose se
ret key material. Ele
tromagneti
 emanation wasintrodu
ed as a side 
hannel in 2001. Quisquater and Samyde as well asGandol�, Mourtel and Olivier published fundamental works [15, 16℄.The following paragraph exemplary shows why the power 
onsumptionof a standard digital 
ir
uit 4 
arries valuable side 
hannel information.Almost all digital 
ir
uits are build in Complementary Metal Oxide Semi
on-du
tor (CMOS) te
hnology, be
ause it is 
heap and e�
ient. But 
ir
uits4and hen
e of non-prote
ted devi
es 7



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSIS
In Out0 Sour
e1 Ground

Figure 3: Logi
 inverter in CMOS te
hnology and truth tablebuild from CMOS gates also have properties, that 
an be regarded as disad-vantageous. The power 
onsumption of logi
al gates in CMOS te
hnology isdire
tly 
orrelated to their state. More pre
isely, the power 
onsumption ofa CMOS gate is dire
tly 
orrelated to its state 
hange. Figure 3 depi
ts thesimplest logi
al gate in CMOS te
hnology: a logi
 inverter. For a 
onstantinput, one of the transistors is insulating and the other is 
ondu
tive. In thisstate, the power 
onsumption of the inverter is negligible as 
urrent 
annot�ow from sour
e to ground. If the input 
hanges, the 
ondu
tivity of bothtransistors is inverted and there is a small time frame where both of them are
ondu
tive. During this short period of time, 
urrent 
an �ow from sour
eto ground whi
h results in power 
onsumption that is obviously 
orrelatedto the input value's alteration.SCAs do not atta
k 
ryptographi
 algorithms but �only� their implemen-tations. One must not 
on
lude any relation between the se
urity of analgorithm and a su

ess probability of a SCA against one of its implementa-tions, or vi
e versa. Hen
e, in general all implementations of 
ryptographi
algorithms are 
onsidered to be vulnerable to SCAs, if they are not expresslyprote
ted.For 
ompleteness it shall be mentioned that SCAs are only a subset of pas-sive atta
ks against implementations of 
ryptographi
 algorithms. Note inparti
ular that no intentional in�uen
e is exerted on the devi
e. [12℄ providesdetailed information on implementation atta
ks.8



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISIn the following it is important to distinguish two styles of SCAs be
ausetheir approa
hes fundamentally di�er and hen
e have di�erent requirements.Se
tions 2.3 and 2.4 therefore introdu
e One- and Two-Step Side ChannelAtta
ks. Se
tion 2.5 
ompares representatives of both 
lasses with respe
tto requirements and appli
ability.2.3 One-Step Side Channel Atta
ksOne-Step SCAs are dire
tly mounted against the devi
e under atta
k. Allside 
hannel information or meta-information that is used by the atta
k isobtained from exa
tly the one devi
e under atta
k and during this one atta
k.Simple { Power ‖ Ele
troMagneti
 } Analysis Simple Power Analy-sis (SPA) and Simple Ele
troMagneti
 Analysis (SEMA) are known plain-text atta
ks. The adversary needs passive physi
al a

ess to the devi
e toobtain instantaneous measurement data. He dedu
es information about thepro
essed data by e.g. the Hamming Weight leakage model whi
h 
onsid-erably redu
es the brute for
e sear
h spa
e. SPA/SEMA is parti
ularly ofinterest if key bits are pro
essed sequentially by the implemented algorithm,as for example in modular exponentiation with se
ret exponents. However,a disadvantage of this approa
h is that it requires detailed knowledge aboutthe implementation.Di�erential { Power ‖ Ele
troMagneti
 } Analysis Di�erential PowerAnalysis (DPA) and Di�erential Ele
troMagneti
 Analysis (DEMA) requiresamples that represent well-spread5 plaintexts and a �xed key k. Hen
e, theyare known-plaintext atta
ks if this distribution may be assumed and 
hosen-plaintext atta
ks if not. The adversary needs passive physi
al a

ess to thedevi
e under atta
k to obtain many6 samples. Based on a sub-key hypothesis
k′ ∈ {0, 1}n, the adversary 
omputes the value of a 
hosen key-dependentintermediate result r ∈ {0, 1}n for ea
h sample and sorts the samples to5approximately equally likely distributed6the exa
t number of required samples, usually 1000 samples should su�
e, heavilydepends on several fa
tors whi
h we summarize to side 
hannel information quality9



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSIS
2n piles with respe
t to r. Next, the adversary 
omputes the average avgrof ea
h pile and then the sum of pairwise di�eren
es between all averages,that is∑r

i=0,j>i avgi − avgj. The height of the peaks in the di�erential tra
equanti�es the 
orrelation between the key hypothesis and the 
orre
t key,hen
e the adversary de
ides for the hypothesis with maximum 
orrelation.The higher 
omplexity of these atta
ks 
ompared to SPA/SEMA fa
es theadvantages that superposed noise is eliminated due to the averaging pro
essand no knowledge about the implementation is required. It is 
ommon sensethat DPA/DEMA are more powerful than SPA/SEMA in the 
ontext ofblo
k 
iphers, while the relation is rather inverse in the 
ontext of Publi
-Key te
hniques.2.4 Two-Step Side Channel Atta
ksTwo-Step SCAs 
onsist of two 
onstitutive steps. The �rst step whi
h will bereferred to as the pro�ling step requires a

ess to a training devi
e A, whi
his programmable to the adversary's will and identi
al to the devi
e underatta
k B. Note that �identi
al� should not be interpreted too stri
tly. It is
ommon sense that a devi
e A whi
h ful�lls the same spe
i�
ations, e.g. that
omes from the same produ
tion as B, su�
es. At least for the 
ase of at-ta
ks against several blo
k-
iphers, long-term a

ess to a non-programmabledevi
e A, this 
ould even be devi
e B for instan
e, substitutes the need of aprogrammable devi
e A, see Remark 1 in Se
tion 5.1.1.The se
ond step whi
h will be referred to as the 
lassi�
ation step involvesdevi
e B in either 
ase. Two-Step SCAs require well-spread inputs to the
ryptographi
 algorithm in the pro�ling step.Pro�ling Step During the pro�ling step, an adversary applies di�erentialand statisti
al te
hniques to a large number of side 
hannel samples from de-vi
e A to determine the 
hara
teristi
s of the algorithm's implementation. Inother words: he generates key-dependent pro�les of the devi
e's side 
hannelleakage.
10



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISClassi�
ation Step During the 
lassi�
ation step, a single or a few side
hannel samples7 from devi
e B are used to 
ompute, for ea
h pro�le, theprobability that the samples resemble this pro�le. The pro�le, respe
tivelythe key hypothesis, whi
h yields the maximum probability is the best 
andi-date and sele
ted.Inferential Power Analysis Atta
k [9℄, published by P.N. Fahn and P.K.Pearson at CHES 1999, is, to the best of our knowledge, the �rst atta
k
omplying to our de�nition of Two-Step SCAs reported in the open 
ommu-nity. Two more re
ent representatives of this 
lass of SCAs are introdu
ed inSe
tion 3 and investigated in this thesis.2.5 One-Step vs. Two-Step atta
ksIn this se
tion, the requirements and the appli
ability of One- and Two-StepSCAs are 
onfronted. Table 1 illustrates a general overview. If a trainingTraining devi
e Training devi
e Implementationnot available available knownmany measurements (Ampli�ed)from devi
e B DPA/DEMA Two-Step Atta
ks unimportantone measurement SPA/SEMA Two-Step Atta
ks yesfrom devi
e B Two-Step Atta
ks noTable 1: Requirements and appli
ability of One- and Two-Step SCAsdevi
e is not available, the 
hoi
e of a Single-Step SCA depends only on thenumber of available 
urves. Under the reasonable assumption, that a train-ing devi
e is available, the range of sele
table atta
ks is wider.Two-Step SCAs gain relevan
e in 
onsequen
e of su

essfully performingunder 
ir
umstan
es that render most One-Step SCAs inoperative.Consider the following reasonable assumptions for an atta
k s
enario: an at-ta
ker might be limited in the number of samples whi
h he 
an obtain from7This depends on the atta
k's nature. 11



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISdevi
e B. Reasons for this in
lude but are not limited to: limited a

ess tothe devi
e or implemented te
hniques within the devi
e su
h as non-linearkey updates. In the worst 
ase s
enario, this turns into a

ess to only a singlesample. Under this assumption, DPA/DEMA style atta
ks obviously turnout to be unmountable.Furthermore, the implementation of the 
ryptographi
 algorithm on the de-vi
e might be unknown. One obvious reason for this 
ir
umstan
e is a ven-dor's 
on
ern in his Intelle
tual Property. This assumption at least 
onsider-ably 
ompli
ates SPA/SEMA style atta
ks and, in pra
ti
e, takes them fromthe range of 
hoi
e.Two-Step SCAs perform well, even if both is assumed simultaneously.

12



3 THEORY3 TheoryThis 
hapter provides the theoreti
al basis that later 
hapters will rely on. InSe
tion 3.1 we introdu
e the Advan
ed En
ryption Standard sin
e knowledgeof 
ertain properties of the algorithm is required for this thesis. Se
tion 3.2gives a short review of all relevant statisti
al measures and in Se
tion 3.3 and3.4 the Template Atta
k and the Sto
hasti
 Model are introdu
ed.3.1 Advan
ed En
ryption StandardIn 1997 the National Institute of Standards and Te
hnology (NIST) invitedthe 
ryptographi
 
ommunity to submit proposals for a new en
ryption stan-dard [4℄. The new standard would be the su

essor of the Data En
ryptionStandard (DES) whi
h was in pla
e sin
e 1977 and outdated in terms of theprovided se
urity level. At the end of the sele
tion pro
ess, during that pro-posed 
iphers were judged not only by their se
urity and e�
ien
y properties[4℄, the Rijndael algorithm [5℄ was 
hosen and standardized as the Advan
edEn
ryption Standard (AES) [6℄ in November 2001. In fa
t, the AES onlyprovides a subset of Rijndael's options. This is due to the fa
t that NIST
hanged the requirements for proposed 
iphers during the sele
tion pro
esswhen Rijndael's basi
s had already been designed. [7℄ 
ontains the �nal sub-mission paper of Rijndael while [5℄ is a ri
h sour
e for design strategies anddetailed insights.Be
ause the AES resists all known forms of 
lassi
al 
ryptanalysis and is
onsidered se
ure, its implementations are widespread and a basi
 module inalmost every appli
ation that deals with information se
urity. This makes itan interesting obje
t of studies for SCC but as well a good �tester� for thee�
ien
y (or 
omplexity) of SCAs.The following des
ription stri
tly follows [6℄ and provides additional infor-mation where ne
essary. The AES is a symmetri
 blo
k 
ipher that pro
essesdata blo
ks of 128 bits. Cryptographi
 keys of 128, 192, and 256 bits in length
an be used, where ea
h key length leads to a spe
i�
 number of rounds (10,13



3 THEORY12, 14) and may be indi
ated by naming the algorithm AES-128, AES-192,or AES-256, respe
tively. During our experiments we only used AES in en-
ryption mode and with a key length of 128 bits (10 rounds). Therefore theremainder of this do
ument will fo
us on this variant.3.1.1 Mathemati
al preliminariesAES operates on bytes as its basi
 unit. Within a byte, single bits are iden-ti�ed by their index value in the following order: b7, b6, b5, b4, b3, b2, b1, b0.Hen
e b0 stands for the least signi�
ant bit, for example. Bytes are inter-preted as �nite �eld elements using a polynomial representation in GF(28):
b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0 =

7∑

i=0

bix
i (1)In 
ase of the AES, operations over a GF(28) are de�ned by the irredu
iblepolynomial

m(x) = x8 + x4 + x3 + x + 1. (2)Addition of two �eld elements 
an be a
hieved by 
onse
utively adding
oe�
ients of 
orresponding powers in the two polynomials modulo 2, sin
ethey are elements of the prime �eld, thus ∈ {0, 1}. Addition modulo 2 isequivalent to the XOR operation, denoted by ⊕. Furthermore, additionmodulo 2 is equivalent to subtra
tion modulo 2, whi
h implies that the samerelation is true for the polynomials ∈ GF (28).Multipli
ation of two �eld elements in polynomial representation 
orre-sponds to multipli
ation of two polynomials modulo the irredu
ible polyno-mial m(x). The modular redu
tion ensures that the result will be a polyno-mial of degree less than 8, hen
e an element of GF (28) and representable bya byte.The multipli
ative inverse element a(x) of any non-zero element b(x) is
14



3 THEORYde�ned by
a(x) · b(x) ≡ 1 mod m(x)⇒ a−1(x) ≡ b(x) mod m(x). (3)Further mathemati
al preliminaries with referen
e to the AES 
an be foundin [6℄, for a wider overview we refer to [8℄.We will mostly use hexade
imal notation to present byte values, e.g. {1A}= 26, but might 
hange to other notations where ne
essary.3.1.2 The State ArrayAES' operations are performed on a two-dimensional array of 16 bytes,arranged in four rows and four 
olumns, 
alled State and denoted by s.In the beginning of the algorithm, the input data bytes are 
opied into theState. After all operations have been performed, the State is 
opied intothe output, see �gure 4 for details. Note that this notation is used both foren
ryption and de
ryption.input bytes State output bytes

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

→

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

→

out0 out4 out8 out12
out1 out5 out9 out13
out2 out6 out10 out14
out3 out7 out11 out15Figure 4: AES: Input, State, and Output3.1.3 CipherAs mentioned above, all transformations are performed on the State. The
ipher begins with an initial Round Key addition, after whi
h the Stateis transformed by 9 iterations of a round fun
tion. In the end, a slightlymodi�ed �nal round is applied on
e.The round fun
tion of the AES algorithm is 
omposed of four byte-wisetransformations. In en
ryption mode, their order is: SubBytes, ShiftRows,MixColumns, and AddRoundKey. The �nal round is identi
al besides themissing MixColumns transformation. Figure 5 shows the overall pro
essingorder of an AES en
ryption. 15
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AddRoundKey

ShiftRows

MixColumns

SubBytes

AddRoundKey

ShiftRows

SubBytes

AddRoundKey

CiphertextPlaintext 9x

Initial Round Normal Round Final Round

Figure 5: Overall pro
essing order of an AES en
ryptionSubBytes This is a non-linear, invertible byte substitution using a substi-tution table (S-box). For ea
h byte of the State, the following two transfor-mations are performed:1. The byte is substituted by its multipli
ative inverse element8 inGF (28).2. The a�ne transformation:
b′i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci (4)is applied over GF (2) for 0 ≤ i < 8, where bi and ci are the ith bits ofthe byte b and 
, respe
tively, and 
 = {63} = 011000112.The a�ne transformation 
an be written in matrix form as shown in Figure6. The byte-wise e�e
t of SubBytes is illustrated in Figure 7, see [6℄ for the
omplete S-box substitution table.ShiftRows The ShiftRows transformation 
y
li
ally left-shifts ea
h row ofbytes within the State by a 
ertain o�set. The o�set for ea
h row is givenby its index, e.g. row0 is not shifted sin
e the o�set is 0. Figure 8 shows thispro
edure.8The zero element is mapped to itself 16
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
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
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
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1 0 0 0 1 1 1 1
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



Figure 6: A�ne transformation in SubBytes

Figure 7: S-box substitution for ea
h byte of the State [6℄

Figure 8: ShiftRows, a 
y
li
 left-shift [6℄MixColumns MixColumns operates on the four 
olumns of the State, oneat a time, as 
an be seen in Figure 10. The four bytes of one 
olumn aretreated as 
oe�
ients of a four-term polynomial over GF(2564). This poly-17



3 THEORYnomial is multiplied modulo x4 + 1 (denoted by ⊗) with a �xed polynomial
a(x) = {03}x3 + {01}x2 + {01}x + {02}. Again, the transformation 
an bewritten in matrix notation, see Figure 9. Let s′(x) = a(x)⊗ s(x):







s′0,c

s′1,c

s′2,c

s′3,c







=







02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02













s0,c

s1,c

s2,c

s3,c







for 0 ≤ c < 3.Figure 9: MixColumns in matrix notation

Figure 10: MixColumns pro
esses State 
olumns one-by-one [6℄AddRoundKey This operation adds a 128-bit RoundKey, that is gener-ated by the key s
hedule (see next paragraph), to the State. As addition heremeans XOR, AddRoundKey 
an be denoted as State = State⊕RoundKey.Note that during the initial Round Key addition, the originally supplied keydata is used. In the subsequent 9 + 1 rounds, AddRoundKey adds derivedround keys.KeyExpansion This routine generates 11 RoundKeys that are ne
essaryfor a 
omplete AES en
ryption or de
ryption operation. The RoundKeys areiteratively derived from the supplied key data a

ording to the pseudo 
odein Figure 11. Note that in en
ryption mode, the derived RoundKey for the18



3 THEORYinitial Round Key addition is the supplied key.SubWord() operates on a four-byte word and applies the SubBytes() trans-formation to ea
h of the four bytes. RotWord() transforms a four-byte array(a0, a1, a2, a3) into (a1, a2, a3, a0), thus it is a 
y
li
 left shift. The round
onstant R
on[i℄ 
ontains the following four bytes (xi−1, {00}, {00}, {00}),that in
lude powers of x = {02}.KeyExpansion(byte key[4*Nk℄, word w[Nb*(Nr+1)℄, Nk)beginword tempi = 0while (i < Nk)w[i℄ = word(key[4*i℄, key[4*i+1℄, key[4*i+2℄, key[4*i+3℄)i = i+1end whilei = Nkwhile (i < Nb * (Nr+1)℄temp = w[i-1℄if (i mod Nk = 0)temp = SubWord(RotWord(temp)) ⊕ R
on[i/Nk℄else if (Nk > 6 and i mod Nk = 4)temp = SubWord(temp)end ifw[i℄ = w[i-Nk℄ xor tempi = i + 1end whileend Figure 11: Pseudo 
ode for key s
heduling algorithm3.2 Statisti
sAll statisti
al measures we use in the 
ourse of this thesis are standard andwell des
ribed in virtually every introdu
tion to statisti
s or 
omplete mathreferen
e book, e.g. [30, 31, 32℄. Nevertheless, we give a short review of themeasures, for 
ompleteness.Let n denote the number of realisations xi (i = 1, . . . , n) of a random variable
X. 19



3 THEORY3.2.1 Measures of 
entral tenden
yArithmeti
 mean (Average) x = 1
n

∑n

i=1 xi = x1+x2+...+xn

nNote that the arithmeti
 mean 
onverges to the expe
tation value E(X) (lawof large numbers).Median If n is odd and n = 2k + 1, then M = xk+1, thus the middleelement that appears in a sorted list of all xi.If n is even and n = 2k, then M = xk+xk+1

2
, thus the arithmeti
 mean of thetwo middle elements of a sorted list of all xi.3.2.2 Measures of dispersionVarian
e σ2 = E(X − x)2is a measure of the dispersion of X from its mean x. If the probabilitydistribution of X is unknown, the sample varian
e 1

n−1

∑n

i=1(xi− x)2 
an be
omputed from realisations xi to estimate σ2.Covarian
e covxy = E ((X − x)(Y − y))is a measure for the linear dependen
y between X and Y . A positive (resp.negative) 
ovarian
e indi
ates that if X in
reases Y tends to in
rease (resp.de
rease). If the probability distributions of X and Y are unknown, thesample 
ovarian
e 1
n−1

∑n

i=1(xi−x)(yi−y) 
an be 
omputed from realisations
xi and yi to estimate covxy.Correlation ρ(X,Y ) = cov(X,Y )

σXσYis the 
ovarian
e normalized to be in the range [−1, 1]. One advantage ofthe 
orrelation measure is that it allows an interpretation of the �strength�of the linear depende
y. One has ρ(X,X) = 1.Covarian
e matrix Let X = (X1, X2, . . . , Xm) be a random ve
tor.
cov(X) := (cov(Xi, Xj)) ∈ R

m×m with i, j = 1, . . . ,mThe 
ovarian
e matrix 
omprises all pairwise 
ovarian
es of the random ve
-
20



3 THEORYtor's elements. For example: let A = (X,Y, Z), then
cov(A) =






σ2
X cov(X,Y ) cov(X,Z)

cov(Y,X) σ2
Y cov(Y, Z)

cov(Z,X) cov(Z, Y ) σ2
Z




3.2.3 Measures for the di�eren
e of two setsT-Test The T-Test is a measure for the statisti
al di�eren
e of means oftwo random variables. It is an advan
ed tool to 
ompare two random vari-ables as it does not only 
onsider the distan
e of their averages but as welltheir dispersion. Let X,Y be two random variables with nx and ny knownrealizations, then

t =
x− y

√
σ2

X

nx
+

σ2
Y

ny3.2.4 Sele
ted distributionsGaussian distribution Let σ > 0. X has a Gaussian (normal) distribu-tion with parameters x and σ2 if X has density f(x) = 1
σ
√

2π
exp

(

− (x−x)2

2σ2

).Figure 12 shows Gaussian distributions for x = 0 and several 
hoi
es of σ2(1; 1,5; 2; 3).
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ted Gaussian distributions21



3 THEORYMultivariate Gaussian distribution Let X = (X1, X2, . . . , Xm) be ave
tor of m jointly normally distributed random variables with the ve
torof means X and 
ovarian
e matrix ∑. |∑ | denotes the determinant of ∑.The joint probability density of X's elements is given by
f(X) =

1
√

(2π)m|
∑
|
exp

(

−
1

2
(X −X)T

∑−1
(X −X)

)Figure 13 shows the probability densities of two jointly normally distributedrandom variables. In a) they are not 
orrelated at all and in b) they are
orrelated with ρ = −1.
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3.3 Template Atta
ksTemplate Atta
ks [10℄ were introdu
ed by S. Chari, J.R. Rao, and P. Rohatgiat CHES 2002. Clearly, the Template Atta
k 
omplies with our de�nition ofTwo-Step SCAs.In this 
hapter we des
ribe Template Atta
ks 
losely to the original pa-per. Commen
ing with the atta
k's elementary idea, we give a rough reviewof its pro
edure in Se
tion 3.3.1, underlying assumptions on the side 
hannelin Se
tion 3.3.2 and a step-by-step explanation with detailed information inSe
tions 3.3.3 and 3.3.4. 22



3 THEORYNote that we omit the expand and prune strategy that is part of the orig-inal publi
ation as it is more related to the �eld of stream 
iphers. It wasnot required for the side 
hannel 
ryptanalysis of the AES. Furthermore, aunique key-dependent 
omputation of a 
ryptographi
 devi
e will be referredto as an operation in the remainder of this 
hapter in order to be 
onsistentwith [10℄. In the 
ontext of stream 
iphers where the Template Atta
k wasoriginally motivated, the authors gave the example of exe
uting the same
ode for di�erent values of key bits to elu
idate the word operation. For ourexperiments in the 
ontext of the AES blo
k 
ipher, we identify an operationby the value of the AES State array after the initial Round Key addition,that is x ⊕ k. The motivation of this de
ision is provided on page 31, see�Equal Images under di�erent Subkeys�.Unlike One-Step SCAs that use some hundred side 
hannel samples toeliminate the noise 
ontained in ea
h sample by 
omputing averages (DPA,DEMA), the Template Atta
k extra
ts and (ex
lusively) uses the noise tolearn about the implementations 
hara
teristi
s. More pre
isely: the tem-plate atta
k uses pre
ise multivariate 
hara
terizations of the (deterministi

omponent of the) noise and pre
ise estimations of the intrinsi
 signal withinside 
hannel samples from devi
e A to 
lassify given samples from devi
e B.The authors argue that espe
ially for CMOS devi
es these 
hara
terizationsare an extremely powerful tool (
f. [10℄).3.3.1 Template Atta
ks in a nutshellIn the pro�ling step, a training devi
e A is used to generate representationsof the signal and multivariate 
hara
terizations of the o

urring noise in side
hannel measurements for all possible operations of the devi
e. A pair ofmodels for signal and noise is referred to as the template of the operation. Inthe 
lassi�
ation step, the maximum-likelihood approa
h is used to 
omparethe noise within one sample from devi
e B to these templates in order todedu
e the performed operation. To su

essfully determine the underlyingoperation is equivalent to key dis
losure, be
ause the operation is x⊕ k and23
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x is known.3.3.2 Model for side 
hannel observablesThe observable, i.e. side 
hannel information, is modeled as a 
ombinationof an intrinsi
 signal, intrinsi
ally generated noise and ambient noise. Whenside 
hannel samples of several invo
ations of the same operation are 
on-sidered, their signal 
omponent is the same whereas the noise 
omponent isbest modeled as a random sample from a noise probability distribution thatdepends on the environment and operational 
onditions.Obviously, an atta
k's su

ess rate is limited to some bounds by the imple-mentation of an algorithm on a parti
ular devi
e. A perfe
t model of thenoise probability distribution would lead to a su

ess rate of the TemplateAtta
k that meets these bounds in theory. Nevertheless, approximations su
has the multivariate Gaussian model are ought to perform well in pra
ti
e (
f.[10℄).3.3.3 The pro�ling stepFor ea
h of the K possible operations9 of the devi
e a large number L (e.g.one thousand) of side 
hannel samples has to be obtained using devi
e A.The subsequent steps determine the K templates from these samples, onefor ea
h operation.Intrinsi
 signal The �rst part of ea
h template is a pre
ise representa-tion of the intrinsi
 signal that 
an be observed during an invo
ation ofthe 
orresponding operation. The Template Atta
k's empiri
 approa
h togenerate this representation is to suppress the noise within the appropriatesamples and use the remaining signals to determine the typi
al signal. Bothis a
hieved at the same time by 
omputing the average Mi from the L sam-ples that 
orrespond to operation Oi for all i = 1, . . . , K operations. In ideal
ase, Mi 
ontains in fa
t a very pre
ise estimation of the intrinsi
 signal asthe noise 
omponents average out at 0 and the remaining average signal is a9re
all that an operation is de�ned by x⊕ k in the AES 
ontext24



3 THEORYvery good estimator in the absen
e of outliers10.The next step is optional but highly advisable in pra
ti
e be
ause it sig-ni�
antly redu
es the atta
k's 
osts (pro
essing time, storage) with only asmall loss of a

ura
y. It is almost sure that not all moments 
overed by theside 
hannel samples are of interest to an atta
ker, thus this step deals withidenti�
ation and sele
tion of interesting points in time.Computing pairwise di�eren
es between the average signals Mi yields a 
urvethat shows large spikes at points where the underlying signals (and thus oper-ations) di�er. Only these points are of interest to an atta
ker. The Gaussianmodel applies to W points (P1, ... ,PW ) that were 
hosen along the spikes.The original publi
ation does not de
lare how exa
tly these points should be
hosen. Our insights on this issue are given in Se
tion 5.1.2, Step 4.Multivariate noise model The se
ond part of ea
h template is a pre
ise
hara
terization of the noise that 
an be observed during an invo
ation ofthe 
orresponding operation. The Template Atta
k assumes that the noiseapproximately has a multivariate Gaussian distribution, hen
e the 
ovari-an
e matrix∑Ni
des
ribing the probability density of the noise is 
omputed
onse
utively for all operations in this step.First of all, the noise within the samples has to be extra
ted. For ea
h op-eration Oi all L noise ve
tors Ni(·) of the samples need to be 
omputed.Thereby one W -dimensional noise ve
tor Ni(T ) of sample T is the di�eren
eof the sample T and the average signal Mi at the 
hosen W instants. Moreformally:

Ni(T ) = (T (P1)−Mi(P1), . . . , T (PW )−Mi(PW )) (5)Then the noise 
ovarian
e matrix ∑Ni

an be 
omputed using the L noiseve
tors Ni(T ) for ea
h operation Oi

11. The elements of the 
ovarian
e matrix10The Median might be used to gain better results while its 
omputation is more 
ostly.11Re
all from 3.2.2 that a 
ovarian
e matrix 
onsists of the pairwise 
ovarian
es of arandom ve
tor's elements. 25
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∑

Ni
are de�ned as:

∑

Ni

[u, v] = cov(Ni(Pu), Ni(Pv)), (6)where u and v denominate two of the W 
hosen points in time, e.g. the pair
{Pu, Pv}. Note that 
omputation of∑Ni

[u, v] for u ≤ v su�
es be
ause∑Niis a symmetri
 matrix.After this step allK templates (Mi,∑Ni
) are 
omputed. The expe
ted signalfor operation Oi is Mi and the noise probability distribution is given by the

W -dimensional multivariate Gaussian distribution pNi
(·). The probability ofobserving a noise ve
tor n is:

pNi
(n) =

1
√

(2π)W |
∑

Ni
|
exp(−1

2
nT
∑−1

Ni
n

)

, n ∈ R
W (7)where |∑Ni

| denotes the determinant of ∑Ni
and ∑−1

Ni
its inverse.3.3.4 The 
lassi�
ation stepThe situation of the 
lassi�
ation step is as follows: an atta
ker obtains oneside 
hannel sample S from the devi
e under atta
k (B) and wants to �ndout whi
h of the K possible operations it des
ends from.This step primarily 
omprises a maximum likelihood hypothesis test, hen
e itis less 
ostly in 
omputational e�orts. For ea
h operation Oi the probabilityof observing S if indeed it originated from Oi is 
omputed. To do so, �rst the

W -dimensional noise ve
tor n within S has to be extra
ted by subtra
ting Mifrom S at the W sele
ted instants (Mi is part 1 of templatei). Then equation(7) 
an be evaluated for n using∑Ni
(part 2 of templatei) to get the a
tualprobability. Finally, the operation Oi that yields maximum probability issele
ted.As one is rather interested in a ranking of the 
andidates Oi than in thea
tual probabilities, the formula 
an be simpli�ed by disregard of 
onstant
26



3 THEORYterms in (7). If so, the operation that minimises
ln
(

|
∑

Ni

|
)

+ nT
∑−1

Ni

n, n ∈ R
W (8)is sele
ted.3.3.5 Use of Template Atta
ks against AESIn the original paper the authors des
ribe an �expand and prune� strategythat is parti
ularly useful when analyzing side 
hannel samples of stream
iphers. If the atta
ker uses this strategy, pro�ling and 
lassi�
ation build are
urring 
y
le whi
h means in parti
ular that the vast e�ort of the pro�lingstep 
annot be pre
omputed.In 
ontrast, if the atta
ked key is known to be su�
iently small or assail-able in su
h blo
ks (e.g. this is true for all blo
k 
iphers with the propertythat ea
h blo
k of the �rst roundkey only depends on one original key blo
k)the pro�ling 
an be done independently before or after obtaining S from thedevi
e under atta
k. This might be of importan
e for su
h 
ases where theperiod between obtaining the sample S and key re
overy is a 
riti
al fa
tor.For example: to re
over an 128-bit AES key in the way we present in thisthesis an atta
ker has to 
ompute �only� 28 · 16 = 4096 instead of 2128 tem-plates, whi
h would be 
learly infeasible. The atta
ker 
an pre
ompute allthese templates and - after obtaining S - immediately start the 
lassi�
ationstep whi
h takes only a few se
onds, even on an ordinary home 
omputer.3.4 Sto
hasti
 ModelThe Sto
hasti
 Model [11℄ was published by W. S
hindler, K. Lemke, andC. Paar at CHES 2005. It is the third atta
k in the 
lass of Two-Step SCAssin
e it de�nitely shows the ne
essary properties.In this se
tion we present the Sto
hasti
 Model 
lose to the original 
on-tribution. As in the previous se
tion we begin with the atta
k's fundamentalidea after what we give a short review of its overall pro
edure in Se
tion 3.4.127



3 THEORYand explain the mathemati
al model in Se
tion 3.4.2. Detailed informationon the approa
h is then given in Se
tions 3.4.3 and 3.4.4.The Sto
hasti
 Model, as the name leads one to assume, is a fairly so-phisti
ated approa
h that uses several statisti
al methods and is based on awell de�ned, elaborated mathemati
al model. However, for the sake of 
om-prehensibleness we will skip all formal proofs and theoreti
 
onsiderationsthat we �nd unne
essary for the reader to understand the atta
ks's 
on
ept.Therefore we refer the interested reader to [11℄ for proofs, details and deeperunderstanding.Furthermore, several aspe
ts that we bring forward might sound redundant,like repetitions from Se
tion 3.3. We do so anyway, rather than pointing tothe Template Atta
k, in order to give a 
omplete review of the Sto
hasti
Model that 
an be read on its own. On the other hand we omit the minimum-prin
iple approa
h at key extra
tion be
ause it was already expe
ted andexperimentally proven to be less e�
ient in the original publi
ation. TheSto
hasti
 Model aims at blo
k 
iphers, its adaptability to stream 
iphers isunknown.The Sto
hasti
 Model extra
ts and uses the noise 
ontained within side
hannel samples to dis
lose se
ret information. This stands in sharp 
ontrastto all known One-Step SCAs whi
h see noise as a hindran
e. More pre-
isely: the Sto
hasti
 Model uses one pre
ise multivariate 
hara
terizationof the (nondeterministi
) noise in 
onjun
tion with an approximation of thedeterministi
 signal in a 
hosen ve
tor subspa
e to 
lassify given samples.The authors argue that due to approximation of the deterministi
 signal theSto
hasti
 Model's su

ess rate is bounded upwards by the Template Atta
kwhi
h estimates the signal as good as possible. On the other hand, far less12measurements would be required in the pro�ling step. Our investigation ofe�
ien
y di�eren
es and explanatory approa
hes are provided in Se
tion 5and thereafter.12savings in the dimension of up to 100 are mentioned in the 
ase of AES28



3 THEORY3.4.1 Sto
hasti
 Model in a nutshellIn the pro�ling step, a training devi
e A is used to approximate its realside 
hannel leakage fun
tion in a 
hosen ve
tor subspa
e and to generatea multivariate 
hara
terization of the o

urring noise. The training 
urvesare assumed to represent all key dependen
ies uniformly distributed, in the
on
rete 
ase of AES that is they are uniformly distributed for x⊕ k. In the
lassi�
ation step, the maximum likelihood approa
h is used to 
ompare thesample(s) from devi
e B to the approximated leakage fun
tion in order todedu
e its key dependen
y.3.4.2 The mathemati
al modelThe model's underlying setting is as follows: an atta
ker has a

ess to side
hannel samples (e.g. of an en
ryption) and a part of the 
orrespondingplaintext13 x ∈ {0, 1}p. His task is to dis
lose a subkey k ∈ {0, 1}s.For any given instant t (
overed by the samples) the measurement is regardedas a realization of the random variable
It(x, k) = ht(x, k) + Rt (9)that is 
omposed of two parts. The �rst part ht(x, k) denotes the portion ofthe sample that depends on x and k and will be referred to as the determin-isti
 part. The se
ond part Rt denotes the portion that does not depend on xand k and will be referred to as the random part. Sin
e both portions (thusthe entire sample) additionally depend on the instant t the random variable
ould be expanded to the dis
rete fun
tion I(x, k, t) = h(x, k, t) + R(t) to
over this fa
t. Nevertheless, to be 
onsistent with [11℄ we will sti
k to thenotation in (9) and 
onsider single instants where not indi
ated di�erently.The deterministi
 part 
an be seen as an unknown mapping ht : {0, 1}p×

{0, 1}s → R that assigns a real value, e.g. power 
onsumption, to ea
h 
om-bination of plaintext and key bits. F := {h′ : {0, 1}p×{0, 1}s → R} denotes13adaption to known-
iphertext s
enarios is feasible29



3 THEORYthe in�nite set of su
h mappings. The most pre
ise and 
ostly approa
h toatta
k an implementation 
learly aims at �nding h′ ∈ F su
h that h′ = ht.In other words, the adversary has to �nd all 2p+s assignments to uniquelyidentify h′ = ht. In 
ase of an atta
k against the AES targeting one Sbox at atime, whi
h means x, k ∈ {0, 1}8, this leads to 216 mappings14 per Sbox. TheSto
hasti
 Model signi�
antly redu
es this e�ort by approximating ht(x, k)in a ve
tor subspa
e and by exploiting an elementary property of the phys-i
al observables, if appli
able. A full des
ription of these steps is beyondthe s
ope of this thesis, therefore we will skip their derivation and straightprovide the results (all details and proofs 
an be found in [11℄).The idea is as follows: an adversary determines a small u-dimensionalve
tor subspa
e Fu;t ⊂ F whi
h 
ontains a mapping h∗ that either is indeedthe sear
hed mapping ht or at least su�
iently 
lose to it. In this subspa
e,he only has to �nd u assignments to uniquely identify h∗.
Fu;t is regarded as the set of all mappings h′ ∈ F that 
an be expressedin the u-dimensional ve
tor subspa
e spanned by u known fun
tions gjt :

{0, 1}p × {0, 1}s → R. In formal notation:
Fu;t :=

{

h′ : {0, 1}p × {0, 1}s → R | h′ =
u−1∑

j=0

βj · gjt

} with βj ∈ R(10)The su

ess rate of the atta
k is strongly 
oupled to the 
hoi
e of Fu;t thusthe fun
tions gjt. On
e they are 
hosen, the 
oe�
ients β0, . . . , βu−1 
an beestimated for ea
h instant t. Apparently, the number of required samplesin the pro�ling step in
reases with the number of dimensions u, if the samelevel of pre
ision is aspired for the βjt. One might see this as a trade o�problem for a �xed number of samples in the pro�ling step: a small num-ber of dimensions u redu
es the sear
hable spa
e, whi
h might ex
lude good
andidates h′ ∈ F but gives better estimators for the best h∗ still in
ludedin Fu;t; a large number of dimensions u will more likely in
lude a very good14This is the approa
h of a naïve Template Atta
k. However, our Template Atta
krequires 2
s assignments, see EIS on page 31.30



3 THEORY
andidate h∗ but its estimators will be less pre
ise.On the 
hoi
e of the fun
tions gjt: if the physi
al observables show a
ertain property (
f. �Equal Images under di�erent Subkeys (EIS)� in [11℄),an almost lossless redu
tion of F is possible. With lossless we address the fa
tthat this redu
tion de
reases the number of 
andidates h′ without �loosing� asingle one. This is possible be
ause the nature of the 
andidates is 
hanged.Consider an arbitrary set V and a (surje
tive) mapping φ(x, k) → V forwhi
h the images of φ({0, 1}p, k) ⊆ V are equal for all subkeys k ∈ {0, 1}s.The deterministi
 portion of the samples ht(x, k) is said to have the propertyEIS, if ht 
an be expressed as a fun
tion of φ, i.e. ht = φ◦ht for an appropriatemapping ht. If ht has (or is assumed to have) the invarian
e property EIS,the authors suggest to sele
t fun
tions gjt that 
an be expressed as gjt =

φ ◦ gjt with gjt : V → R. This leads to the following expression for the bestestimator h∗
t :

h∗
t = φ ◦

u−1∑

j=0

βjt · gjt(y) βjt ∈ R, y ∈ V. (11)The gain of exploiting the EIS property 
an be illustrated as in Figure 14.
2p+s EIS

−→ V ⊆ 2p loss
−→ uFigure 14: Redu
tion of the ve
tor spa
e exploiting the EIS propertyThe de
ision, whether this property should be assumed or not, 
an be made
onsidering only the abstra
t algorithm. Nevertheless, due to la
k of a perfe
tmodel of the physi
al devi
e, a proof of the property 
an only be addu
edempiri
ally by experiment.3.4.3 The pro�ling stepThe number of side 
hannel samples that is ne
essary for the pro�ling step islinked to the number of dimensions of the ve
tor spa
e in whi
h the adversaryapproximates the real leakage fun
tion (see above). However, the original31
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ontribution does not quote a spe
i�
 number but 
ompares several 
hoi
esin terms of their e�
ien
y at key extra
tion. Our studies on this are givenin Se
tion 6.4.2. Let us assume the adversary de
ides for a u-dimensionalve
tor spa
e and obtains two sets of N1 and N2 side 
hannel samples usingdevi
e A. The subsequent steps 
ompute the approximators h∗
t , in otherwords a fun
tion h∗(x, k, t), for the deterministi
 portion of the side 
hannelinformation and the multivariate 
hara
terization of the noise Rt.Approximation of h∗

t Let xj ∈ {0, 1}
p (j = 1, . . . , N1) be the known partsof the plaintext and it(xj, k) be the side 
hannel measurement at instant tthat 
orresponds to xj.The approa
h uses the Least Squares Method to �nd an optimal approximator

h∗ ∈ Fu;t of it. For any approximator h′ ∈ Fu;t the sum of squared deviationsfrom the real leakage fun
tion it 
an be denoted by
N1∑

j=1

(it(xj, k)− h′(xj, k))2 = ‖it − Ab‖2. (12)As it resp. A and it are taken for granted (see below) the optimal approxi-mator h∗ that minimises the left hand side of (12) is uniquely identi�ed byany ve
tor b that minimises the right hand side of (12). b 
an be found byevaluating
AT Ab = AT it ⇒ b = (AT A)−1AT it (13)if AT A is invertible.The adversary begins with determining the (N1 × u) - matrix A. Ea
hmatrix element aij (i = 1, . . . , N1 and j = 0, . . . , u − 1) is de�ned as aij :=

gj(xi, k) resp. gj(φ(xi, k)) exploiting EIS.Hen
e the adversary traverses all N1 plaintexts whereat he evaluates the ufun
tions g ea
h time. Then he 
omputes the (u×u) - matrix AT A and (if itis regular) the (u×N1) - system matrix S = (AT A)−1AT . The system matrixis time invariant and needs to be 
omputed only on
e wheres the ve
tor itand hen
e the ve
tor b have to be found separately for ea
h instant t.32
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A =








g1(φ(x1, k)) g2(φ(x1, k)) · · · gu(φ(x1, k))
g1(φ(x2, k)) g2(φ(x2, k)) · · · gu(φ(x2, k))... ... . . . ...
g1(φ(xN1

, k)) g2(φ(xN1
, k)) · · · gu(φ(xN1

, k))






Figure 15: Design Matrix A exploiting EIS propertyThe 
olumn ve
tor it is de�ned as (it(x1, k), . . . , it(xN1

, k))T . For ea
h in-stant t, the adversary extra
ts the measurement for t from all N1 samplesand 
omputes b = S · it. Every b has dimension u and 
ontains the 
oe�-
ients (β′
0, . . . , β

′
u−1) for the optimal approximator h∗

t =
∑u−1

j=0 βj gj(x, k).The next step is optional but highly advisable in pra
ti
e in order toredu
e the 
omputational e�ort of the atta
k with only a small loss of a

u-ra
y. It is almost sure that only some instants 
overed by the side 
hannelsamples a
tually 
arry valuable information, therefore this step deals withthe identi�
ation and sele
tion of interesting points in time t1, . . . , tm. Theauthors do not make a statement on how these points 
an be found in thetheoreti
 part of the publi
ation. Yet, the experimental analysis part showsseveral approa
hes based on the eu
lidean ve
tor norm ‖(b0,t, . . . , bu−1,t)‖ and
ompares them in terms of e�
ien
y at key extra
tion. For the moment wesimply go on with the set t1, . . . , tm provided by an ora
le. Our experien
esin this �eld are given in Se
tion 5.1.2, Step 4.Multivariate Chara
terization of Rt In the Sto
hasti
 Model the noisewithin the side 
hannel is assumed to be independent of x, k, i.e. non-deterministi
, and to roughly show properties of a multivariate Gaussiandistribution. The subsequent steps 
ompute the 
ovarian
e matrix C that
hara
terizes the noise probability density.Let Rt denote a random ve
tor (Rt1 , . . . , Rtm) with t1, . . . , tm being the se-le
ted instants. The adversary uses the approximators h∗
t to extra
t thenoise within the j = 1, . . . , N2 side 
hannel samples it(xj, k) from the se
ondset. More pre
isely, he 
omputes N2 noise ve
tors of dimension m whereas33
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h noise ve
tor is the di�eren
e between a sample and the 
orrespondingapproximated deterministi
 part. More formally:
Rt = it(xj, k)− h∗

t (xj, k) (14)Then, the 
ovarian
e matrix C is 
omputed15 using the N2 noise ve
tors Rt.Ea
h matrix element cij (1 ≤ i, j ≤ m) is de�ned as
cij = cov(Rt(i), Rt(j)) (15)with i and j being two of the m 
hosen points in time. Note that the 
ovari-an
e is symmetri
 and hen
e 
omputation of all cij for i ≤ j su�
es.The 
omputation of the matrix C 
ompletes the pro�ling step. The deter-ministi
 part ht(x, k) of the side 
hannel leakage is approximated by h∗

t (x, k)and the random noise Rt is 
hara
terised by the m-dimensional probabilitydensity fC .
fC : R

m → R fC(z) =
1

√

(2π)m|C|
exp(−

1

2
zT C−1z), z ∈ R

m (16)where |C| denotes the determinant of C and C−1 its inverse.3.4.4 The key extra
tion stepThis step basi
ally 
omprises a maximum likelihood test hen
e it is less 
ostlyin 
omputational e�orts than the pro�ling step. The setting for the key ex-tra
tion step is as follows: the adversary had (limited a

ess) to devi
e Band obtained N3 side 
hannel samples st(xj, k
◦) (j = 1, . . . , N3) with knownplaintexts xj. Now he wants to dis
lose the se
ret key k◦ that was used bydevi
e (B).By assumption the noise in the side 
hannel did not 
hange, i.e. thenoise ve
tor ztj = st(xj, k

◦) − h∗
t (xj, k) has a multivariate Gaussian distrib-15Re
all from 3.2.2 that a 
ovarian
e matrix 
onsists of the pairwise 
ovarian
es of arandom ve
tor's elements. 34



3 THEORYution with 
ovarian
e matrix C. For ea
h key hypothesis k the probabilityof observing ztj if k is indeed the right key 
an be evaluated with (16). Theadversary 
ombines these probabilities for all N3 samples, i.e. he evaluates
N3∏

j=1

fC(ztj) =

N3∏

j=1

fC(st(xj, k
◦)− h∗

t (φ(xj, k))) (17)for all subkeys k ∈ {0, 1}s, and de
ides for the key k that maximises theterm.As one is rather interested in a ranking of the key hypothesis than the a
tualprobabilities, the formula 
an be simpli�ed by disregarding 
onstant termsin (16). If so, the adversary de
ides for the key k that minimises
N3∑

j=1

zT
j C−1zj. (18)
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3 THEORY3.5 Compendium of di�eren
esThe following table shows the fundamental di�eren
es in the approa
hes ofboth atta
ks. For 
orre
tness we denote, that (non)deterministi
 shall beunderstood as (non) dependent on the relevant data, e.g. the key.Sample portion Template Atta
k Sto
hasti
 Modelsignal deterministi
, estimated deterministi
, approximated
→ 256 average signals → 9 sub-signalsnoise deterministi
, 
hara
terised non-deterministi
, 
hara
terised
→ 256 
ov matri
es → one 
ov matrixTable 2: Fundamental di�eren
es between Template Atta
ks and the Sto-
hasti
 ModelRemarks of the original authors:The Template Atta
k extra
ts all possible information availablein ea
h sample and is hen
e the strongest form of side 
hannelatta
k possible in an information theoreti
 sense given the fewsamples that are available. [10℄Though our e�
ien
y at key extra
tion is limited by templateatta
ks pro�ling is mu
h more e�
ient whi
h is highly relevantif the designer of a 
ryptosystem is bounded by the number ofmeasurements in the pro�ling step. [11℄Our insights on the e�
ien
y of both atta
ks are given in Se
tion 5 andthereafter.
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4 ACQUISITION4 A
quisitionThis se
tion deals with the a
quisition of side 
hannel samples. First, wewill give a general outline of the side 
hannel measurement work �ow. Then,in the su

eeding sub-se
tions, we will go over the di�erent steps we had topro
ess and provide detailed information.4.1 Side Channel measurement work �owIn general, Side Channel Cryptanalysis requires a large number of pre
isemeasurements where ea
h a
quired sample needs to be stored for later analy-sis and all measurements should ideally be done in the same fashion and ina non-
hanging environment. Obviously, these requirements in terms of pre-
ision, 
onstan
e, and speed 
an be fa
ed by a high degree of automation.Usually, a Personal Computer is a 
entral point of a setup and used to oper-ate and 
oordinate all other devi
es as well as to store obtained measurementdata. A digital os
illos
ope (s
ope) is needed to perform the a
tual measure-ments and the ne
essary A/D 
onversion. Depending on the type of atta
k,one or several probes are required to link the s
ope to the devi
e that is exam-ined. For 
ompleteness we mention that further material might be ne
essaryin order to put the devi
es into operating state and link them to the PC(power supplies, Smart
ard reader, boards for I/O 
ommuni
ation). Figure60 shows the relations between the devi
es and the sequen
e of operations(within one measurement 
y
le).Step 1 Initially, the s
ope needs to be setup with several parameters, likefor example duration and resolution, and 
alibrated, su
h that the mea-surement range is used to full 
apa
ity. Normally, both 
an be doneeither manually or by software tools that 
ommuni
ate with an inter-fa
e of the s
ope.Step 2 An instru
tion to 
arry out the operation on
e is sent to the 
rypto-graphi
 devi
e. Optionally, additional 
ommands are sent to the devi
ein order to 
hange parameters as for example the plaintext.37



4 ACQUISITION
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34Figure 16: Side Channel measurement setupStep 3 During the exe
ution of the operation, the side 
hannel informationis a
quired by the s
ope. It is highly advisable to syn
hronise thes
ope's and the devi
e's operation, e.g. by means of a trigger signal, inorder to limit storage e�orts.Step 4 On
e the exe
ution of the operation is �nished by the devi
e andthe sample is re
allable from the s
ope's memory, it is transferred tothe PC for storage.For further measurements, Steps 2 to 4 
an be repeated in a 
y
li
 way.4.2 Mi
ro Controller, AES ImplementationWe used a so 
alled Fun
ard [17℄ for our side 
hannel measurements. In op-position to �normal� Smart
ards, the mi
ro
ontroller (µ
) and the memorymodule are not monolithi
ly integrated, but wired, and embedded into the
ard body. Our Fun
ard 
ontains an 8-bit RISC ATMega 163 µ
 [18℄ in Har-vard ar
hite
ture 
on
ept (separation of data and program memory). Theinternal memory of the µ
 is limited to 16KB FlashROM program memory,512 Bytes E2PROM (permanent) memory, and 1KB SRAM (non-permanent)data memory.To bypass the daunting task of low-level I/O-programming we availed usof the Simple Operating System for Smart
ard Edu
ation (SOSSE) [24℄, amodular open sour
e operating system. It abstra
ts from the hardware layer38



4 ACQUISITIONand provides the ISO standardized T=0 proto
ol (ISO 7816 [25℄) for bytewise half duplex transmission of Appli
ation Proto
ol Data Units (APDUs).The AES en
ryption algorithm was implemented straight forward a

ord-ing to [6℄ in Assembly language using the Atmel AVR Studio 4 IDE [26℄ withonly one modi�
ation. We 
ombined the SubBytes and ShiftRows transfor-mation so that the result of SubBytes would be dire
tly inserted into theState array at the right position. Furthermore, we added some lines of 
odethat generate a trigger signal on the Smar
t
ard's I/O pin just before theinitial Round Key addition begins, to syn
hronise the s
ope.After we veri�ed that the 
ode works 
orre
tly, we integrated the AES en-
ryption into SOSSE so that it 
ould be invoked by an APDU 
ommand.Furthermore we added an APDU 
ommand to load a 128-bit key into theE2PROM. Then, SOSSE was 
ompiled with the avr-g

 [27℄ open sour
e
ross 
ompiler and the hex-�les programmed onto the 
ard (FlashROM andE2PROM) with the MasterCrd and MasterBurner software [28℄.4.3 A
quisition setup, Parameters for measurementsIn this se
tion, we provide details about our a
quisition setup and the para-meters we used.Digital Os
illos
ope Agilent In�nium 54832D Mixed Signal Os
illos
ope;key data: Bandwidth 1 GHz, Channels 4+16, max. sample rate 4GSa/s,A
quisition memory 2Mpts/
hannel [19℄Probe Agilent 1165AMiniature passive probe; key data: Division ratio 10:1,Input resistan
e 10MΩ [20℄EM Probe Langer EMV Te
hnik near �eld probe RFU 5-2; key data: a
-quires surfa
e and 
ir
ular magneti
 �elds (see Figure 58 in appendixA), Resolution ∼ 5mm [21℄Preampli�er Langer EMV Te
hnik preampli�er PA 303 
onne
ted to theEM probe; key data: Amplifying 30dB, Noise �gure 4,5dB [22℄39



4 ACQUISITIONCard Reader CHIPDRIVE mi
ro 
ard reader, dismantled to ease a

ess(see Figure 59 in appendix A) and to 
onne
t external, low-noise powersupply (see below); key data: ISO 7816-3 
onform, 
lo
k frequen
y 3.57MHz [23℄DC Power Supply Statron dire
t 
urrent power supplyTo dismantle the Smart
ard reader eased a

ess to its internal wiring. Wesoldered a 47Ω resistor into the ground of the 
ard's power feed and used anAgilent Probe (
hannel A) to measure the potential drop over the resistor.The usual Smart
ard power supply, whi
h is done by 
onne
ting the readerto a PC's serial port, was dis
onne
ted and repla
ed with the Statron DCpower supply. A

ording to [29℄, the 
ard's supply voltage is 5V ± 10% andthe maximal 
urrent 
onsumption is 10mA. Hen
e, the voltage drop overthe resistor would not ex
ess 10mA · 47Ω = 470mV. A

ordingly, we set theStatron devi
e to supply 5.5V.We 
onne
ted an additional wire to the I/O pin of the 
ard reader and di-re
ted its other end to the outside so that the se
ond Agilent probe (
hannelB) 
an dete
t the trigger signal.The 
ard holding so
ket was atta
hed head�rst, so that the 
onta
t area ofthe Smart
ard pointed down. Preliminary tests showed that the 
onta
t areapartly shields EM emanation. Furthermore, we unsealed the 
ard reader'sba
kside in the 
hip area to bring the EM probe as 
lose to the 
hip as pos-sible. The EM probe was 
onne
ted to the s
ope (
hannel C) through thepreampli�er. Figure 60 in appendix A shows our overall setup.The s
ope was set to obtain samples of 20000 points at a rate of 200MS/sfrom 
hannels A and C after dete
ting the trigger signal on 
hannel B. Ea
hpoint was sampled in 8-bit resolution. The 20000 points 
over 100µs whi
hmat
hes the time that the 
ard needs to 
ompute the initial Round Keyaddition and the �rst normal round of an AES en
ryption. With the 
ards
lo
k frequen
y being 3.68MHz, one 
lo
k 
y
le takes ∼0.27µs and for ea
hof the ∼360 
overed 
lo
k 
y
les ∼55 points are sampled.40



4 ACQUISITION4.4 Fixed key, Variable keyAltogether, we 
arried out three sets of measurements for our experiments.As our main fo
us is Two-Step Side Channel Cryptanalysis, we obtained at�rst a pair of sets of measurements. One large set for the pro�ling step andone smaller set for the 
lassi�
ation step.Fixed key We began with 
arrying out a pair of sets of measurementsusing a �xed key. Our approa
h aims at re
overing the 128bit AES key kin portions of 8 bits, thus we represent the full key as a 
on
atenation of16 subkeys kj (j = 0, . . . , 15). The plaintext x is represented in the samemanner, i.e. x = (x1, . . . , x15). The �rst set of measurements is supposed toserve the pro�ling step. We used a �xed key k and plaintexts x, randomly
hosen from a uniform distribution, to obtain (following the re
ommendationsin [10℄) ≈1000 samples per operation (xj⊕kj), a total of 231448 samples. Forthe se
ond set, we loaded a di�erent key k∗ onto the Smart
ard and againused random plaintexts x to obtain 3000 samples. This set is supposed toserve the 
lassi�
ation step.Figure 17 shows the distribution of the samples within the �rst pro�ling setwith respe
t to x0, i.e. the �rst plaintext byte. Sin
e this set was obtainedusing a �xed key, the distribution 
ould be permuted by ⊕k0 to then illustratethe distribution of x0 ⊕ k0.Variable key Be
ause of several observations that we made while workingon the samples of the �rst pair of sets of measurements (see Se
tion 5, step 4,observation 1), we de
ided to 
arry out a third measurement set. This timethe plaintext x and the key k were 
hosen randomly before ea
h invo
ation ofthe en
ryption operation. As before, we obtained a set of ≈256000 samplesfor the pro�ling step. Figure 18 depi
ts the distribution of the samples withinthe se
ond pro�ling set with respe
t to x0 ⊕ k0.
41
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5 EXPERIMENTAL RESULTS - FIXED KEY5 Experimental Results - �xed keyIn this se
tion we outline our implementations of both atta
ks, provide 
on-
rete results, and report in detail on the experien
e we gained working onthe samples of the �rst pair of sets of measurements.All programs were implemented in C-language and all 
omputations on side
hannel samples were 
arried out in 64-bit �oating point pre
ision16.Se
tion 5.1 deals with the Template Atta
k and Se
tion 5.2 with the Sto-
hasti
 Model. In Se
tion 5.3, we 
ompare both atta
ks.5.1 Template Atta
kThe authors of [10℄ 
laim, that the Template Atta
k is the �strongest form ofside 
hannel atta
k possible in an information theoreti
 sense�. The resultswe present later on will, depending on various 
ir
umstan
es, support anddisprove this statement. Furthermore, the authors argue that within theirassumptions (see later on) Template Atta
ks are superior to SPA- and DPA-style atta
ks, as in the former 
ase all available information in ea
h side
hannel is used. We agree on the superiority of Template Atta
ks, see Se
tion3.5.5.1.1 Remarks and Improvements (1)Remark 1 (
on
erning the pro�ling step): We point out that if the sampleswere obtained in a way as des
ribed in Se
tion 4 (�xed key), devi
e A doesnot need to be programmable and even knowledge of the employed key isunessential. The amount of samples an adversary possesses after the pro�lingstep is far more than enough to dis
lose the employed key in a DPA atta
k.In fa
t, we were able to extra
t the full 128-bit key k both using one thousandsamples from the power 
hannel and using one thousand samples from the EM
hannel. Figure 19 exemplarily shows the resulting peaks in the 
orrelation
urves for the 
orre
t subkey k0.16data type double on a 32-bit Intel Pro
essor with a ported GCC43



5 EXPERIMENTAL RESULTS - FIXED KEY
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Figure 19: Correlation 
urves for the 
orre
t subkey k0 = 0x3C on the power
hannel (left) and the EM 
hannel (right)This observation weakens the assumptions about an atta
ker's minimalpowers in order to su

essfully mount a Side Channel Atta
k against theAES. The remaining minimum requirements are:
• availability of a devi
e A that is identi
al to devi
e B so that an adver-sary 
an atta
h the ne
essary probes and 
arry out the required amountof measurements
• either knowledge of the plaintexts if their distribution may be assumedto be approximately uniform
• or ability to 
hose plaintexts so that they are approximately uniformlydistributed.Improvement 1 (
on
erning the 
hoi
e of interesting points in time):Carrying out preliminary tests we qui
kly dis
overed that the sum of pair-wise di�eren
es of the average signals, i.e. ∑K

i,j=0 mi −mj for j ≥ i, is notan optimal basis for 
hoosing the interesting points in time. This is due tothe fa
t, that positive and negative di�eren
es add up to 0. While this e�e
tis desirable to �lter eventually present noise, it hides as well valuable peaksthat derive from signi�
ant signal di�eren
es with alternating algebrai
 sign.Therefore we implemented two more measures that served as the basis forthis 
hoi
e. 44



5 EXPERIMENTAL RESULTS - FIXED KEYThe �rst one 
omputes the sum of absolute pairwise di�eren
es of theaverage signals ∑K

i,j=0 |mi −mj| for j ≥ i so that the hiding e�e
t does notemerge anymore for the 
ost of a noise �oor 6≈ 0.The se
ond one 
omputes the sum of squared pairwise di�eren
es of the av-erage signals ∑K

i,j=0(mi − mj)
2 for j ≥ i so that large di�eren
es be
omemagni�ed while very small di�eren
es be
ome redu
ed. Again, a noise �oor

6≈ 0 is the pri
e.Figures 20 and 21 (see pp. 49) depi
t the three measures for the 
ases thatthe average signals mi were 
omputed from 231448 power 
hannel samples.Improvement 2 (
on
erning the 
lassi�
ation step): The original Tem-plate Atta
k only provides a sample 
lassi�
ation strategy based on a singleavailable sample. While this seems to be a realisti
 s
enario in the 
ontextof stream 
iphers17, the situation might be less tight in the 
ontext of blo
k
iphers. To pay tribute to the eventuality that several samples are availablein the 
lassi�
ation step, we developed a di�erential strategy that pro
essesseveral samples.For every available sample, we 
ompute the probabilities that the samplerepresents this or the other operation Oi, e.g. x0 ⊕ k0, in the �traditional�way. Then, we purge the o�sets between these probability distributions thatare 
aused by the di�erent plaintexts so that the probabilities are now as-signed to key hypothesis and �in line�. Finally, we add up the probabilitydistributions and sele
t the key hypothesis that yields maximum probability.More formally: Let Sn and xn (n = 1, . . . ,m) denote the available samplesresp. the 
orresponding known plaintexts and Oi (i = 0, . . . , 255) denote theoperations xn ⊕ k◦ where k◦ is the unknown key. First, we 
ompute:
prob(S1 → O0), prob(S1 → O1), . . . , prob(S1 → O255)

prob(S2 → O0), prob(S2 → O1), . . . , prob(S2 → O255)... ... ... ...
prob(Sm → O0), prob(Sm → O1), . . . , prob(Sm → O255)17[35℄ presents an ampli�ed atta
k for the 
ase of several available samples45



5 EXPERIMENTAL RESULTS - FIXED KEYThen, ea
h line n of the array is permuted by ⊕xn so that it represents keyhypothesis ki instead of operation hypothesis xn ⊕ k◦. Note that ea
h line nof the array is permuted by its 
orresponding xn (whi
h probably di�er fromline to line) so that the 
olumns in the array below do not mat
h the 
olumnsin the array above. One 
olumn represents the 
orre
t key hypothesis k = k◦,but its position in the array is unknown so far.
prob(S1 → k0), . . . , prob(S1 → k◦), . . . , prob(S1 → k255)

prob(S2 → k0), . . . , prob(S2 → k◦), . . . , prob(S2 → k255)... ... ... ... ...
prob(Sm → k0), . . . , prob(Sm → k◦), . . . , prob(Sm → k255)Finally, all probabilities pointing to a unique key hypothesis are added up

∑m

n=1 prob(Sn → k0), . . . ,
∑m

n=1 prob(Sn → k◦), . . . ,
∑m

n=1 prob(Sn → k255)and the hypothesis yielding maximal probability is sele
ted.
max

(
m∑

n=1

prob(Sn → ki)

)

→ k
?
= k◦This strategy has the advantage that the presen
e of di�
ult samples 
anbe 
ompensated. Even if the 
orre
t key is not the best 
andidate for anysingle sample, 
han
es are good that their 
ombined probability distributionsguide to the right de
ision.We give a simpli�ed example: Let the 
orre
t subkey k◦ = 012 and

x⊕ k◦ → 002 012 102 112

S1 0,1 0,08 0,02 0,03
S2 0,1 0,02 0,01 0,08be the individual probability distributions derived from two samples S1 and

S2 with 
orresponding plaintexts x = 002 and x = 102. S1 sele
ts x⊕k◦ = 002whi
h leads to the guess that x ⊕ k◦ ⊕ x = k◦ = 002, whi
h is wrong. Inthe same manner, S2 sele
ts x ⊕ k◦ = 002 whi
h leads to the guess that
x⊕ k◦⊕ x = k◦ = 102, whi
h is again wrong. Purging the o�sets and adding46



5 EXPERIMENTAL RESULTS - FIXED KEYthe probability distributions yields
k◦ → 002 012 102 112

S1 0,1 0,08 0,02 0,03
S2 0,01 0,08 0,1 0,02
∑ 0,11 0,16 0,12 0,05whi
h leads to the 
orre
t guess k◦ = 012.5.1.2 ImplementationThe Template Atta
k was implemented 
losely to the des
ription in 3.3.After some preliminary tests, the implementation was modi�ed a

ording toimprovements 1 and 2. In the following we des
ribe our implementation step-by-step and provide data examples to illustrate the pro
edure. Additionally,we introdu
e several abbreviations whi
h will be used throughout the sequel.Pro�ling step The Template Atta
k aims at generating a template, i.e.an estimation of the signal and a 
hara
terisation of the noise, for ea
h keydependent operation. As mentioned before, we de�ne a unique operation bythe value of one sele
ted byte in the AES state array s after the initial RoundKey addition, e.g. s0,0 = x0 ⊕ k0 ∈ {0, 1}

8 and hen
e we generate 256 tem-plates. The implementation of this byte-wise atta
k 
an atta
k any byte in
s but for the sake of 
larity we restri
t our attention to s0,0.The �rst step aims at generating indexes of the N1 available samples. Forea
h value of x0 we 
reate an index �le that points to all samples that 
orre-spond to it. Note that indexing in this manner leads to the same partitioningas indexing for x0⊕ k0 or even S-box(x0⊕ k0) be
ause k0 is �xed. Hen
e theindex names 
ould be permuted to represent the other arrangements. Forexample: index255 
orresponds to x0 = 255 but as well to operation255⊕k0and to S-box(255⊕ k0). Furthermore, an additional �le distribution is 
re-ated that 
ontains the length of ea
h index �le, i.e. the amount of 
urvesthat 
orrespond to ea
h plaintext x0. Figure 17 in Se
tion 4.4 illustratesthe 
ontent of su
h a distribution �le. The implemented fun
tion is named47



5 EXPERIMENTAL RESULTS - FIXED KEYassign_dire
tory_
ontents(
har *byte). It 
reates all the �les men-tioned above for the sele
ted byte ∈ (0, . . . , 15). We fo
used on byte = 0and will from now on omit this parameter.Step 2 
omputes the average signal for ea
h operation (part 1 of ea
htemplate). We implemented a fun
tion average_
urves(*value,*no_of_files) that 
omputes the average of all no_of_�les samples whi
h 
orre-spond to x = value and used it in a loop as follows:for 0 ≤ i < 255beginvalue ← ino_of_�les ← distribution of byte[value℄average_
urves(byte, value, no_of_�les)endThe resulting average signals will be referred to as averagevalue.Step 3 
omputes the basis for the 
hoi
e of interesting points in time. Asdes
ribed in [10℄ we 
ompute the sum of pairwise di�eren
es (sod) of theaverage signals. Additionally, with respe
t to improvement 1, we 
omputethe sum of absolute pairwise di�eren
es (soad) and the sum of squared pair-wise di�eren
es (sosd). All three measures are 
omputed by the fun
tion
ompute_differen
es() at the same time as follows:for 0 ≤ k < data_length (ea
h point in time)beginfor 0 ≤ i < 256beginfor i+1 ≤ j < 256beginsod[k℄ = sod[k℄ + averagei[k℄ - averagej [k℄soad[k℄ = soad[k℄ + |averagei[k℄ - averagej [k℄|sosd[k℄ = sosd[k℄ + (averagei[k℄ - averagej [k℄)2endendend 48



5 EXPERIMENTAL RESULTS - FIXED KEYFigure 20 shows the resulting 
urves sod (red, lower 
urve) and soad(green, upper 
urve) for N1 = 231448 samples from the power 
hannel. One
an noti
e that soad magni�es peaks (∼ 4000) and even more importantmakes peaks visible (8000-10000) that do not appear in sod. On the otherhand the �strongest peak to noise �oor� ratio de
reases from ∼30:1 for sodto ∼ 4:1 for soad. Figure 21 shows the same soad 
urve (green, lower 
urve)
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Figure 20: sod and soad 
urves for N1 = 231448 (power 
hannel) as fun
-tions of timetogether with the resulting sosd 
urve (red, upper 
urve). Note that the s
alefor the verti
al axis 
hanged. One 
an see that sosd magni�es peaks evenstronger than soad and that the �strongest peak to noise �oor� ratio in
reasesfrom ∼ 4:1 for soad to ∼ 20:1 for sosd.Step 4 
omprises the a
tual 
hoi
e of interesting points in time. [10℄ givesno more advise on how to 
hoose the points than �identify and sele
t onlypoints at whi
h large di�eren
es show up�. We developed a fun
tion find_49
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Figure 21: soad and sosd 
urves for N1 = 231448 (power 
hannel) as fun
-tions of timepoints_of_interest(
urve,p) that re
ursively identi�es the p strongestpeaks in 
urve ∈ {sod, soad, sosd} and stores their positions. The list ofthese points will be referred to as poi[℄ (Points Of Interest). Figure 22depi
ts the resulting sele
tion for p = 20 and 
urve = sosd (derived from
N1 = 231448 power samples). Apparently, the strong peak in the area of4000 in Figure 21 a
tually 
onsists of three peaks that now be
ome visiblebe
ause of the limited range of the x axis. As expe
ted, the fun
tion 
hosethe 20 highest points on the 
urve. From the ratiosampling frequen
y of the s
ope
lo
k frequen
y of the 
ard =

200MS/s

3.68MHzwe know that ea
h 
lo
k 
y
le of the 
ard is represented by ∼55 points onthe 
urve. (If the 
lo
k frequen
y is unknown, it 
an be easily estimated byapplying an FFT to a sample, see Figure 23 where the highest peak indi
atesa 
lo
k frequen
y of ∼3.6 MHz.) One 
an dedu
e that the three peaks inFigure 22 represent three 
lo
k 
y
les but that only two of them are 
overed50
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Figure 22: sosd 
urve for N1 = 231448 (power 
hannel) and the sele
ted 20points
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Figure 23: Dis
rete Fourier Transform of a sample from the power 
hannel51



5 EXPERIMENTAL RESULTS - FIXED KEYby the sele
ted points. We assumed this to be suboptimal and modi�ed thefun
tion su
h that it would not 
onsider the nearest δ = 54 points to the leftand right of every sele
ted point. In other words, the fun
tion would nowsele
t at most 1 point per 
lo
k 
y
le.Observation 1From preliminary tests and 
onsideration of both the AES' stru
ture and thesamples' nature we 
on
luded that although all three di�erential 
urves showpeaks in the area 0-1000 we should prevent the sele
tion of those instants.Re
all that ea
h average 
urve represents a unique value of x0 and that ourimplementation of the AES begins with the initial Round Key addition whi
h
omputes x⊕ k where k is �xed. Given that the di�erential 
urves are 
om-puted as des
ribed above, e.g. ∑255
i=0,j>i averagei − averagej, their part that
overs the initial Round Key addition basi
ally represents

average0−average1

︷ ︸︸ ︷

(0⊕ k0)− (1⊕ k0) +

average0−average2

︷ ︸︸ ︷

(0⊕ k0)− (2⊕ k0) + . . . +

average0−average255

︷ ︸︸ ︷

(0⊕ k0)− (255⊕ k0)

+

average1−average2

︷ ︸︸ ︷

(1⊕ k0)− (2⊕ k0) + . . . +

average1−average255

︷ ︸︸ ︷

(1⊕ k0)− (255⊕ k0). . . . . . ...
+

average254−average255

︷ ︸︸ ︷

(254⊕ k0)− (255⊕ k0)so that the peaks in this area are only 
aused by the di�eren
es in x0. Inother words: due to the fa
t that for our sample set 1, sorting the samples by
x0 yields the same partitioning as sorting by x0⊕k0, we get noti
eable peaksin the di�erential 
urves at those points in time when the algorithm pro
esses
x0 or x0 ⊕ k0. Obviously, the peaks for x0, that is during the initial RoundKey Addition, do not indi
ate operation-dependent di�eren
es in whi
h weare interested. This hypothesis was empiri
ally proven by experiment, seeSe
tion 5.4 and result table 6 at the end of this se
tion. We modi�ed thefun
tion a

ordingly su
h that it would ignore the �rst 3300 points18.18This boundary was estimated using the sosd 
urve 
omputed for the �fteenth byte inthe AES State array and veri�ed by the 
lo
k 
y
le 
ount of the simulated µ
.52



5 EXPERIMENTAL RESULTS - FIXED KEYFurthermore, we added a feature that would prevent the sele
tion ofpoints in the noise �oor. More pre
isely, the fun
tion �xes a noise limitat 10% of the highest peak's value and 
onsiders any point below this limitas not sele
table. Figure 24 depi
ts the revised sele
tion for 
urve = sosd(N1 = 231448) and p = 9, whi
h is the maximum number of points thatful�ll all requirements.
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Figure 24: sosd 
urve for N1 = 231448 (power 
hannel) and the sele
ted 9pointsThe steps 5 and 6 jointly perform the 
hara
terisation of the noise. Theformer is a preparatory step that supplies required data to the latter whi
hgenerates the noise 
hara
terisation.Step 5 extra
ts the noise within all samples that 
orrespond to one opera-tion. We implemented a fun
tion 
ompute_noise_ve
tors(*value,*no_of_files) that extra
ts the noise ve
tors from the no_of_files samplespointed to by indexvalue. For ea
h sample, it 
omputes the di�eren
e of theaveragevalue and the sample at the p sele
ted points. An example is depi
tedin Figure 25. It shows a sample from the power 
hannel (red, upper 
urve)53
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orresponding to x0 = 106, the appropriate average106 (green, middle 
urve),and the entire extra
ted noise (blue, lower 
urve). Note that we a
tually
ompute and store only the noise values at the sele
ted points, indi
ated bya blue 
ross.
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Figure 25: A sample, the 
orresponding average, and the extra
ted noiseOn
e the loop within the fun
tion terminates, it has generated a (p×no_of_files)- array that holds the noise values, see Figure 26.sample / poi[℄ 0 1 . . . 81 -2.9067702553 -14.5615982242 . . . 0.13984461712 . . . . . . . . . . . .... ... ... . . . ...901 . . . . . . . . . . . .Figure 26: Layout of the �noise array�Step 6 generates a (p × p) - 
ovarian
e matrix (part 2 of ea
h template)that 
hara
terises the noise 
orresponding to one operation with the help ofthe noise array. Re
all that, given a ve
tor R = (R0, . . . , R8) of random54



5 EXPERIMENTAL RESULTS - FIXED KEYvariables, the matrix layout is
cov(R) =









σ2
R0

cov(R0, R1) . . . cov(R0, R8)

cov(R1, R0) σ2
R1

. . . cov(R1, R8)... ... . . . ...
cov(R8, R0) cov(R8, R1) . . . σ2

R8
)









,that the matrix is symmetri
, and that one matrix element, e.g. cov(R0, R1),is 
omputed as cov(R0, R1) = E((R0 − R0)(R1 − R1)). As the true valuesof R are unknown (we only know no_of_�les realisations of the randomve
tor) the matrix elements have to be 
omputed using the sample 
ovarian
eformula, see Se
tion 3.2. Under the assumption, that the noise ve
tor has amultivariate Gaussian distribution (
f. [10℄) with mean ve
tor R = (0, . . . , 0)the formula 
an be simpli�ed so that
cov(R0, R1) =

1

n− 1

n∑

i=1

(R0i
−R0)(R1i

−R1) =
1

n− 1

n∑

i=1

R0i
R1i

.Fun
tion 
ompute_
ov_matrix(*value,*no_of_files) 
omputes the ma-trix element by element as follows:for 0 ≤ i < pbeginfor i ≤ j < pbegintemp ← 0for 0 ≤ k < no_of_�lesbegintemp ← temp + noise_array[k℄[i℄ * noise_array[k℄[j℄endtemp ← temp / (no_of_�les - 1)
ov_matrix[i℄[j℄ ← temp (assign value to matrix element i,j)
ov_matrix[j℄[i℄ ← temp (and to element j,i)endendThe two outermost loop variables i, j 
onse
utively sele
t all elements in theupper triangle of the 
ovarian
e matrix resp. sele
t ea
h pair of 
olumns55



5 EXPERIMENTAL RESULTS - FIXED KEYof the noise array on
e. The innermost loop 
omputes the 
ovarian
e forea
h sele
tion (the loop variable runs through all rows of the noise array)whi
h is then assigned to both appropriate positions in the symmetri
 
o-varian
e matrix. On
e all three loops have terminated, the matrix is storedas 
ovarian
e_matrixvalue.Steps 5 and 6 are repeatedly invoked in a loop so that a 
ovarian
e matrixis 
omputed for ea
h operation. The pro�ling step is 
ompleted with thetermination of this loop.Classi�
ation step The goal of the 
lassi�
ation step is to 
lassify a singleside 
hannel sample S from devi
e B. This means to 
orre
tly dedu
e the op-eration that was exe
uted by B while the sample was measured from the sam-ple's properties. The approa
h is as follows: for ea
h templatevalue, the noisein S is extra
ted as in step 5 using the estimated signal averagevalue. Then,the probability of observing su
h noise if indeed it derives from operationvalueis 
omputed with (7) resp. (8). We used a sample from our measurement set2 to serve as S.Step 7 randomly sele
ts one of the 3000 samples in measurement set 2 toserve as S.Step 8 extra
ts the noise within sample S for the 
onsidered hypothesis.Fun
tion 
ompute_noise_ve
tor_for_
lassifi
ation(*hypothesis,*S)does this in exa
tly the same way as it was done in step 5. It 
omputes thedi�eren
e of averagehypothesis and S at the p sele
ted points in time.Step 9 then 
omputes the probability of observing su
h noise under thegiven hypothesis using the appropriate 
ovarian
e matrix (CM) and storesthe probability for later 
omparison. We developed a set of fun
tions to 
om-pute ea
h probability as provided in the pseudo 
ode of step 10, innermostloop.Step 10 identi�es the best hypothesis. Fun
tion sort_des
ending(prob-56



5 EXPERIMENTAL RESULTS - FIXED KEYabilities, identifiers) sorts the probabilities in des
ending order whilesimultaneously sorting the hypothesis' identi�ers in the same order so thatthe identi�er of the best hypothesis (x0 ⊕ k0) is the �rst one in the list. Thekey hypothesis is then be 
omputed by XOR addition of the plaintext x0that 
orresponds to the sample.Steps 7, 8, 9, and 10 are (repeatedly) invoked by a superior fun
tion
lassify() to 
ompute the 256 probabilities and 
hoose the best 
andidate.rand ← gen_rand()
S ← load_
urve(rand)
x0 ← load_
urve_plaintext(rand)for 0 ≤ hypothesis < 256begin
ompute_noise_ve
tor_for_
lassi�
ation(*hypothesis, *S)CM ← load_
ovarian
e_matrix(hypothesis)Det ← 
ompute_determinant(CM)CM ← 
ompute_inverse(CM)probability[hypothesis℄ ← 
ompute_probability(*CM, *Det, *S)endsort_des
ending(probabilities, identi�ers)sele
tion ← identi�er[0℄ ⊕ x0To attain a 
ertain degree of pre
ision for the su

ess rate, we de
ided to
lassify 1000 randomly sele
ted samples and 
ount in the variable 
orre
t,how often the best 
andidate is indeed the 
orre
t key. The su

ess rate isthen given by 
orre
t

1000
. Note that this is quite a strong measure as we do not
onsider any other 
ase where the 
orre
t key is for example on the 2nd or3rd pla
e in the hypothesis ranking. Doing so would 
ertainly in
rease thesu

ess rate but soften its signi�
an
e.

57
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orre
t ← 0for 0 ≤ k < 1000beginrand ← gen_rand()
S ← load_
urve(rand)
x0 ← load_
urve_plaintext(rand)for 0 ≤ hypothesis < 256begin
ompute_noise_ve
tor_for_
lassi�
ation(*hypothesis, *S)CM ← load_
ovarian
e_matrix(hypothesis)Det ← 
ompute_determinant(CM)CM ← 
ompute_inverse(CM)probability[hypothesis℄ ← 
ompute_probability(*CM, *Det, *S)endsort_des
ending(probabilities, identi�ers)sele
tion ← identi�er[0℄ ⊕ x0if (sele
tion = key) 
orre
t ← 
orre
t + 1endoutput ← 
orre
t / 1000With respe
t to improvement 2, we futher modi�ed the fun
tion 
lassify()so that an analysis based on several N3 samples S would be possible. By theway we implemented this fun
tionality we would be able to observe both the
hange of su

ess probability 
aused by an in
reased number of samples andthe development of the separation between the di�erent 
andidates. Notethat the probability distributions now need to be permuted in order to purgethe e�e
t of the random plaintexts x0 and retrieve a probability distributionfor key hypothesis, see improvement 2. We extended the array probabil-ity[hypothesis℄ so that it would keep tra
k of the 
hara
teristi
s mentionedabove: probability[key_hypothesis℄[no_of_sample℄. For the �rst sample Sthe probabilities are 
omputed as before and stored after permutation. Forea
h su

eeding sample, we 
ompute its probability distribution, permute it,add it to the one of the pre
eding sample, and store it in the appropriateline of the array. After the N3 samples have been 
lassi�ed, the aggregatedprobabilities in the last row of the array are sorted to identify the best keyhypothesis in the usual way.The �nal version of 
lassify(*byte) is:58



5 EXPERIMENTAL RESULTS - FIXED KEY
orre
t ← 0for 0 ≤ k < 1000beginfor 0 ≤ i < no_of_�les_for_
lassifybeginrand ← gen_rand()
S ← load_
urve(rand)
x0 ← load_
urve_plaintext(rand)for 0 ≤ hypothesis < 256 (hypothesis = x0 ⊕ k0)begin
ompute_noise_ve
tor_for_
lassi�
ation(*hypothesis, *S)CM ← load_
ovarian
e_matrix(hypothesis)Det ← 
ompute_determinant(CM)CM ← 
ompute_inverse(CM)if (i == 0)probability[i℄[hypothesis ⊕x0℄ ← 
ompute_probability(*CM, *Det, *S)elseprobability[i℄[hypothesis ⊕x0℄ ← probability[i-1℄[hypothesis⊕x0℄+ 
ompute_probability(*CM, *Det, *S)endendsort_des
ending(probability, identi�ers)sele
tion ← identi�er[0℄if (sele
tion = key) 
orre
t ← 
orre
t + 1endoutput ← 
orre
t / 1000On
e this loop terminates, the 
lassi�
ation step is 
omplete and all re-sults are stored for later 
omparison.In fa
t we invoked the fun
tion 
lassify() several times per 
lassi�
ation
y
le for a varying number of points p. Knowing that find_points_of_interest() �nds the interesting points in a des
ending order of impa
t, wewere interested in quantifying this impa
t. The guiding question was: Is ahigher number of points always desirable or is it possible, that an additionalpoint, with minor impa
t, worsens the su

ess rate?The way we implemented all steps above, in parti
ular the handling of the
ovarian
e matri
es, makes it possible to go into this matter with very little59



5 EXPERIMENTAL RESULTS - FIXED KEYe�ort. We use a global variable P to 
ontrol how many of the p points thatwere found are a
tually 
onsidered during the probability 
omputation. Byde
reasing the value of P we are able to omit the last p−P points that werefound.5.1.3 Results for various parameter settingsCarrying out the experimental analysis we noti
ed that there are three pa-rameters that have major impa
t on the su

ess rate of a Template Atta
kagainst AES. They are:1. the number of 
urves available during the pro�ling step N12. the number of interesting points that 
an be found in the pro�ling step
p respe
tively that are used in the 
lassi�
ation step P3. the number of 
urves available in the 
lassi�
ation step N3.We test all 
ombinations N1× P ×N3 for N1 ∈ {10k, 20k, 25k, 30k, 40k, 50k,

231448}, P ∈ {9, 6, 3}, and N3 ∈ {1, 2, 5, 10}.The pro
edure of the experiments is always the same: we 
hoose a value for
N1 and 
arry out the pro�ling step to generate templates based on the ppoints that are found. Then we 
arry out the 
lassi�
ation step using N3 =10,5,2,1 samples from the devi
e under atta
k at whi
h, ea
h time, we startusing all P = p points and then redu
e their number by 3 until this numberbe
omes smaller than 1. Below we only present the results re�e
ting thoseparameter values, that we �nd most signi�
ant. Appendix B provides allresult tables for the Template Atta
k.Due to our inability of presenting the results in a four-dimensional table,whi
h would be the optimal 
hoi
e, we have to de
ide for another strategy.We present several tables where ea
h table represents a �xed value N1 andvariations of P and N3. N1 varies from table to table.Table 3 presents the results based on the best possible 
hoi
e for N1. Thesele
tion algorithm found 9 points whose positions in time are given in the60
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N1 = 231448 p = 9 
hannel = powerpoi[℄ 3771, 3828, 3883, 8218, 8551, 9440, 9496, 9551, 9607SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 20,5 56,0 97,8 99,9 19,7 60,3 98,6 100,06 14,2 43,1 94,3 100,0 16,7 47,2 97,6 99,93 8,5 29,2 82,1 99,2 9,7 25,0 81,1 99,6Table 3: Su

ess rates (SR) for N1 = 231448 and 
hannel = powerse
ond line of the table. This distribution of sele
ted points will be referredto as optimal distribution in the further analysis of the Template Atta
k.From the two blo
ks 
ontaining the su

ess rates for real and trial 
lassi�-
ation, one 
an observe that samples from devi
e B are 
lassi�ed as good asthe samples from devi
e A that were used during the pro�ling step. Thisindi
ates an optimal pro�ling. Apparently, both parameters (P, N3) havedire
t impa
t on the su

ess rate. The 
orrelation of a parameters valueand the su

ess rate is best des
ribed as logarithmi
19, whi
h is also true forsimultaneous 
hanges of both parameters' values. The parameter N3 has astronger in�uen
e on the su

ess rate than P as one 
an observe that for ea
hvalue of P a su

ess rate ∼ 100% 
an be attained while a �xed (small) N3sets an upper limit for the su

es rate.Table 4 presents the results for N1 = 50000. The �rst striking observa-tion is, that although N1 has been redu
ed by a fa
tor > 4 the su

ess rates'order of magnitude is the same. The sele
tion algorithm found 7 points fromthe optimal distribution, one that is slightly displa
ed but still in the 
orre
tpro
essor 
y
le (9552 instead of 9551), and one that is not related to theoptimal distribution at all and in fa
t is a bad sele
tion. This is 
aused byan in
reased noise �oor in sosd whi
h in turn is 
aused by more noise in theindividual averages. Figure 27 illustrates, how the peak at 8218 �sinks� inthe noise �oor and a slightly higher �noise peak� at 19235 is sele
ted instead.19We rather des
ribe a tenden
y of an imagined 
urve's run than pre
isely 
omparingit to a given logarithm. 61
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N1 = 50000 p = 9 
hannel = powerpoi[℄ 3828, 3771, 3883, 9496, 9607, 9552, 8551, 9440, 19235SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 15,9 45,8 92,5 99,6 23,5 61,9 99,4 100,06 13,5 44,4 93,3 99,7 15,4 52,9 97,6 100,03 9,5 27,5 77,2 98,2 8,0 28,6 83,0 98,5Table 4: Su

ess rates for N1 = 50000 and 
hannel = power
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Figure 27: sosd 
urves for N1 = 50000 (red) and N1 = 231448 (blue), power
hannelBut apparently, this mis-sele
tion does not have a big e�e
t on the su

essrates, in parti
ular for in
reased values of N3. The badly sele
ted point isonly used for 
omputing su

ess rates in the 
ase P = 9. By 
omparing thisline of the table to the appropriate line of the table above one 
an see thatthe su

ess rates of the trial 
lassi�
ation did not 
hange whereas those ofthe real 
lassi�
ation de
reased by up to 23% espe
ially for N3 = 1 and 2.This happens due to the reason that the well sele
ted 8 points, 
onstantlyguiding to the right sele
tion, outweigh the single mis-sele
tion, whi
h guidesto random key 
andidates so that the probabilities do not add up for N3 > 1.62



5 EXPERIMENTAL RESULTS - FIXED KEYTable 5 whi
h provides the results for N1 = 25000 shows that a furtherbise
tion of the number of 
urves used in the pro�ling step has a strongimpa
t on the results. The sele
tion algorithm found only one point from
N1 = 25000 p = 9 
hannel = powerpoi[℄ 3828, 3772, 3884, 9509, 9620, 8564, 17790, 19235, 15289SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 3,4 9,5 32,3 61,5 13,4 42,8 93,7 100,06 6,6 21,0 65,9 96,3 11,4 35,9 89,0 100,03 8,5 24,4 78,1 97,6 9,0 30,7 85,4 99,0Table 5: Su

ess rates (SR) for N1 = 25000 and 
hannel = powerthe optimal distribution, four points are more or less displa
ed but still inthe 
orre
t pro
essor 
y
le, and four points are not related to the optimaldistribution at all. Figure 28 illustrates the further in
reased noise �oor insosd that is responsible for the poor sele
tion. By looking at the su

ess rates
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Figure 28: sosd 
urves for N1 = 25000 (red) and N1 = 231448 (blue), power
hannelone 
an observe that the 
orrelation of the parameter P and the su

ess ratehas 
hanged for the 
ase of real 
lassi�
ation, in parti
ular the algebrai
sign is reversed so that an in
reased number of points yields a worse su

ess63
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ase of trial 
lassi�
ation, the 
orrelation's dire
tion remainsthe same. Our approa
h to explain this observation, where we fo
us on thebadly sele
ted points, is as follows:the training 
urves �randomly� di�er at those points, whi
h is indi
ated bythe peaks in sosd, so that even these points identify and 
ontribute to a
orre
t 
lassi�
ation of a training 
urve. The samples from devi
e B prob-ably di�er as well at these points, but the �randomness� in the di�eren
e isanother, so that the points do not identify a sample. One might name thebadly sele
ted points false positives. They are indeed a 
riterion to distin-guish the training samples, but they are not a 
hara
teristi
 
riterion, that
an be applied to distinguish samples 6∈ the training set.For a redu
ed number of points P = 3 one 
an observe that the su

ess ratesare still similar to the 
orresponding rates in the tables above.The general tenden
ies of all observations des
ribed above are illustratedin Figure 29.
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Figure 29: Su

ess rates as fun
tions of N3 and P for N1 = 231448 and 25000Table 6 presents the results for N1 = 231448 and a non-bounded point se-le
tion algorithm (see Observation 1). The point sele
tion algorithm sele
tedfour instants whi
h 
over the initial Round Key addition. From 
omparisonof the su

ess rates to those in Table 3 one 
an 
learly observe the negativeimpa
t of the false positives in 
ase of real 
lassi�
ation. Comparing thesu

ess rates of real and trial 
lassi�
ation leads to the same 
on
lusion: the64
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N1 = 231448 p = 9 
hannel = powerpoi[℄ 3828, 771, 3883, 437, 9496, 659, 9607, 326, 9551SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 0,7 1,5 0,7 0,2 38,9 79,0 99,6 100,06 1,9 2,6 2,4 0,3 26,1 63,2 97,9 99,93 8,8 25,6 81,7 99,2 6,8 25,6 80,7 99,2Table 6: Su

ess rates (SR) for N1 = 231448, 
hannel = power, and a non-bounded point sele
tionsele
ted points 
overing the initial Round Key addition 
ontribute well in thetrial 
lassi�
ation, i.e., one 
an observe the usual logarithmi
 dependen
y ofthe su

ess rates, while the algebrai
 sign of the dependen
y is reverted inthe 
ase of real 
lassi�
ation. Less points, whi
h means as well less false pos-itives, lead to better su

ess rates. Furthermore, the assumption is justi�edby 
omparing the su

ess rates of trial 
lassi�
ation in Tables 6 and 3.5.2 Sto
hasti
 ModelAs stated in Se
tion 3.1 the AES algorithm operates on an array of 16 bytes,the State. After the initial RoundKey Addition, ea
h byte of the state rep-resents x⊕k for the 
orresponding bytes of the key and the plaintext. In the�rst normal round, the SubBytes transformation and the ShiftRow transfor-mation both operate on these bytes separately. Therefore, it is su�
ient forany atta
k that targets on one of these three transformations, to 
onsider

ht(state) with state ∈ {0, 1}8 as the real leakage fun
tion (
f. invarian
eproperty 'Equal Images under Di�erent Subkeys' on page 31. This step re-du
es the e�ort to �nding 28 mappings to R in the 
ase of AES and shouldbe appli
able for many blo
k 
iphers.5.2.1 Preliminary notesBefore an atta
k 
an be 
arried out, an adversary has to 
ome to a 
oupleof de
isions in whi
h he has a higher degree of freedom, than for the Tem-65



5 EXPERIMENTAL RESULTS - FIXED KEYplate Atta
k. More pre
isely, one has to sele
t � 
onsidering all 
onsequen
esstated in Se
tion 3.4.2 (trade o� problem) � a ve
tor subspa
e Fu and the ufun
tions gjt : {0, 1}p×{0, 1}s → R. As mentioned before, [11℄ does not give
on
rete advi
e or assistan
e for the pro
edure, but several di�erent 
hoi
es,based on AES, are presented and their results 
ompared. We start our inves-tigation with the most promising 
hoi
e that is presented so that the settingfor our atta
k is as follows:We de
ide to atta
k the 128-bit key in steps of one byte thus for any giveninstant t the samples are modeled as It(x, k) = ht(x, k) + Rt with x and k

∈ {0, 1}8 being the appropriate sub-plaintext and -key. We exploit the EISproperty of the deterministi
 sample portion, whi
h stands for a virtuallylossless redu
tion of the ve
tor spa
e in whi
h h∗
t (x, k) has to be approxi-mated. With φ(x, k) = x⊕k the e�ort is redu
ed from 216 to 28 and samplesare regarded as It(x, k) = h∗

t (φ(x, k)) + Rt. The strategy to atta
k the AESState s after the initial RoundKey addition equals the strategy we applied inSe
tion 5.1. The following 
hoi
e, whi
h is a further redu
tion of the ve
torspa
e, is the most di�
ult one and this is where we heavily rely on [11℄. We
hoose the nine-dimensional bit-wise 
oe�
ient model that is referred to asve
tor subspa
e F9. This impli
ates a further redu
tion from 28 to 9 dimen-sions. For the usual reason that (non-linear) di�usion of key 
andidates ishighly desired the fun
tions gj(j = 1, . . . , 8) aim at the S-box output, i.e.
gj(φ(x, k)) ∈ {0, 1} is the j-th bit of S-box(φ(x, k)). g0(·) always returns 1.Note that we use the following assignment to address bits:MSB = 8 7 6 5 4 3 2 1 = LSBAltogether, the deterministi
 sample portion is approximated by

h∗
t (x, k) =

8∑

j=0

bjt · gj(x⊕ k) = b0t +
8∑

j=1

bjt · gj(x⊕ k). (19)The 
oe�
ients bjt with j 6= 0 estimate the bit-wise data dependent sampleportions and b0t is an estimator for a non data dependent part.66



5 EXPERIMENTAL RESULTS - FIXED KEY5.2.2 ImplementationWe implemented the Sto
hasti
 Model 
losely to the des
ription in 3.4. Inthe following we des
ribe our implementation step-by-step and provide dataexamples to illustrate the pro
edure. Furthermore, we introdu
e some ab-breviations that will be used for 
larity and when the results are presented.As before in Se
tion 3, we would like to mention that parts of the des
riptionof our implementation of the Sto
hasti
 Model resemble the 
orrespondingparagraphs in Se
tion 5.1. Sin
e both atta
ks are Two-Step SCAs that usedevi
e 
hara
terisations, there obviously are similarities. Nevertheless, for
ompleteness and the sake of readability we will give an almost entire de-s
ription of our implementation and only point to Se
tion 5.1 in 
ase of
ontinuous 
onsisten
y.Pro�ling Step The Sto
hasti
 Model aims at generating an approxima-tion of the deterministi
 sample portion in a 
hosen ve
tor subspa
e anda 
hara
terisation of the noise. We approximated the deterministi
 sampleportion in F9 (see 5.2.1) so that, for the deterministi
 part, this byte-wiseatta
k aims at estimating the data dependent sample portion of ea
h bit inS-box(x⊕ k) and a non data dependent 
ontribution. These will be referredto as sub-signals.Our implementation of the Sto
hasti
 Model atta
ks one byte of the AESstate array s resp. one sub-key at a time. It 
an atta
k any byte in s butfor the sake of 
larity and 
omparability to the Template Atta
k we fo
us on
s0,0 respe
tively the �rst keybyte.The Sto
hasti
 Model uses one half of the available samples for the approx-imation of the deterministi
 sample portion and the other half for the 
har-a
terisation of the noise. These amounts of samples will be referred to as N1and N2.The �rst step aims at determining the N1 × 9 design matrix A that 
on-tains the 
omposition of sub-signals for all N1 samples. Sin
e k is �xed, A isimpli
itly given by the distribution of the plaintexts xi. Figure 30 shows the67



5 EXPERIMENTAL RESULTS - FIXED KEYlayout of A for this 
on
rete s
enario. Re
all that gj(x⊕ k) ∈ 0, 1 is the j-thbit of S-box(x⊕ k).
A =








1 g1(x1 ⊕ k) · · · g8(x1 ⊕ k)
1 g1(x2 ⊕ k) · · · g8(x2 ⊕ k)... ... . . . ...
1 g1(xn1

⊕ k) · · · g8(xn1
⊕ k)






Figure 30: Design Matrix A for the bit-wise 
oe�
ient model (F9) exploitingEIS propertyTo determine A, we implemented a fun
tion 
reate_matrix_a() that s
ansthrough all N1 plaintexts and determines the 9 ne
essary bits for ea
h plain-text xi as follows. The S-box is implemented as a table lookup.for 0 ≤ i < N1beginA[i℄[0℄ ← 1for 0 ≤ bitpos < 8begina[i℄[bitpos + 1℄ ← ( S-box(xi ⊕ k) >> bitpos ) & 1endendThe se
ond step 
omputes the 9 × N1 system matrix S = (AT A)−1ATwhi
h is only possible, if the 9 × 9 matrix AT A is regular, thus invertible.During our experimental analysis this was always the 
ase, as long as we
hose N1 ≥ 2000.Step 3 aims at determining the b-ve
tors whi
h will be the essential 
oreof the estimator h∗

t . Re
all that a b-ve
tor 
ontains the 
ontribution of ea
hof the 9 sub-signals to the approximated deterministi
 sample portion foran instant t. Whether a sub-signal a
tually 
ontributes to the approximator
h∗

t (x, k), depends on the 
orresponding bit in S-box(x ⊕ k) being set. Oursamples 
ontain m = 20000 points, thus t = 0, 1, . . . ,m − 1. The b-ve
tors68



5 EXPERIMENTAL RESULTS - FIXED KEYare 
omputed separately for ea
h instant t by evaluating bt = S · it with itbeing a 
olumn ve
tor that holds the measured value for instant t of all N1samples. That is











b0,t

b1,t

b2,t...
b8,t












=












S0,0 S0,1 . . . S0,N1−1

S1,0 S1,1 . . . S1,N1−1

S2,0 S2,1 . . . S2,N1−1... ... . . . ...
S8,0 S8,1 . . . S8,N1−1























sample0(t)sample1(t)sample2(t)...sampleN1−1(t)












.

For instant t, b0,t 
ontains the non data dependent sub-signal's 
ontributionand the bj,t with j 6= 0 
ontain the 
ontribution of sub-signal j.A straight forward implementation of this step is eminently 
ostly, par-ti
ularly for a large number of samples N1, be
ause for ea
h 
omputationof a b-ve
tor all samples have to be read from hard disk 20. Therefore weimplemented the fun
tion 
ompute_b_ve
tors() to embark the followingstrategy: load as many instants t from all N1 samples as free memory isavailable, 
ompute the b-ve
tors for these instants, then again, read as manyof the remaining instants as possible et
.Step 4 deals with the generation of the approximated deterministi
 sam-ple portion.For the remainder of this se
tion, we �rotate� the representation of theb-ve
tors, so that a b-ve
tor now has dimension m = 20000 and thereare 9 of them. The bene�t of this 
hange of notation is that it eases toaddress the 
ourse of a sub-signal in the overall time frame. Instead of(b0,0, b0,1, b0,2, . . . , b0,m−1) we 
an simply use b0. To address the 
ontributionof sub-signal 0 at a spe
i�
 instant, we write b0(t) as if it was a fun
tion.20In the 
on
rete s
enario where ea
h sample 
overs 20000 instants and e.g. N1 = 1000samples, the e�ort adds up to 20 million sample read operations. If su�
ient RAM isavailable, all samples 
an be loaded into it prior to the 
omputations in order to redu
ethis e�ort. For our analysis with N1 in
reasing up to 115724 samples with a �lesize of20KB, neither the �rst approa
h (2.3 billion read operations) nor the se
ond (2.3 GB freeRAM) were feasible. 69



5 EXPERIMENTAL RESULTS - FIXED KEYFigure 31 exemplarily shows the estimated power 
onsumption of the nondata dependent sub-signal (b0) and of the sub-signal that 
ontributes, if theleast signi�
ant bit of S-box(x⊕k) is set (b1) for the overall time frame. Bothwere 
omputed from N1 = 115724 power samples.
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Figure 31: Non data dependent sub-signal b0 and sub-signal b1 that 
on-tributes for LSB(S-box(x⊕ k)) = 1 as a fun
tion of tIn opposition to the previous presentation h∗
t (x, k), e.g. in (19) and withrespe
t to the �rotated� representation, we implemented one dis
rete fun
tion

h∗(t, x, k) = b0(t) +
8∑

j=1

bj(t) · gj(x⊕ k). (20)whi
h seemed to be more 
onvenient. Fun
tion double h(t, x, k) assem-bles the approximation in exa
tly this way:temp ← b0(t)for 0 ≤ i < 8begintemp ← temp + bi+1(t) · ( (S-box(x⊕ k) >> i) & 1 )endoutput ← tempStep 5 
omputes the basis for the 
hoi
e of interesting points in time.Instead of 
omputing the Eu
lidean ve
tor norm ||b0,t, . . . , b8,t|| =
√
∑8

i=0 b2
i,t70



5 EXPERIMENTAL RESULTS - FIXED KEYfor all instants t as proposed in [11℄, we 
omputed another measure for thesake of 
omparability. The sum of squared pairwise di�eren
es (sosd) of
h∗(t, x, k) for all possible values of x whi
h yields the same result as theEu
lidean ve
tor norm, apart from a 
onstant fa
tor, is 
omputed by fun
-tion 
ompute_differen
es():for 0 ≤ t < data_length (ea
h point in time)beginfor 0 ≤ i < 256begin

h1 ← h(t, i, k)for i+1 ≤ j < 256begin
h2 ← h(t, j, k)sosd[t℄ = sosd[t℄ + (h1− h2)2endendendFigure 32 shows the resulting 
urve sosd and an example of the Eu
lideanve
tor norm as a fun
tion of time. Both 
urves were derived from N1 = 10000power samples. Note that the s
ale for the verti
al axis is omitted to under-line their analogousness in terms of 
on
lusion.

 0  2000  4000  6000  8000  10000

\sm10000_0\sosd_channel_A

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Euclidean Norm

Figure 32: sosd and Eu
lidean ve
tor norm derived from N1 = 10000 powersamples as a fun
tion of t 71



5 EXPERIMENTAL RESULTS - FIXED KEYStep 6 
omprises the a
tual 
hoi
e of interesting points in time. [11℄ givesno more advise on how to 
hoose the points than �
hoose instants� and a
omparison of several sele
tion strategies. An optimal strategy, if existent,seems to be unknown.Sin
e the basis for the sele
tion of points (sosd) is the same as during ourexperiments with the Template Atta
k, we de
ided to re-use the sele
tionalgorithm as well for enhan
ed 
omparability. The sele
tion algorithm is im-plemented in fun
tion find_points_of_interest(
urve, p). For detailson the strategy we refer to Se
tion 5.1.2 Step 4 whereat for the Sto
hasti
Model it is not ne
essary to prevent the sele
tion of points in the range 0 -3300.Steps 7 and 8 jointly perform the 
hara
terisation of the noise in the side
hannel Rt. The former is a preparatory step that supplies required data tothe latter whi
h generates the noise 
hara
terisation.Step 7 extra
ts the noise within the N2 samples that were not used so far.We implemented a fun
tion 
ompute_noise_ve
tors(N2) that 
onse
utively
omputes the di�eren
e of a sample and the appropriate approximator at thep sele
ted instants for all N2 samples. In the following pseudo
ode, poi[℄ isthe set of sele
ted instants.for 0 ≤ i < N2beginsample ← load_
urve(i)
x ← load_
urve_plaintext(i)for 0 ≤ j < pbeginnoise_array[i℄[j℄ ← sample[poi[j℄℄ - h(poi[j℄, x, k)endendFor an illustrative example of a noise ve
tor we refer to Figure 25 Se
tion5.1.2. 72



5 EXPERIMENTAL RESULTS - FIXED KEYStep 8 generates the p × p 
ovarian
e matrix that 
hara
terises the noisein the side 
hannel. The theoreti
 approa
h of the 
ovarian
e matrix genera-tion is exa
tly the same as for the Template Atta
k, des
ribed in 5.1.2. The
ru
ial di�eren
e is that during a Template Atta
k one generates a 
ovari-an
e matrix for ea
h data dependen
y whereas in the Sto
hasti
 Model thenoise is not assumed to depend on x, k and hen
e only one 
ovarian
e matrixis generated. The implemented fun
tion 
ompute_
ovarian
e_matrix(N2)equals the fun
tion 
ompute_
ovarian
e_matrix(*value, *no_of_files)presented in Se
tion 5.1.2 ex
ept for simply storing the matrix as 
ovari-an
e_matrix sin
e there is only one.The pro�ling step is 
ompleted with the generation of the matrix.Classi�
ation Step The 
lassi�
ation step aims at 
lassifying N3 side
hannel samples S(xj, k
◦) from devi
e B. This means to 
orre
tly dedu
ethe se
ret key k◦ that was used for en
ryption by B while the samples weremeasured from the samples' properties. The approa
h is as follows: forea
h key hypothesis k ∈ {0, . . . , 255} the noise in the �rst sample S(x1, k

◦)is extra
ted at the sele
ted p instants using the appropriate approximator
h∗(t, x1, k) as in step 7. The probability of observing su
h noise if indeed itderives from x1, k is 
omputed a

ording to Equation (16). Then, the pro
e-dure is repeated for the remaining N3 − 1 samples, thereby multiplying theprobabilities for one key hypothesis as indi
ated in Equation (17). We usedsamples from our measurement set 2 to serve as S.Step 9 randomly sele
ts one of the 3000 samples from measurement set 2as S(xj, k

◦).Step 10 extra
ts the noise within S(xj, k
◦) for a given hypothesis k us-ing the appropriate approximator h∗(t, x1, k). Fun
tion 
ompute_noise_ve
tor_for_
lassifi
ation(*hypothesis,*S) does this in exa
tly the sameway as it was done in step 7. That is, it 
omputes the di�eren
e of S(xj, k

◦)and h∗(t, x1, k) at the sele
ted instants. The resulting noise ve
tor will bereferred to as z. 73



5 EXPERIMENTAL RESULTS - FIXED KEYStep 11 
omputes the probability of observing su
h noise using the 
ovari-an
e matrix CM and stores the result for later 
omparison. We 
omposed aset of fun
tions to 
ompute the probability as follows:CM ← load_
ovarian
e_matrix()CM ← 
ompute_inverse(CM)probability ← 
ompute_probability(CM)Sin
e we are rather interested in a ranking of the key hypothesis than inthe a
tual probabilities, 
ompute_probability(CM) omits 
onstant terms inEquation (16) whi
h results in zT CM−1z (see Equation (18)). This savesimplementation e�ort and speeds up the pro
edure as in parti
ular the de-terminant of the 
ovarian
e matrix need not be determined.Step 12 identi�es the best hypothesis. The implemented fun
tion sort_des
ending(probabilities,identifiers) sorts the probabilities in de-s
ending order while simultaneously sorting the hypothesis' identi�ers (valuesof k) in the same order so that the identi�er of the best hypothesis is the�rst in the list.The last four steps are invoked by a superior fun
tion 
lassify() to
ompute the probabilities for the 256 key hypothesis using N3 samples and
hoose the best 
andidate.

74



5 EXPERIMENTAL RESULTS - FIXED KEYCM ← load_
ovarian
e_matrix()CM ← 
ompute_inverse(CM)for 0 ≤ i < N3 beginrand ← gen_rand()
S ← load_
urve(rand)
x ← load_
urve_plaintext(rand)for 0 ≤ hypothesis < 256begin
ompute_noise_ve
tor_for_
lassi�
ation(*hypothesis, *S)if (i==0)probability[i℄[hypothesis℄ ← 
ompute_probability(CM)elseprobability[i℄[hypothesis℄ ← probability[i-1℄[hypothesis℄+ 
ompute_probability(CM)endendsort_des
ending(probability[N3℄, identi�ers)sele
tion ← identi�er[0℄Note that probability[℄[℄ is now a two-dimensional array. The one-dimensionallist probability[N3℄ based on whi
h the sele
tion is performed 
ontains exa
tlythe aggregated probabilities des
ribed in Equation (18). The motivation toimplement a two-dimensional array is the same as for the Template Atta
k.The rest of the pro
edure during the 
lassi�
ation step is identi
al to ourimplementation of the Template Atta
k. Rather than re
apitulating, we referto Se
tion 5.1.2 for details and only provide the essentials here.To attain a 
ertain pre
ision, fun
tion 
lassify() was further modi�ed to
arry out the 
lassi�
ation step 1000 times while 
ounting in the variable
orre
t, how often the sele
ted 
andidate was indeed k◦. The su

ess rateis then given by correct

1000
. Furthermore, the �nal version of 
lassify() wasinvoked several times per 
lassi�
ation 
y
le. Before ea
h invo
ation wevaried the number of points P whi
h would omit 
onsideration of some of theleast signi�
ant points sele
ted in step 6 during the probability 
omputationsin step 11. The motivation for this de
ision was to observe and possiblyquantify the impa
t of sele
ted points on the su

ess rate.75



5 EXPERIMENTAL RESULTS - FIXED KEY5.2.3 Results for various parameter settingsCarrying out our experimental analysis we noti
ed, that four parameters havemajor impa
t on the Sto
hasti
 Model's e�
ien
y in terms of su

ess rates.The �rst parameter is the ve
tor subspa
e Fu in whi
h the deterministi
leakage portion is approximated. The 
omparison of several 
hoi
es withrespe
t to su

ess rates in [11℄ indi
ated the bitwise 
oe�
ient model (F9) tobe most e�
ient, hen
e the results presented in this se
tion are all based onthat 
hoi
e. The other three parameters are the same as presented in Se
tion5.1.3, i.e.,1. the number of 
urves available during the pro�ling step N1 + N12. the number of interesting points that 
an be found in the pro�ling stepp respe
tively that are used in the 
lassi�
ation step P3. the number of 
urves available during the 
lassi�
ation step N3.We tested all 
ombinations N1+N2× P ×N3 for N1+N2 ∈ {2k, 10k, 20k, 25k,

30k, 40k, 50k, 231448}, P ∈ {9, 6, 3}, and N3 ∈ {1, 2, 5, 10}.The pro
edure of the experiments was always the same as for the TemplateAtta
k. The results presented below re�e
t only those parameter values,that we �nd most signi�
ant. Appendix C provides all result tables for theSto
hasti
 Model.The presentation format of the results is the same as in se
tion 5.1.3, i.e. wepresent several tables where ea
h table represents a �xed value N1 + N2 andvariations of P and N3.Table 7 presents the results for the best possible 
hoi
e of N1 + N2. Thesele
tion algorithm found 9 points whose positions are provided in the se
ondline of the table. We will refer to this distribution of points as the optimaldistribution in the further analysis. From the two blo
ks 
ontaining the su
-
ess rates for real and trial 
lassi�
ation one 
an observe that 
lassi�
ationof samples from devi
e B is - in tenden
y - less su

essful than 
lassi�
ationof samples from devi
e A. This fa
t a
tually indi
ates a non optimal pro�ling76



5 EXPERIMENTAL RESULTS - FIXED KEY
N1 + N2 = 231448 p = 9 
hannel = powerpoi[℄ 9496, 9607, 9551, 8551, 9440, 8218, 3828, 9385, 3883SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 4,3 12,6 52,1 90,7 3,3 12,2 63,1 96,36 1,9 8,1 43,0 91,2 3,1 9,4 55,2 94,43 1,9 4,9 23,6 68,5 1,0 6,1 34,1 80,0Table 7: Su

ess rates (SR) for N1 and N2 = 115724 and 
hannel = powerstep sin
e we assume balan
ed su

ess rates for an optimal (lossless) pro�l-ing. The results provided further below will motivate, why we still refer tothis value of N1 + N2 as best possible and regard the non-optimal pro�lingas a result of the approximation.Both of the blo
ks 
learly show, that the parameters P and N3 have dire
timpa
t on the su

ess rate. For ea
h of the parameters, the 
orrelation ofits value and the su

ess rate is best des
ribed as logarithmi
, whi
h is alsotrue for simultaneous 
hanges of both parameters' values. There are no more
learly visible tenden
ies in the 
orrelations, in parti
ular we 
annot state onwhi
h parameter's in�uen
e is stronger.Table 8 shows the results based on N1 + N2 = 25000. Although we re-du
e the number of training 
urves in the pro�ling step by a fa
tor ∼10 one
an, in the 
ase of real 
lassi�
ation, still observe su

ess rates in the sameorder of magnitude. The su

ess rates of trial 
lassi�
ation do not seem tobe a�e
ted at all, there is no visible tenden
y of 
hange. The sele
tion algo-rithm found seven points from the optimal distribution and two points thatare slightly displa
ed but still in the 
orre
t pro
essor 
y
le (9552 insteadof 9551 and 9441 instead of 9440). The bad sele
tion must be an impli
a-tion of the deterministi
 part's worse approximation. At least we 
an noti
e,as Figure 33 shows, that it is not 
aused by a substantially in
reased noise�oor. Sin
e all 
omputed su

ess rates are a�e
ted by at least one badly se-le
ted point, a statement quantifying the e�e
t of these points is not feasible.77
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N1 + N2 = 25000 p = 9 
hannel = powerpoi[℄ 9496, 9607, 9552, 8551, 9441, 8218, 3828, 9385, 3883SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 4,4 8,0 39,8 85,3 3,1 13,9 64,1 97,66 2,3 7,1 33,8 80,6 2,4 10,5 57,8 97,13 0,9 4,2 19,2 61,4 1,2 4,6 34,4 81,6Table 8: Su

ess rates (SR) for N1 and N2 = 12500 and 
hannel = power
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Figure 33: sosd for N1 + N2 = 231448 and 25000 as a fun
tion of timeTable 9 shows the results for N1 + N2 = 10000. The further redu
tionof N1 + N2 by a fa
tor 2.5 
learly has an impa
t on the su

ess rates in the
ase of real 
lassi�
ation. As before, the su

ess rates of trial 
lassi�
ationseem not to be a�e
ted, there is no visual tenden
y of de
line. The sele
tion
N1 + N2 = 10000 p = 9 
hannel = powerpoi[℄ 9496, 9605, 8551, 9441, 8218, 3828, 15845, 12677, 13344SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 1,0 1,9 16,6 46,9 4,0 10,8 58,3 96,16 1,1 2,4 15,5 49,5 3,2 11,4 53,8 93,63 0,4 1,7 9,7 34,0 2,0 5,2 38,8 88,9Table 9: Su

ess rates (SR) for N1 + N2 = 10000 and 
hannel = poweralgorithm found only 4 points from the optimal distribution, two are slightlydispla
ed but still in the 
orre
t pro
essor 
y
le and three points are not78



5 EXPERIMENTAL RESULTS - FIXED KEYrelated to the optimal distribution at all. The bad sele
tion is partly a resultof �unlu
ky� 
ir
umstan
es, as 
an be seen by looking at Figure 34 and thedistribution of poi[℄ in Tables 7 and 9. The point at 9496 is well sele
ted,
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Figure 34: sosd for N1 + N2 = 231448 and 10000 as a fun
tion of timethe peaks of both sosd 
urves show a similar shape at that instant. Sin
ethe shape of the peak for the third pro
essor 
y
le is slightly di�erent thanoptimal, the point for this 
y
le is sele
ted a little bit to the left (9605) fromthe optimal position (9607). This �unlu
kily� eliminates the 
han
e to sele
ta point during the middle 
y
le at all, be
ause the algorithm disregards anentire 
y
le before and after every sele
ted point. The three badly sele
tedpoints past 10000 are a result of a per
eivably in
reased noise �oor. Theirnegative in�uen
e on the su

ess rate for real 
lassi�
ation 
an be observedby 
omparing the table rows for P = 9 and P = 6.5.3 ComparisonIn this se
tion, we 
ompare the e�
ien
y of the pro�ling and the 
lassi�
ationstep of our implementations of the Template Atta
k and the Sto
hasti
 Modelas they were introdu
ed in Se
tions 5.1 and 5.2. The determination of allnumbers was performed as obje
tive as possible, that is in parti
ular:
• identi
al mathemati
al operations, e.g. the 
omputation of a 
ovarian
ematrix, are performed by the same 
ode to ex
lude di�eren
es in the
omputational approa
h 79



5 EXPERIMENTAL RESULTS - FIXED KEY
• both atta
ks use sosd as basis for the sele
tion of interesting points; assosd is 
omputed from the averaged resp. approximated deterministi
signal portions, it 
an be regarded as a measure for an atta
ks abilityto deal with noise
• both atta
ks used the same point sele
tion algorithm with 
onstantparameters (δ = 54, p=9), we do not adapt any settings to spe
i�
situationsWe fo
us on 
omparing the e�
ien
y of the atta
ks against the three para-meters, whi
h showed to have strong in�uen
e on both of them, i.e.,:1. What is the impa
t of N1 resp. N1 + N2?2. What is the impa
t of N3?3. What is the impa
t of P?The atta
ks had to 
ompete with ea
h other in all possible parameter 
om-binations of N1 resp. N1 + N2 ∈ {10k, 20k, 25k, 30k, 40k, 50k, 231k}, P

∈ {9, 6, 3} and N3 ∈ {10, 5, 2, 1}. For the sake of 
larity, we perform the
omparison by means of graphs here, the interested reader 
an �nd all indi-vidual numbers in the result tables in Appendixes B and C.Profiling Effi
ien
yFor a start, we 
ompare the e�
ien
y of the atta
ks during the pro�ling step.As before, we de�ne the set of points whi
h was found for N1 resp. N1 + N2= 231448 as the optimal distribution with respe
t to ea
h atta
k. For de-
reasing numbers N1 resp. N1 + N2 we determine how good the sele
ted setof points is by 
omparing it to the optimal distribution. If a sele
ted point isin the optimal set, it has weight 1. If it is not in the optimal set but still inthe 
orre
t pro
essor 
lo
k 
y
le, it has weight 0.5. All other sele
ted pointshave weight 0.More formally: let poi_opt[℄ be the optimal distribution and poi[℄ be theset of p sele
ted points Pi (i = 1, . . . , p). We say:80
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• Pi has weight wi = 1, if Pi ∈ poi_opt[℄
• Pi has weight wi = 0.5, if Pi ± x ∈ poi_opt[℄, with x ≤ δ

• Pi has weight wi = 0, if Pi ± x 6∈ poi_opt[℄, with x ≤ δwhere δ is the limit of toleran
e, see Se
tion 5.1.2, Step 4. We use the sum ofthese weights, i.e., ∑p

i=1 wi, as a measure for pro�ling e�
ien
y for a givennumber of training 
urves N1 resp. N1 + N2.The performan
e at point sele
tion is an adequate measure for the overallpro�ling e�
ien
y, be
ause it is based on sosd, thus on the averaged resp.approximated data depended sample portions. On the other hand, the per-forman
e at noise 
hara
terisation depends straight on the quality of sosd,thus on the averages resp. approximator, and the sele
ted points and istherefore �
overed� by the above measure.Figure 35 shows a plot of the sum of these weights as a fun
tion of thenumber of samples used in the pro�ling step (N1 resp. N1 + N2). Note that
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correct_points_smFigure 35: Well sele
ted points in the pro�ling stepthe Sto
hasti
 Model uses only 50% (N1) of the available samples (N1 + N2)to approximate the deterministi
 leakage fun
tion on whi
h the 
omputationof sosd and hen
e the sele
tion of points is based! The plot 
learly indi
ates81



5 EXPERIMENTAL RESULTS - FIXED KEYthe superiority of the Sto
hasti
 Model in terms of sele
ting the right 
hara
-teristi
s and hen
e, in pro�ling e�
ien
y. The di�eren
e probably originatesfrom the way, in whi
h ea
h atta
k uses the samples to estimate resp. ap-proximate the deterministi
 sample portion.In an alternative approa
h for the Sto
hasti
 Model, one may use N1+N2samples to obtain the relevant points of the deterministi
 leakage fun
tion,before a re-run is done with the usual 
on�guration.Classifi
ation Effi
ien
yIn the following, we 
ompare the 
lassi�
ation su

ess rates of the atta
ks.We restri
t our attention to real 
lassi�
ation, thus 
lassi�
ation of samplesfrom devi
e B, sin
e it is the more interesting 
ase and N3 ∈ {1, 10} for thesake of 
larity. Again, all individual numbers are provided in Appendixes Band C.First, we 
ompare the su

ess rates of both atta
ks for �xed parame-ters. The graphs show, how good ea
h atta
k deals with a given situation.Thereafter, we 
ompare the su

ess rates for variations of N1 resp. N1 + N2,
N3 ∈ {1, 10}, and, ea
h time, the optimal 
hoi
e of P. The graph shows themost, that ea
h atta
k 
an make of a given number of 
urves during thepro�ling step when 
lassifying one resp. ten samples from devi
e B.Figure 36 shows the su

ess rates plotted as a fun
tion of N1 resp N1+N2for �xed P = 9 and N3 ∈ {1, 10}. As expe
ted, one 
an observe, that both anin
reasing number of 
urves for the pro�ling step and an in
reasing numberof 
urves for the 
lassi�
ation step have a positive impa
t on both atta
ks'su

ess rates. Additionally, the positive impa
ts intensify ea
h other whene�e
tive simultaneously. As observed before, the in
rease of the su

ess rates
an be des
ribed as logarithmi
. For both atta
ks it seems, there exists asaturation threshold with respe
t to N1. On
e the threshold is rea
hed, ad-ditional 
urves in the pro�ling step only yield a small positive in
rease of thesu

ess rates. 82
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Figure 36: Plot of the Template Atta
k's and the Sto
hasti
 Model's su

essrates as a fun
tion of the number of 
urves during the pro�ling step. It isP=9 and N3 ∈ {1, 10}.Another observation is, that the Sto
hasti
 Model is more e�
ient than theTemplate Atta
k for small N1, more pre
isely for N1 < 30000 if N3 = 10 and
N1 = 25000 if N3 = 1. This supports, in a

ordan
e with our argumenta-tion for the superiority of the Sto
hasti
 Model during the pro�ling step, thefollowing assumption: for a given value of N3, there exists a threshold valuefor N1 so that for smaller N1 the superiority of the Sto
hasti
 Model in thepro�ling step (
aused by the approximation) outweighs its inferiority in the
lassi�
ation step. Or, with respe
t to the Template Atta
k: for N1 largerthan the threshold value, the e�ort of the more 
omplex but as well more pre-
ise pro�ling step pays o� and yields superior results in the 
lassi�
ation step.Figure 37 shows the su

ess rates plotted as a fun
tion of N1 resp N1+N2for �xed P = 6 and N3 ∈ {1, 10}. For the Template Atta
k, one 
an observethat for N1 < 40000 the 
hoi
e P = 6, thus disregard of the three least sig-83
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Figure 37: Plot of the Template Atta
k's and the Sto
hasti
 Model's su

essrates as a fun
tion of the number of 
urves during the pro�ling step. It isP=6 and N3 ∈ {1, 10}.ni�
ant points, yields better su

ess rates than P = 9. As this is true for alltested values of N3 it indi
ates a general trend. For N1 = 40000 there is nosigni�
ant di�eren
e in the su

ess rates, it 
an be seen as an in�exion pointof the trend. For N1 > 40000 the trend is inverted, i.e., P = 9 yields betterresults than P = 6, but be
omes less obvious for in
reasing N3 be
ause thesu

ess rates get very 
lose to the boundary of 100%.The Sto
hasti
 Model shows a similar behavior, but the in�exion point ismu
h lower. Espe
ially for small N3, the trends are easier to see in the resulttables than in the graphs. For N1 > 10000, the 
hoi
e P = 9 yields betterresults than P = 6. For N1 < 10000, P = 6 is the better 
hoi
e.These observations give further support to our assumption. For N1 smallerthan the in�exion point, the entropy21 of the least signi�
ant sele
ted pointsis so small, that to involve them in the (real) 
lassi�
ation pro
ess worsens21or signi�
an
e, for
e of expression 84



5 EXPERIMENTAL RESULTS - FIXED KEYthe su

ess rates. For N1 larger than the in�exion point, their entropy is goodenough to improve the su

ess rates. In a

ordan
e with our argumentationfor the superiority of the Sto
hasti
 Model in the pro�ling step, its in�exionpoint (∼ 10000) is rea
hed earlier than the Template Atta
k's (∼ 40000).Figure 38 shows the su

ess rates plotted as a fun
tion of N1 resp N1+N2for �xed P = 3 and N3 ∈ {1, 10}. For the Template Atta
k, the plot basi
ally
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Figure 38: Plot of the Template Atta
k's and the Sto
hasti
 Model's su

essrates as a fun
tion of the number of 
urves during the pro�ling step. It isP=3 and N3 ∈ {1, 10}.shows a 
ontinuation of the observations made above. For N1 < 40000 the
hoi
e P = 3 yields even better su

ess rates than P = 6, while the oppositeis noti
eable for N1 > 40000. This observation again supports the argumen-tation that for small N1 the entropy in the least signi�
ant points is too lowand ex
luding them from the (real) 
lassi�
ation step yields better results.For the Sto
hasti
 Model, the 
hoi
e P = 3 always22 results in worse su

ess22within the boundaries of our experiments85



5 EXPERIMENTAL RESULTS - FIXED KEYrates than for P = 6 . We give a 
autious explanatory approa
h: due to theapproximation of the deterministi
 sample portion it might be true that thefor
e of expression of ea
h single point is bounded upwards. In this 
ase,three points, even though their entropy meets this boundary, might simplybe not enough to reliably distinguish key 
andidates.Figure 39 shows the su

ess rates plotted as fun
tions of N1 resp N1 +N2for N3 ∈ {1, 10}. For ea
h atta
k and ea
h instant, P was sele
ted to max-imise the su

ess rates. One 
an observe, that ea
h pair of plots interse
ts at
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Figure 39: Plot of the Template Atta
k's and the Sto
hasti
 Model's su

essrates as a fun
tion of the number of 
urves in the pro�ling step. It is N3 ∈
{1, 10} and P 
hosen optimally.least on
e. Hen
e, a general statement on whi
h atta
k yields better su

essrates is not feasible as this depends on the number of 
urves that are avail-able in the pro�ling step.If a large number of samples is available (e.g. > 20000), the Template Atta
kyields higher su

ess rates due to its higher pre
ision. If only a small number86



5 EXPERIMENTAL RESULTS - FIXED KEYof samples is available (e.g. < 20000), the Sto
hasti
 Model is the better
hoi
e, be
ause of its superior ability to �lter noise.We want to point out expli
itly that these results refer to our
• implementation of the AES en
ryption algorithm
• 
hoi
e of a
quisition equipment
• measurement parameters
• implementations of the atta
ksand should not be generalized. Due to the problemati
 of side 
hannel infor-mation quality, the general observations only remain valid for slightly modi-�ed pro
edures whi
h will, very likely, already yield di�erent absolute num-bers. Nevertheless, for a methodi
al 
omparison a 
ase study has to be basedon identi
al starting 
onditions. This 
ase study aimed at giving a system-ati
 and fair 
omparison and at the determination of 
riti
al parameters forfurther improvements.5.4 Fixed key vs. variable keyAs mentioned earlier in Se
tion 4.4, we 
arried out a third measurement se-ries. Ea
h of the 256000 samples represents AES en
ryption of a randomly
hosen plaintext with a randomly 
hosen key. Figure 40 whi
h illustrates thesosd 
urve 
omputed from all samples of this third set 
on�rms our obser-vation 1 from Se
tion 5.1, Step 4. The sosd 
urve 
omputed from samplesthat represent random plaintexts and random keys shows far smaller peaksduring the initial Round Key addition than the sosd 
urve 
omputed fromsamples that represent a �xed key.
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Figure 40: sosd 
urve 
omputed from N1 = 256000 samples representingrandom plaintexts and keys
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6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONS6 Analysis of Results, Overall observationsWe 
learly showed, that the two statementsThe Template Atta
k extra
ts all possible information availablein ea
h sample and is hen
e the strongest form of side 
hannelatta
k possible in an information theoreti
 sense given the fewsamples that are available. [10℄Though our e�
ien
y at key extra
tion is limited by templateatta
ks pro�ling is mu
h more e�
ient whi
h is highly relevantif the designer of a 
ryptosystem is bounded by the number ofmeasurements in the pro�ling step. [11℄are not true in a universal way, but that one has to 
onsider the 
ir
um-stan
es.Due to the approximation of the deterministi
 sample portion, the Sto
hasti
Model is more e�
ient in the pro�ling step, whi
h is highly relevant if thenumber of training samples is limited. This leads to superior su

ess rates inthe 
lassi�
ation step. On the other hand, the approximation sets an upperboundary for the Sto
hasti
 Model's entropy, whi
h limits its e�
ien
y inthe 
lassi�
ation step, if �enough� samples are available.Due to its higher pre
ision, the Template Atta
k is less e�
ient in thepro�ling step, if only a small number of training samples is available. Thisleads to inferior su

ess rates in the 
lassi�
ation step. On the other hand,the Template Atta
ks's greater entropy pays o� and yields superior su

essrates, if �enough� samples are available.6.1 Weaknesses and strengthsTemplate Atta
k The strength of the Template Atta
k is, that it in fa
textra
ts far more information from the samples than the Sto
hasti
 Model.Given enough samples in the pro�ling step, it is 
learly superior to the Sto-
hasti
 model in the 
lassi�
ation step, due to the pre
ise estimation of theaverage signal and the 256 
ovarian
e matri
es. On the other hand, that is89



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSits weakness as well. Be
ause it �learns� so detailed, it requires mu
h moresamples in the pro�ling step than the Sto
hasti
 Model, to rea
h the samelevel of pre
ision (see Figure 35). Due to the �ne partitioning of the samples,the Template Atta
k needs many samples to redu
e the noise in the side
hannel.Sto
hasti
 Model The Sto
hasti
 Model's strength is the ability to �learn�qui
kly from a small number of samples. One weakness lies in the redu
edpre
ision due to the approximation in a ve
tor subspa
e. We re
all fromSe
tion 3.4.2:Apparently, the number of required samples in the pro�ling step in
reaseswith the number of dimensions u, if the same level of pre
ision is aspiredfor the βjt. One might see this as a trade o� problem for a �xed numberof samples in the pro�ling step: a small number of dimensions u redu
esthe sear
hable spa
e, whi
h might ex
lude good 
andidates h′ ∈ F but givesbetter estimators for the best h∗ still in
luded in Fu;t. A large number ofdimensions u will more likely in
lude a very good 
andidate h∗ but its esti-mators will be less pre
ise.So far, no better ve
tor subspa
e (whi
h is signi�
antly smaller than 28) than
F9, the bitwise 
oe�
ient model, has been dis
overed. A se
ond weakness isthe usage of only a single 
ovarian
e matrix.6.2 Average vs. ApproximatorIn this se
tion, we determine, how good the Sto
hasti
 Model 
an approx-imate the deterministi
 sample portion, whi
h is ideally estimated by theTemplate Atta
k. The approa
h is as follows: we assume that the averagesignals 
omputed by the Template Atta
k are the optimal estimation and usethem as referen
e value. For ea
h key dependen
y, we generate the Sto
hasti
Model's approximated deterministi
 sample portion, 
ompute the di�eren
eto the referen
e value, and average these di�eren
es over all key dependen-
ies. The resulting average di�eren
e, whi
h we present below for sele
ted90



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSvalues of N1, show how good the Sto
hasti
 Model approximates in average.Figure 41 shows plots of the average di�eren
e between the approximated(Sto
hasti
 Model) and the averaged (Template Atta
k) deterministi
 signal,that were 
omputed from N1 = 10k, 50k, 231448 samples. Considering the
-0.15
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Figure 41: Average di�eren
es between the approximated deterministi
 sam-ple portions of the Sto
hasti
 Model for N1 = 10k, 50k, 115k and 231448and the referen
e valuesvarying s
ale of the verti
al axis, one 
an observe how the approximationde
reasingly di�ers from the referen
e value for an in
reasing numbers ofsamples N1. We assume, that this tenden
y is 
aused by the average signal,that be
omes pre
ise more slowly than the approximator, but �nally is morepre
ise for a large number N1. The peaks espe
ially visible in the plot on thelower right hand side (N1 = 231448) are addressed in Se
tion 6.4.2.
91



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONS6.3 One vs. 256 Covarian
e Matri
esIn this se
tion, we exemplarily determine the in�uen
e of the number of 
o-varian
e matri
es, that are used, on the e�
ien
y in the 
lassi�
ation step.The approa
h is as follows: First, we generate the approximated deterministi
sample portion of the Sto
hasti
 Model for N1 = 20000. Then, we feed theminto a Template Atta
k (N1 = 20000), where we use them instead of the av-erage signals. Table 10 opposes the derived su

ess rates (real 
lassi�
ation)of an atta
k with the original Sto
hasti
 Model (N1 + N2 = 20000) and ofthe modi�ed atta
k based on approximated signals derived from N1 = 20000samples, whi
h are re-used during the noise 
hara
terisation. Both atta
kssele
ted an identi
al set of points.
N1 resp. N1 + N2 = 20000 p = 9 
hannel = powerOne 
ovarian
e Matrix 256 
ovarian
e matri
esP \ N3 1 2 5 10 1 2 5 109 3,0 6,2 27,2 66,7 4,2 10,5 46,4 90,16 2,0 4,5 21,5 61,8 1,7 4,4 29,6 74,43 0,9 1,9 8,8 27,6 1,7 5,4 27,7 75,2Table 10: Su

ess rates of Sto
hasti
 Model atta
ks with one and 256 
ovari-an
e matri
esEspe
ially for P = 3, thus 
onsideration of only the most signi�
antpoints, one 
an observe a 
lear superiority of the atta
k that uses 256 
ovari-an
e matri
es.6.4 Improvements (2)In this se
tion we present improvements to the Template Atta
k and theSto
hasti
 Model whi
h we developed after longterm examination of ea
hatta
k's 
hara
teristi
s.6.4.1 Template Atta
k with T-TestThe Template Atta
k's weakness is its poor ability to redu
e the noise in theside 
hannel samples if the adversary is bounded in the number of samples in92



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSthe pro�ling step. For small N1, the remaining noise distorts the sosd 
urve,whi
h we used as the basis for the sele
tion of interesting points so far (thee�e
t is even worse for the originally suggested sod 
urve).Re
all that sosd represents the sum of squared pairwise di�eren
es of theaverage signals∑K

i,j=0(mi−mj)
2 with j ≥ i. Although sosd is 
learly supe-rior to sod (see Figures 20 and 21) its signi�
an
e is limited if the underlyingaverage signals disperse be
ause of remaining noise. Figure 42 illustrates theproblem.

Figure 42: Distributions with equal mean and di�erent dispersion [33℄Obviously, the (equal) mean value is not a su�
ient 
riterion to distinguishthe distributions in presen
e of varying dispersion (noise).The T-Test is an advan
ed statisti
al tool to meet the 
hallenge of dis-tinguishing noisy signals. When 
omputing the signi�
ant di�eren
e of twosets, it does not only 
onsider the distan
e of their means but as well theirvariability in relation to the number of samples.
t =

x− y
√

σ2
X

nx
+

σ2
Y

nyIn other words: the higher the dispersion is in two sets, the less the distan
ebetween their means is weighted. Figure 43 depi
ts the T-Test's approa
h.We added a step 2b to our implementation of the Template Atta
k that
omputes the varian
e for ea
h operation from all 
orresponding samplesand their previously 
omputed average. Its 
ore is fun
tion 
ompute_93



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONS

Figure 43: T-Test 
onsiders means' distan
e and variability [33℄varian
es(*byte,*value,*no_of_files) whi
h is invoked for ea
h opera-tion on
e:average_
urve ← load_average_
urve(value)for 0 ≤ curve < no_of_�lesbeginfor 0 ≤ instant < 20000beginvarian
e[instant℄ ← varian
e[instant℄+ (
urve[instant℄ - average_
urve[instant℄)2endendfor 0 ≤ instant <no_of_�lesbeginvarian
e[instant℄ ← varian
e[instant℄ / (no_of_�les)endFurthermore, we modi�ed step 3 of our implementation to 
ompute thesum of squared pairwise t-di�eren
es (sost) for all instants instead of sosd.Figure 44 illustrates the striking di�eren
e between sosd and sost for
N1 = 50000 and 10000 samples. The s
ale of the verti
al axis is not the samefor all plots, but as one is not interested in 
omparing the absolute height ofthe peaks, this 
an be disregarded. What is important, and this is why we
hose to present the plots in the way we do, is the relative distan
e betweenthe peaks and the noise �oor in ea
h 
urve. While the redu
tion of N1 by afa
tor 5 leads to a very distorted sosd signal, the signi�
an
e of sost in terms94
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Figure 44: sosd (left) and sost (right) as fun
tions of time, N1 = 50000 (top)and 10000 (bottom)of where to �nd interesting points does not 
hange. Apart from the di�erents
ale, the peaks have a virtually identi
al shape. One 
an observe as wellthat sost generates a signi�
antly better highest peak to noise �oor distan
ethan sosd by just looking at the upper two plots while paying attention tothe di�erent s
ales.6.4.2 High-Order Sto
hasti
 Model with F17One weakness of the Sto
hasti
 Model with F9, the bitwise 
oe�
ient model,is the redu
ed pre
ision due to the approximation of the deterministi
 sam-ple portion. Even if enough samples are provided to estimate the bitwise
ontribution as good as possible, the overall e�
ien
y is bounded by theapproximation itself. In other words: it exists a threshold from whi
h onadditional samples in the pro�ling step do not in
rease the entropy of theapproximator anymore, one might 
all this saturation. But be
ause even aperfe
tly estimated approximator is only an approximator, pre
ision is lim-95



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSited.The obvious solution to this problem is to in
rease the number of dimensionsof the ve
tor subspa
e in order to generate a more pre
ise approximator forthe 
ost of needing more samples in the pro�ling step (trade o� problem).But as the authors of [11℄ already analysed several high-dimensional ve
torsubspa
es and 
on
luded that F9 seems to be most e�
ient, we de
ide tofollow a di�erent attempt.Our approa
h arises from 
omparing the sosd 
urves of the Sto
hasti
Model and the Template Atta
k, see Figure 45 (left). As one 
an see, thepeaks on the right hand side of the plot are identi
al for both atta
ks, whereasthe peaks at prior instants are not alike. Due to the fa
t that the underlying
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Figure 45: sosd 
urve of the Template Atta
k (red) and the Sto
hasti
 Model(blue) as fun
tions of timesamples represent only one �xed key, the Template Atta
k's sosd 
urve showspeaks for x, x ⊕ k, and Sbox(x ⊕ k). Knowing that our AES implementa-tion unites the SubBytes and the ShiftRows transformation, we 
on
ludedan assignment of AES transformations to sosd peaks, whi
h is depi
ted inFigure 45 (right). The peaks indi
ate, from left to right, the initial RoundKey addition, the 
ombined SubBytes and ShiftRows transformation, andthe MixColumns transformation.Sin
e the Sto
hasti
 Model only approximates the deterministi
 sample por-tion at Sbox(x ⊕ k), it 
an not tra
k bits �through� the Sbox and hen
e we
on
lude, that its most signi�
ant peaks (at the right hand side of the plot)96



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSindi
ate the MixColumns transformation, whi
h supports the assumed as-signment.Our approa
h aims at the fa
t that the Sto
hasti
 Model �overlooks� instants
overing the Sbox lookup whi
h yield the strongest peaks in the sosd 
urveof the Template Atta
k. We in
rease the number of dimensions of the ve
torsubspa
e, but rather than in
reasing the level of detail at one instant of theAES en
ryption, we add 
onsideration of a se
ond instant. We (re-)de�ne thesele
tion fun
tions gj of the 17-dimensional ve
tor subspa
e F17 as follows:
• as for F9, g0(·) always returns 1

• as for F9, gj(j = 1, . . . , 8) aim at the S-box output, i.e. gj(φ(x, k)) ∈

{0, 1} is the j-th bit of S-box(φ(x, k))

• gj(j = 9, . . . , 16) aim at the S-box input, i.e. gj(φ(x, k)) ∈ {0, 1} isthe j-th bit of φ(x, k)In formal notation that is:
gj(φ(x, k)) =







1 if j = 0

j-th bit of S-box(φ(x, k)) if 1 ≤ j ≤ 8

j-th bit of φ(x, k) if 9 ≤ j ≤ 16







(21)Although the general idea of the adaption of our implementation of theSto
hasti
 Model is simple, steps 1 - 4 of the implementation are involved.We will restri
t our attention to the essential modi�
ations of steps 1 and 4while steps 2 and 3 basi
ally have to be upgraded to 
over 17 instead of 9dimensions.Step 1 is modi�ed to determine the (N1× 17) - matrix A whose layout isillustrated in Figure 46.
97



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONS
A =






1 g1(x1 ⊕ k) · · · g8(x1 ⊕ k) g9(x1 ⊕ k) . . . g16(x1 ⊕ k)
1 g1(x2 ⊕ k) · · · g8(x2 ⊕ k) g9(x2 ⊕ k) . . . g16(x2 ⊕ k)... ... . . . ... ... . . . ...
1 g1(xN1

⊕ k) · · · g8(xN1
⊕ k) g9(xN1

⊕ k) . . . g16(xN1
⊕ k)






Figure 46: Design Matrix A for F17 exploiting EIS propertyStep 4, keeping our �rotated� representation of the b-ve
tors, is modi�edto approximate the deterministi
 sample portion by:

h∗(t, x, k) = b0(t) +

sele
tion at Sbox output
︷ ︸︸ ︷

8∑

j=1

bj(t) · gj(x⊕ k) +

sele
tion at Sbox input
︷ ︸︸ ︷
16∑

j=9

bj(t) · gj(x⊕ k) .(22)Fun
tion double h(t, x, k) assembles the approximation in exa
tlythis way:temp ← b0(t)for 0 ≤ i < 8begintemp ← temp + bi+1(t) · ((S-box(x⊕ k) >> i) & 1 )endfor 0 ≤ i < 8begintemp ← temp + bi+9(t) · (((x⊕ k) >> i) & 1 )endoutput ← tempFigure 47 illustrates the 
onsiderable di�eren
e in the sosd 
urves 
om-puted by the Sto
hasti
 Model with F9 and with F17. Ea
h time, the sosd
urve of the Template Atta
k is provided as means of 
omparison. It is N1resp. N1 +N2 = 231448. The sosd 
urve of the High-Order Sto
hasti
 Modelwith F17 
omprises additional 
lear peaks. The peaks on the left hand sideof the plot indi
ate the initial Round Key addition and have a shape similarto the peaks in the sosd 
urve of the Template Atta
k. They arise due to98
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Figure 47: sosd 
urves the Sto
hasti
 Model (red) with F9 (left) and with
F17 (right) and the Sto
hasti
 Model with F17 (blue) as fun
tions of timethe same reasons as for the Template Atta
k (see observation 1). We addedin
lusion of the instant x ⊕ k but sin
e the underlying samples represent a�xed k and the ⊕ operation is linear, the peaks indi
ate the di�erent plain-texts x. As prior for the Template Atta
k, we modify the point sele
tionalgorithm to disregard all instants 
overing the initial Round Key addition,be
ause they do not indi
ate key-dependent di�eren
es.The peaks in the middle of the plot indi
ate parts of the 
ombined SubBytesand ShiftRows transformations. The Template Atta
k 
an tra
k an entirebyte from x ⊕ k to ShiftRows(Sbox(x ⊕ k)) and we are expe
ting the mod-i�ed Sto
hasti
 Model to have the same ability, sin
e it regards x ⊕ k andSbox(x⊕k) while ShiftRows() is linear and should be 
overed automati
ally.But, as one 
an observe in the plots, the sosd 
urve of the Sto
hasti
 Modelwith F17 does not 
omprise all the peaks (in the middle of the plot) whi
h
an be seen in the sosd 
urve of the Template Atta
k. Sin
e we impli
itlyadded regard of x ⊕ k, we assume that the high peak in the middle of theplot indi
ates the Sbox input. An explanatory approa
h for this di�eren
e:The ShiftRows transformation 
an be disregarded be
ause �rstly it is linearand se
ondly, in the present 
ase where we look at the �rst byte of the statearray s0,0, the transformation does not rearrange the bytes in the State.The SubBytes transformation 
omprises the inversion of s0,0 in GF(28) andan a�ne transformation that involves several bits of s−1

0,0 per output bit. Sin
eboth sub-transformations 
ompute ea
h output bit from at least several in-99



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSput bits, we assume that this is the di�
ulty and plan further resear
h, seeSe
tion 9.1.Another possible reason for the di�eren
e is the fa
t, that we implementedthe Sbox as a table lookup and that the table's elements' addresses in theE2PROM are not ne
essarily linear dependent on the lookup value. If so,the bit-wise atta
k 
an not 
orrelate Sbox input bits to Sbox output bits, seeSe
tion 9.1.
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7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS7 Experimental Results - improved atta
ks7.1 T-Test Template Atta
kThe enhan
ed signal to noise ratio in sost does nod lead to a higher numberof sele
ted points for a non-modi�ed point sele
tion algorithm. This is dueto the fa
t that the algorithm still regards all points underneath 10% of thehighest peak's value23 as noise and hen
e disregards even peaks underneaththat limit. A modi�ed point sele
tion algorithm whi
h exploits the enhan
edsignal to noise ratio identi�es up to 13 points.The performan
e analysis whi
h we subje
t the T-Test Template Atta
kto follows the usual pro
edure. We test all 
ombinations N1× P ×N3 for
N1 ∈ {3k, 5k, 10k, 20k, 30k, 40k, 50k, 231448}, P ∈ {13, 9, 6, 3}, and N3 ∈

{1, 2, 5, 10}. Note in parti
ular that due to the results of preliminary tests
• we in
rease the maximum value of P to 13
• we extend the interval of N1 toward smaller values be
ause the atta
krea
hes the 100% boundary earlier than the original version.For the sake of 
omparability, we provide results based on the non-modi�edpoint sele
tion algorithm (9 points) and the adapted version (13 points).Furthermore, we only provide results for N1 = 231448 resp. 10000, to stressthe atta
ks rea
tion to a redu
ed N1, as the overall observations are similarto those of the original atta
k.The results are provided in the usual format. Table 11 presents the resultsfor N1 = 231448. The sele
tion algorithms identify 9 resp. 13 points. Asbefore, this set of points will be referred to as the optimal distribution. Fromthe blo
ks 
ontaining the su

ess rates one 
an observe the same behavior ofthe atta
k as for its original version, in parti
ular the logarithmi
 in
rease ofthe su

ess rate for in
reased values of P and N3 and the fa
t that N3 hasbigger in�uen
e on the su

ess rates than P.23re
all that sost generates a better highest peak to noise �oor distan
e101



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS
N1 = 231448 p = 13 
hannel = powerpoi[℄ 3771, 8551, 9607, 3832, 3894, 9545, 9434, 9490, 3494, 3716, 8218, 9379, 9829SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1013 22,9 62,2 98,9 100,0 24,1 68,4 99,5 100,09 18,4 57,2 98,9 100,0 18,9 58,4 99,3 100,06 15,0 48,4 95,9 100,0 16,1 48,9 97,2 100,03 4,8 17,4 67,9 96,4 5,5 20,7 73,3 98,0Table 11: Su

ess rates (SR) for N1 = 231448 and 
hannel = powerTable 12 presents the results for N1 = 10000. The sele
tion algorithms �nd5 resp. 8 points from the optimal distribution and 4 resp. 5 points that areslightly displa
ed but still in the 
orre
t pro
essor 
y
le. Note in parti
ularthat all sele
ted points are related to the optimal distribution, there are nobad sele
tions. From looking at the su

ess rates one 
an observe that the
N1 = 10000 poi = 13 
hannel = powerP 3772, 8551, 9607, 3832, 3888, 9546, 9435, 9490, 3494, 3716, 8218, 9379, 9826SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1013 9,1 20,5 58,5 85,4 47,7 93,4 100,0 100,09 8,4 24,1 68,4 94,6 31,0 79,8 99,7 100,06 9,4 31,5 83,0 98,6 21,8 66,4 99,7 100,03 3,7 14,3 54,2 89,6 4,0 22,5 81,1 99,5Table 12: Su

ess rates (SR) for N1 = 10000 and 
hannel = power
orrelation of the parameter P and the su

ess rate has 
hanged for the 
aseof real 
lassi�
ation. While the step from P = 3 to P = 6 yields an in
reasedsu

ess rate, the algebrai
 sign is reversed for further steps to P = 9 and

P = 13 so that an in
reased number of points yields a worse su

ess rate.For the 
ase of trial 
lassi�
ation, the 
orrelation's dire
tion remains thesame (
p. original atta
k). 102



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS7.1.1 Comparison Template Atta
k vs. T-Test Template Atta
kIn this se
tion, we 
ompare the e�
ien
y of the original Template Atta
kand T-Test Template Atta
k with respe
t to the pro�ling step and the 
las-si�
ation step, following the pro
edure introdu
ed in Se
tion 5.3.Profiling Effi
ien
yFigure 48 shows the e�
ien
y of both atta
ks in the pro�ling step. The ap-plied measure is equal to the one in Se
tion 5.3. The plot 
learly indi
ates the
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correct_points_ttest_13Figure 48: Well sele
ted points in the pro�ling stepsuperiority of the improved version, the T-Test Template Atta
k, in termsof sele
ting the right instants and hen
e, in the pro�ling step. ConsideringFigure 44 again, the improved pro�ling e�
ien
y obviously derives from theenhan
ed ability to suppress noise.Classifi
ation Effi
ien
yIn the following, we 
ompare the 
lassi�
ation su

ess rates of the atta
ks.We restri
t our attention to real 
lassi�
ation, thus 
lassi�
ation of samplesfrom devi
e B, sin
e it is the more interesting 
ase, N3 ∈ {1, 10} for the sakeof 
larity, and, ea
h time, the optimal 
hoi
e of P. The graph shows the most,that ea
h atta
k 
an make of a given number of 
urves in the pro�ling stepwhen 
lassifying one resp. ten samples from devi
e B.103



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSAgain, all individual numbers are provided in Appendixes B and D.Figure 49 shows the su

ess rates plotted as fun
tions of N1 for N3 ∈

{1, 10} and optimal 
hoi
e of P . For the sake of 
omparability, we providea plot of the T-Test Template Atta
k's su

ess rates for N3 = 1 where therange of points P is bounded by 9. For N3 = 10, this is not ne
essary, as thesu

ess rates for a bounded and a non-bounded range of points are identi
al.
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Figure 49: Plot of the Template Atta
k's and the T-Test Template Atta
k'ssu

ess rates as a fun
tion of the number of 
urves in the pro�ling step. Itis N3 ∈ {1, 10} and P 
hosen optimally.7.2 High-Order Sto
hasti
 Model with F17The additional peaks in the sosd 
urve of the High-Order Sto
hasti
 Modelwith F17 lead to additionally sele
ted points. The non-modi�ed24 point sele
-tion algorithm identi�es p = 10 instead of 9 points. Figure 47 indi
ates, why24the noise border remains at 10%; it omits instants 0 - 3300104



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSa single additional point makes a signi�
ant di�eren
e. The tenth point issele
ted at an instant, whi
h 
overs the 
ombined SubBytes and ShiftRowstransformation. That instant yields the strongest peak in the sosd 
urvewhi
h means that it is a very good 
riterion to distinguish key hypothesis.We do not 
onsider a redu
tion of the noise border in the point sele
tionalgorithm, be
ause the basis, on whi
h the 
hoi
e is made, remains the same(sosd).The performan
e analysis of the High-Order Sto
hasti
 Model follows theusual pro
edure. We test all 
ombinations N1 + N2 × P ×N3 for N1 + N2 ∈

{2k, 10k, 20k, 30k, 40k, 50k, 231448}, P ∈ {10, 9, 6, 3}, and N3 ∈ {1, 2, 5, 10}.Note in parti
ular that due to the results of preliminary tests
• we in
rease the maximum value of P to 10
• we extend the interval of N1 toward smaller values be
ause the atta
krea
hes the 100% boundary earlier than the original version.We only provide results for N1 + N2 = 231448 resp. 10000, to stress the at-ta
ks rea
tion to a redu
ed N1 and for 
omparability with the T-Test Tem-plate Atta
k. The overall observations are similar to those of the originalatta
k with F9. All result tables are provided in Appendix E.The results are provided in the usual format. Table 13 presents the resultsfor N1 + N2 = 231448.

N1 + N2 = 231448 p = 10 
hannel = powerpoi[℄ 3774, 9496, 9607, 9551, 8551, 3829, 9440, 8218, 3884, 9385SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 9,8 26,6 84,0 99,5 10,2 33,8 88,9 99,49 9,1 29,7 83,2 99,8 8,8 30,3 88,0 99,96 4,7 22,3 76,6 99,2 8,4 23,6 79,6 99,33 3,1 13,0 55,1 92,1 4,8 15,3 61,7 96,4Table 13: Su

ess rates (SR) for N1 and N2 = 115724 and 
hannel = power105



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSThe point sele
tion algorithm identi�ed p = 10 points, whi
h will be re-ferred to as the optimal distribution, as usual. From the blo
ks 
ontainingthe su

ess rates, one 
an observe the usual logarithmi
 dependen
y betweenP resp. N3 and the su

ess rates. Furthermore and in 
ontrast to the originalversion, the atta
k shows a property similar to the Template Atta
ks. N3
learly has a stronger impa
t on the su

ess rates than P.Table 14 presents the results for N1 + N2 = 10000, hen
e less than 5%of the training samples. The point sele
tion algorithm found �ve points
N1 + N2 = 10000 poi = 10 
hannel = powerpoi[℄ 3774, 9496, 3829, 9605, 8551, 9441, 8218, 17679, 18346, 19791SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 5,2 14,6 54,5 88,3 7,9 29,7 89,1 99,89 3,3 12,0 56,8 89,1 8,3 28,1 86,1 99,66 2,6 8,2 38,7 76,4 6,2 23,3 82,1 99,13 4,3 11,1 35,4 71,3 3,4 10,6 40,5 73,2Table 14: Su

ess rates (SR) for N1 + N2 = 10000 and 
hannel = powerfrom the optimal distribution, two that are slightly displa
ed but still inthe 
orre
t 
y
le, and three that are not related to the optimal distribution.As expe
ted, the su

ess rates for trial 
lassi�
ation remain in the sameorder of magnitude. The su

ess rates for real 
lassi�
ation show the desiredtenden
y. In opposition to the original atta
k, whose e�
ien
y de
lines to ∼50% for su
h a redu
tion of training samples, the e�
ien
y of the improvedatta
k de
lines less, parti
ularly for higher values of N3 and P.7.2.1 Comparison Sto
hasti
 Model vs. High-Order Sto
hasti
ModelIn this se
tion, we 
ompare the e�
ien
y of the Sto
hasti
 Model with F9and the High-Order Sto
hasti
 Model with F17 with respe
t to the pro�lingstep and the 
lassi�
ation step, following the usual pro
edure.106



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSProfiling Effi
ien
yFigure 50 shows the e�
ien
y of both atta
ks in the pro�ling step. The ap-plied measure is equal to the one in Se
tion 5.3. Sin
e we did not modify
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correct_points_smf17Figure 50: Well sele
ted points in the pro�ling stepthe basis, upon whi
h the point sele
tion algorithm operates (sosd), the two
urves basi
ally show a similar run. The di�erent absolute values derive fromthe additional point that 
an be identi�ed by The High-Order Atta
k dueto the higher-dimensional ve
tor subspa
e. As expe
ted, the entropy of sosdand hen
e of ea
h b-ve
tor does not 
hange. The analysis of the e�
ien
yin the 
lassi�
ation step will show, if additional b-ve
tors yield better results.Classifi
ation Effi
ien
yIn the following, we 
ompare the 
lassi�
ation su

ess rates of both atta
ks.We restri
t our attention to real 
lassi�
ation, thus 
lassi�
ation of samplesfrom devi
e B, sin
e it is the more interesting 
ase, N3 ∈ {1, 10} for the sakeof 
larity, and, ea
h time, the optimal 
hoi
e of P. The graph shows the most,that ea
h atta
k 
an make of a given number of 
urves in the pro�ling stepwhen 
lassifying one resp. ten samples from devi
e B.Figure 51 shows the su

ess rates plotted as fun
tions of N1 for N3 ∈

{1, 10} and optimal 
hoi
e of P. 107



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS
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Figure 51: Plot of the Sto
hasti
 Model's and the High-Order Sto
hasti
Model's su

ess rates as a fun
tion of the number of 
urves in the pro�lingstep. It is N3 ∈ {1, 10} and P 
hosen optimally.The bene�t of generating 8 more b-ve
tors with respe
t to the Sbox inputis 
learly visible. In opposition to the pro�ling e�
ien
y, the e�
ien
y inthe 
lassi�
ation step is signi�
antly in
reased. For N1 + N2 ≤ 25000, theimproved atta
k rea
hes the same e�
ien
y than the original atta
k, with atmost the half amount of the training samples. This is in parti
ular important,if one is bounded in the number of available samples in the pro�ling step.Furthermore, for N1 + N2 > 25000 and N3 = 10, the High-Order Sto
hasti
Model 
learly ex
eeds the 90% su

ess rate boundary and gets very 
lose to100% su

ess.7.3 Comparison of all four atta
ksIn this se
tion we only provide two �gures illustrating the e�
ien
y of allfour atta
ks in the pro�ling and 
lassi�
ation step and a short summary ofthe observations. We provide them to give an overall survey of our work, the108



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSindividual plots will not be dis
ussed in detail.Figure 52 
ontrasts the pro�ling e�
ien
y of all four atta
ks with respe
tto their individually optimised point sele
tion algorithms and point sele
tionbasis. The T-Test Template Atta
k seems to be the best possible 
hoi
e.
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correct_points_smf17Figure 52: Plots of the individually optimised pro�ling performan
e of allfour atta
ks as fun
tions of N1 resp. N1 + N2Figure 53 
ontrasts the e�
ien
y of all four atta
ks in the 
lassi�
ationstep, exploiting all of their individual optimisations. For almost all values of

N1 resp. N1 + N2, the T-Test Template Atta
k seems to be superior again.
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7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS
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Figure 53: Plots of the individually optimised 
lassi�
ation performan
e ofall four atta
ks as fun
tions of N1 resp. N1 + N2, it is N3 ∈ {1, 10} and P
hosen to maximise the su

ess rate
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8 EM CHANNEL AND MULTI-CHANNEL ATTACKS8 Template Atta
ks, Sto
hasti
 Models, EMand Multi- Side Channel Atta
ksAll results reported so far are based on the side 
hannel power 
onsumption.In this se
tion, we provide insights in our experien
e with the EM side 
han-nel and multi
hannel atta
ks.In 
ontrast to many publi
ations, e.g. [16, 35, 36, 37, 34℄, we do nottransform the EM samples into the frequen
y domain in order to isolate
arrier frequen
ies and demodulate signi�
ant signals. We treat the EMsamples and apply the atta
ks in exa
tly the same way as we did for thesamples from the power 
hannel. One might say, we perform a Magneti
Flux Atta
k, sin
e the EM probe only a
quires magneti
 �elds.8.1 Ele
tromagneti
 Atta
ksApparently, our samples from the EM side 
hannel are mu
h more noisy thanthose of the power 
hannel. Neither the Template Atta
k nor the Sto
hasti
Model (both using sosd) are able to su�
iently suppress the noise and toextra
t the signi�
ant 
hara
teristi
s. Figure 54 shows the resulting sosd
urves of the Sto
hasti
 Model F9 for N1 = 50000 and 115724 samples.
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Figure 54: sosd 
urves of the Sto
hasti
 Model F9 derived from 50000 resp.115724 samples of the EM 
hannelAlthough the plots show three signi�
ant peaks, the e�
ien
y in the 
las-si�
ation step does not ex
eed a su

ess rate of 4.8%, whi
h is a
hieved for111



8 EM CHANNEL AND MULTI-CHANNEL ATTACKSP = 6 and N3 = 10. The reason for the low e�
ient pro�ling step is the highnoise level in the samples, whi
h probably derives from the bad resolutionof the EM probe. With the probe 
overing an area of 5mm × 5mm, it is adaunting task to point at the part of the 
hip, that does the 
omputationwhile keeping it away from the I/O busses and the power feed (
p. [16℄).The non-e�
ient pro�ling (
onsider the low highest peak to noise �oor ratio)explains the low su

ess rates in the 
lassi�
ation step.We omit details on the original Template Atta
k's performan
e, be
ausethe derived sosd 
urves do not show any signi�
ant peaks and the su

essrates in the 
lassi�
ation step do not ex
eed 1%.Furthermore, we omit details on the High-Order Sto
hasti
 Model as well, asits performan
e does not 
onsiderably ex
eed the one of the original atta
k(it uses sosd as well) and fo
us on the most promising approa
h.The T-Test Template Atta
k proved to be the most e�
ient atta
k op-erating on a small number of training samples whi
h is equivalent to theability of �ltering noise in the pro�ling step. Hen
e, we fo
us on examiningthis atta
k's e�
ien
y here.Figure 55 shows the derived sost 
urves for N1 = 50000 and 231448.One 
an see 
lear visible peaks and a reasonable highest peak to noise �oor
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Figure 55: sost 
urves of the T-Test Template Atta
k derived from 50000resp. 231448 samples of the EM 
hannel112



8 EM CHANNEL AND MULTI-CHANNEL ATTACKSdistan
e. Figure 56 
ompares the sost 
urves for the power 
hannel and theEM 
hannel derived from N1 = 50000 samples. Note that the verti
al axis iss
aled logarithmi
 and we zoomed in on the Sbox lookup. One 
an observe
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Figure 56: sost 
urves of the T-Test Template Atta
k derived from 50000power and EM samplesvery 
learly that the ele
tromagneti
 radiation is related to the derivation ofthe power 
onsumption.8.1.1 Experimental ResultsWe apply the T-Test Template Atta
k to the samples of the EM side 
han-nel25 in the same way as we did for the power 
hannel. In parti
ular, dueto our experien
es with the atta
k and preliminary tests, we use the redu
ednoise border in the point sele
tion algorithm, that is 1% of the highest peak'svalue (
p. Se
tion 7.1).25measurement sets 1 and 2, �xed key 113



8 EM CHANNEL AND MULTI-CHANNEL ATTACKSWe test all 
ombinations of N1 × P × N3 for N1 ∈ {50k, 231448}, P
∈ {34, 24, 14}, and N3 ∈ {1, 2, 5, 10}. The results are presented in the usualformat.Table 15 presents the results for N1 = 231448. The point sele
tion al-
N1 = 231448 p = 34 
hannel = EMpoi[℄ 3819, 3874, 3764, 9489, 8208, 3486, 3706, 8544,9375, 9545,9600, 9434, 3986, 5931, 8321, 4484, 8043, 8432, 10043, 7374, 6429,5429, 7985, 8376, 9988, 4539, 5484, 8487, 5987, 6487, 7429, 9822,3319, 9266SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1034 3,2 8,1 25,9 51,2 8,1 23,4 67,3 96,124 3,4 8,4 23,3 46,4 6,0 16,2 54,2 89,314 1,9 5,7 17,2 37,4 3,0 9,9 34,0 68,9Table 15: Su

ess rates (SR) for N1 = 231448 and 
hannel = EMgorithm identi�ed 34 points, the optimal distribution. The two blo
ks ofsu

ess rates indi
ate a non-optimal pro�ling, be
ause the su

ess rates fortrial and real 
lassi�
ation are not in the same order of magnitude. Whethera further in
rease of N1 would yield a better pro�ling, is unknown. Sin
e wedo not have more than 231448 samples, we 
an not investigate this matter.A further indi
ation for a non-optimal pro�ling is the fa
t, that in 
ase ofreal 
lassi�
ation the su

ess rates barely in
rease from P = 24 to P = 34.Nevertheless, we want to investigate, what is possible under these 
ir
um-stan
es although it is obvious, that the results 
an not 
ompete against thosefrom the power 
hannel.Table 16 presents the results for N1 = 50000. The point sele
tion algo-rithm found 19 points from the optimal distribution, 13 points are slightlydispla
ed, and 2 are not related to the optimal distribution. Applying ourde�ned measure, it yields a s
ore of 26.5 
orre
t points. The e�e
t of the falsepositives is noti
eable, sin
e the su

ess rates of trial 
lassi�
ation in
reasewhile the ones of real 
lassi�
ation de
rease.114



8 EM CHANNEL AND MULTI-CHANNEL ATTACKS
N1 = 50000 p = 34 
hannel = EMpoi[℄ 3819, 3874, 3764, 3486, 9489, 9434, 8208, 8545, 9601, 9545,3985, 10043, 9377, 8043, 3706, 8377, 5986, 8432, 7431, 6486, 8487,4541, 5931, 7932, 8322, 9988, 4486, 5429, 7988, 7375, 5484, 6429,9822, 9266SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1034 1,1 2,5 4,0 7,6 35,0 73,0 99,7 100,024 1,8 2,7 5,8 8,6 17,5 47,8 93,1 100,014 1,4 1,4 5,2 9,4 9,4 22,0 71,5 96,8Table 16: Su

ess rates (SR) for N1 = 50000 and 
hannel = EM8.2 Multi-
hannel Atta
ksFor the reasons provided in Se
tion 8.1, we fo
us on Multi-
hannel atta
kswith the T-Test Template Atta
k. The implementation e�ort is rather small,as we simply 
on
atenate the side 
hannel samples from the power 
hannel(20000 points) and the EM 
hannel (20000 points) to form a multi-
hannelsample (40000 points).Figure 57 shows the sost 
urve derived from 231448 multi-
hannel samplesand stresses the signi�
antly lower signal to noise ratio in the EM samples(instants 20000 to 40000). Obviously, we will have to use a large numberof points to sele
t p and an even lower noise border in order to for
e thesele
tion algorithm to identify points on the EM 
hannel portion.8.2.1 Experimental resultsWe apply the T-Test Template Atta
k using a redu
ed noise border at 0.1%of the highest peak's value for the point sele
tion algorithm. Sin
e we knowthat p = 13 for the power 
hannel and p = 34 for the EM 
hannel, we for
ethe algorithm to identify up to p = 47 points. With respe
t to the (bad)su

ess rates provided in 8.1, we restri
t our attention to N1 = 231448.We test all 
ombinations of N1 × P×N3 for N1 = 231448, P ∈ {47, 40, 37,115



8 EM CHANNEL AND MULTI-CHANNEL ATTACKS
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Figure 57: sost 
urve of the T-Test Template Atta
k derived from 231448multi-
hannel samples
30, 16}, and N3 ∈ {1, 2, 5, 10}. The results are presented in the usual format.As expe
ted, the point sele
tion algorithm only identi�es instants fromthe power 
hannel portion in the beginning. The �rst eleven sele
ted pointsare the same as for a pure power atta
k. Only three points from the EM
hannel portion are sele
ted, before the last point of the optimal distributionfrom a power atta
k (13 points) is sele
ted. Hen
e, in order to be able to
ompare the results to those from the power atta
k, we provide results for
P = 16 whi
h re�e
ts the sele
tion for a noise border at 1%.The two blo
ks of su

ess rates indi
ate a non-optimal pro�ling. The dif-feren
e between the su

ess rates of trial and real 
lassi�
ation is smallerthan for a pure EM atta
k, but bigger than for a pure power atta
k. Obvi-ously, the intera
ting e�e
ts of the power and EM pro�ling 
an
el ea
h otherout and rea
h an intermediate pro�ling e�
ien
y. Nevertheless, the absolutevalues of the su

ess rates indi
ate 
learly, that the multi-
hannel atta
k is116



8 EM CHANNEL AND MULTI-CHANNEL ATTACKS
N1 = 231448 p = 47 
hannel = Multipoi[℄ 3771, 8551, 9607, 3832, 3894, 9545, 9434, 9490, 3494, 3716,8218, 23819, 9379, 23874, 23764, 9829, 29489, 28208, 23486, 7606,23706, 28544, 29375, 29545, 29600, 29434, 10045, 23986, 25931, 834028321, 24484, 28043, 9773, 28432, 30043, 8410, 9885, 27374, 26429,25429, 7951, 27985, 28376, 8006, 29988, 24539SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1047 26,6 68,5 96,2 99,9 48,5 88,7 100,0 100,040 26,9 69,2 98,4 99,8 41,3 84,3 99,9 100,037 24,7 67,6 98,1 100,0 40,6 84,6 100,0 100,030 26,6 69,5 98,3 100,0 36,6 81,2 99,9 100,016 25,1 66,0 99,5 100,0 29,9 69,9 99,8 100,0Table 17: Su

ess rates (SR) for N1 = 231448 and 
hannel = Multisuperior to the pure power atta
k. Parti
ularly for N3 = 1, one 
an observea gain of up to 17% in the more interesting 
ase of real 
lassi�
ation. Evenif we (theoreti
ally) use the same noise border as for the power atta
k and
ompare the results for P = 16 to those of the power atta
k for P = 13, one
an observe a gain of up to 10%.
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9 CONCLUSION9 Con
lusionIn the 
ourse of this thesis, we profoundly analysed the Template Atta
kand the Sto
hasti
 Model. We identi�ed relevant parameters for ea
h atta
k,analysed their impa
t and explained their in�uen
es on the atta
ks' e�
ien-
ies. For ea
h atta
k, we elaborated weaknesses and strengths.Furthermore, we suggested improvements to both atta
ks with respe
t to atleast one of their weaknesses and proved the in
reased e�
ien
y.We demonstrated that one of the improved atta
ks, even though appliedto noisy EM side 
hannel measurements in a non-sophisti
ated manner, yieldsremarkable results. Due to this in
reased e�
ien
y, we were able to mount amulti-
hannel atta
k whi
h 
an yield results that are noti
eable superior tothose of single-
hannel atta
ks.We were able to show that the assumptions on an adversary's powersshould be weakened in the 
ontext of two-step side 
hannel atta
ks on blo
k
iphers like the Advan
ed En
ryption Standard. In parti
ular we demon-strated, that the training devi
e does not need to be programmable by theadversary, if the utilisation of a �xed key may be assumed.9.1 Further Resear
hWe have 
ommen
ed promising resear
h on further extensions of the ve
-tor subspa
e of the High-Order Sto
hasti
 Model. We add more dimensionswhose sele
tion fun
tions aim at the 
entre of the Sbox lookup, that is theintermediate result after (x⊕ k)−1 in GF(28) and before the a�ne fun
tion.Another approa
h, whi
h we analyse at the moment, are ve
tor bases thatevaluate the logi
 AND sum of several Sbox input or output bits.Sin
e we developed powerful atta
ks whi
h yield su

ess rates of more than25% given a single sample in the 
lassi�
ation step, we plan to analyse theire�
ien
y against prote
ted implementations, in parti
ular AES with booleanand arithmeti
 masking. 118



9 CONCLUSIONDuring the 
ourse of this work, we used a point sele
tion algorithm thatsele
ts at most one point per pro
essor 
y
le. First experiments have shown,that the 
hoi
e of several points per 
y
le, hen
e 
hara
terisation of its shape,
an yield improved results under 
ertain 
onditions.Topi
s that need further investigation are:
• the determination of 
hara
teristi
 di�eren
es, is sost optimal?
• point sele
tion algorithms, one 
an imagine self learning solutions
• 
hoi
es for the ve
tor subspa
e with respe
t to Sto
hasti
 Models
• determination of a measure for side 
hannel quality
• evaluation of the improved atta
ks in EM- and multi
hannel settings,when applied in more sophisti
ated atta
ks (demodulation)
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A MEASUREMENT SETUP ILLUSTRATIONSA Measurement setup illustrations

Figure 58: Langer EMV Te
hnik RFU 5-2 near �eld probe

Figure 59: Dismantled Smart
ard reader
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A MEASUREMENT SETUP ILLUSTRATIONS

Figure 60: Side Channel measurement setup at COSY lab
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B RESULT TABLES - TEMPLATE ATTACKB Result tables - Template Atta
k
N1 = 231448 p = 9 
hannel = powerpoi[℄ 3771, 3828, 3883, 8218, 8551, 9440, 9496, 9551, 9607SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 20,5 56,0 97,8 99,9 19,7 60,3 98,6 100,06 14,2 43,1 94,3 100,0 16,7 47,2 97,6 99,93 8,5 29,2 82,1 99,2 9,7 25,0 81,1 99,6
N1 = 50000 pp = 9 
hannel = powerpoi[℄ 3828, 3771, 3883, 9496, 9607, 9552, 8551, 9440, 19235SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 15,9 45,8 92,5 99,6 23,5 61,9 99,4 100,06 13,5 44,4 93,3 99,7 15,4 52,9 97,6 100,03 9,5 27,5 77,2 98,2 8,0 28,6 83,0 98,5
N1 = 40000 p = 9 
hannel = powerpoi[℄ 3828, 3771, 3883, 9496, 9620, 8564, 9552, 9441, 19235SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 7,0 25,9 75,3 98,0 15,8 53,1 97,3 100,06 9,2 29,9 80,8 98,9 13,5 38,2 92,0 100,03 8,3 26,6 76, 99,0 8,2 28,7 83,7 99,2
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B RESULT TABLES - TEMPLATE ATTACK
N1 = 30000 p = 9 
hannel = powerpoi[℄ 3828, 3771, 3884, 9509, 9620, 8564, 9441, 17790, 19235SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 5,3 15,5 55,0 87,8 13,0 46,1 93,8 100,06 6,2 18,7 68,4 95,2 10,4 32,2 87,2 99,73 6,1 24,0 77,1 98,2 9,9 29,1 85,0 98,9
N1 = 25000 p = 9 
hannel = powerpoi[℄ 3828, 3772, 3884, 9509, 9620, 8564, 17790, 19235, 15289SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 3,4 9,5 32,3 61,5 13,4 42,8 93,7 100,06 6,6 21,0 65,9 96,3 11,4 35,9 89,0 100,03 8,5 24,4 78,1 97,6 9,0 30,7 85,4 99,0
N1 = 20000 p = 9 
hannel = powerpoi[℄ 3840, 9509, 3774, 9620, 8564, 17790, 19235, 14900, 13066SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 0,7 1,5 2,4 3,6 6,7 22,3 74,1 97,86 1,8 1,5 3,1 4,3 5,3 15,5 54,8 89,93 1,4 2,8 6,0 8,5 2,7 7,3 27,4 57,7
N1 = 10000 p = 9 
hannel = powerpoi[℄ 3840, 9509, 4896, 13066, 12677, 10176, 7397, 10565, 10954SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 0.5 0.5 0.1 0.6 0.3 1.0 0.6 1.66 0.8 0.7 0.7 0.8 0.5 0.5 1.0 0.93 1.6 0.2 0.7 0.4 0.4 0.4 1.1 0.8127



C RESULT TABLES - STOCHASTIC MODELC Result tables - Sto
hasti
 Model
N1 + N2 = 231448 p = 9 
hannel = powerpoi[℄ 9496, 9607, 9551, 8551, 9440, 8218, 3828, 9385, 3883SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 4,3 12,6 52,1 90,7 3,3 12,2 63,1 96,36 1,9 8,1 43,0 91,2 3,1 9,4 55,2 94,43 1,9 4,9 23,6 68,5 1,0 6,1 34,1 80,0
N1 + N2 = 50000 p = 9 
hannel = powerpoi[℄ 9496, 9607, 8551 ,9552, 9441, 8218, 3828, 9385, 3883SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 3,5 8,7 37.6 82.6 3.3 10.6 61.7 98.26 2,1 5,9 37.1 79.3 3.2 9.6 55.6 95.93 1.1 6.0 30.8 77.6 2.0 6.7 43.1 88.2
N1 + N2 = 40000 p = 9 
hannel = powerpoi[℄ 9496, 9607, 8551, 9552, 9441, 8218, 3828, 9385, 3883SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 2,1 9,4 36,9 83,0 3,2 11,8 61,7 97,76 2,6 6,3 33,9 80,4 3,1 9,4 59,5 97,03 1,4 5,0 28,4 77,7 3,2 5,7 40,4 91,0
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C RESULT TABLES - STOCHASTIC MODEL
N1 + N2 = 30000 p = 9 
hannel = powerpoi[℄ 9496, 9607, 9552, 8551, 9441, 8218, 3828, 9385, 3883SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 3,4 7,0 42,2 85,7 3,7 13,4 66.5 97.56 1,8 8,2 36,6 83,0 2,7 9,5 59,1 96,53 1,2 3,5 17,9 57,9 1,7 3,6 35,1 81,0
N1 + N2 = 25000 p = 9 
hannel = powerpoi[℄ 9496, 9607, 9552, 8551, 9441, 8218, 3828, 9385, 3883SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 4,4 8,0 39,8 85,3 3,1 13,9 64,1 97,66 2,3 7,1 33,8 80,6 2,4 10,5 57,8 97,13 0,9 4,2 19,2 61,4 1,2 4,6 34,4 81,6
N1 + N2 = 20000 p = 9 
hannel = powerpoi[℄ 9496, 9608, 9552, 9441, 8551, 8218, 3828, 9385, 3883SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 3,0 6,2 27,2 66,7 3,9 13,9 66,3 98,16 2,0 4,5 21,5 61,8 2,0 9,0 58,0 96,03 0,9 1,9 8,8 27,6 1,8 3,6 31,2 83,5
N1 + N2 = 10000 p = 9 
hannel = powerpoi[℄ 9496, 9605, 8551, 9441, 8218, 3828, 15845, 12677, 13344SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 1,0 1,9 16,9 46,9 4,0 10,8 58,3 96,16 1,1 2,4 15,5 49,5 3,2 11,4 53,8 93,93 0,4 1,7 9,7 34,0 2,0 5,2 38,8 88,9129



C RESULT TABLES - STOCHASTIC MODEL

N1 + N2 = 2000 poi = 9 
hannel = powerpoi[℄ 9497, 9439, 8564, 9605, 8230, 3828, 5396, 5118, 4729SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 109 0,6 1,2 3,2 8,9 3,0 6,9 26,7 61,06 1,3 2,3 4,9 12,9 1,9 6,8 32,3 76,13 0,8 1,9 4,1 10,1 0,7 2,2 7,1 20,5
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D RESULT TABLES - T-TEST TEMPLATE ATTACKD Result tables - T-Test Template Atta
k
N1 = 231448 p = 13) 
hannel = powerpoi[℄ 3771, 8551, 9607, 3832, 3894, 9545, 9434, 9490, 3494, 3716, 8218, 9379, 9829SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1013 22,9 62,2 98,9 100,0 24,1 68,4 99,5 100,09 18,4 57,2 98,9 100,0 18,9 58,4 99,3 100,06 15,0 48,4 95,9 100,0 16,1 48,9 97,2 100,03 4,8 17,4 67,9 96,4 5,5 20,7 73,3 98,0
N1 = 50000 p = 13) 
hannel = powerpoi[℄ 3771, 8551, 9607, 3838, 3894, 9545, 9434, 9490, 3494, 3716, 8218, 9379, 9829SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1013 17,6 53,3 96,7 100,0 32,9 75,7 99,9 100,09 15,0 48,1 96,7 100,0 23,8 67,3 99,6 100,06 12,2 44,0 93,8 100,0 16,0 52,9 98,4 100,03 5,3 16,0 66,5 95,5 5,7 21,0 77,9 98,3
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D RESULT TABLES - T-TEST TEMPLATE ATTACK
N1 = 40000 p = 13 
hannel = powerpoi[℄ 3767, 8551, 9607, 3838, 3894, 9546, 9435, 9490, 3494, 8218, 3710, 9379, 9835SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1013 13,7 32,1 85,9 99,6 29,1 71,4 99,9 100,09 10,9 35,2 90,8 99,9 24,5 63,1 99,3 100,06 10,4 37,3 89,8 99,9 18,4 51,7 97,5 100,03 4,9 14,1 64,0 95,0 4,7 23,2 75,8 98,6
N1 = 30000 p = 13 
hannel = powerpoi[℄ 3767, 8551, 9607, 3832, 3888, 9546, 9435, 9490, 3494, 8218, 3710, 9379, 9835SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1013 13,4 31,8 85,8 99,5 31,1 76,7 99,6 100,09 13,3 37,8 88,7 100,0 21,6 66,0 98,8 100,06 9,6 36,3 89,6 99,8 19,6 55,7 98,3 99,93 4,3 12,6 60,0 93,5 6,6 21,3 75,3 98,3
N1 = 20000 p = 13 
hannel = powerpoi[℄ 3771, 8551, 9607, 3832, 3888, 9546, 9435, 9490, 3494, 3716, 8218, 9379, 9826SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1013 12,6 33,0 83,2 99,2 36,7 84,5 99,9 100,09 11,1 33,2 87,1 99,4 26,6 70,9 99,6 100,06 12,9 34,9 89,4 99,6 18,3 57,4 98,4 100,03 3,3 14,6 59,7 93,8 6,4 21,0 78,6 98,9
N1 = 10000 p = 13 
hannel = powerpoi[℄ 3772, 8551, 9607, 3832, 3888, 9546, 9435, 9490, 3494, 3716, 8218, 9379, 9826SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1013 9,1 20,5 58,5 85,4 47,7 93,4 100,0 100,09 8,4 24,1 68,4 94,6 31,0 79,8 99,7 100,06 9,4 31,5 83,0 98,6 21,8 66,4 99,7 100,03 3,7 14,3 54,2 89,6 4,0 22,5 81,1 99,5132



D RESULT TABLES - T-TEST TEMPLATE ATTACK
N1 = 5000 p = 13 
hannel = powerpoi[℄ 3771, 8551 ,9607, 3839, 3894, 9546, 9435, 9490, 3499, 3716, 8218, 9379, 9826SR of real 
lassi�
ation SR of trial 
lassi�
ationnot 
omputable not 
omputable

N1 = 3000 p = 13 
hannel = powerpoi[℄ 3771, 8551, 9607, 3839, 3894, 9545, 9434, 9490, 3494, 3716, 8218, 9379, 9826SR of real 
lassi�
ation SR of trial 
lassi�
ationnot 
omputable not 
omputable
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E RESULT TABLES - HIGH-ORDER STOCHASTIC MODELE Result tables - High-Order Sto
hasti
 Model
N1 + N2 = 231448 p = 10 
hannel = powerpoi[℄ 3774, 9496, 9607, 9551, 8551, 3829, 9440, 8218, 3884, 9385SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 9,8 26,6 84,0 99,5 10,2 33,8 88,9 99,49 9,1 29,7 83,2 99,8 8,8 30,3 88,0 99,96 4,7 22,3 76,6 99,2 8,4 23,6 79,6 99,33 3,1 13,0 55,1 92,1 4,8 15,3 61,7 96,4
N1 + N2 = 50000 p = 10 
hannel = powerpoi[℄ 3774, 9496, 9607, 8551, 9552, 3829, 9440, 8218, 3884, 9385SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 7,9 27,6 82,9 99,2 9,9 32,0 89,2 99,99 8,7 28,3 80,5 99,1 9,6 30,9 87,6 99,66 5,0 19,3 75,1 97,3 5,1 23,6 81,2 99,13 3,5 11,7 55,9 90,8 4,8 14,8 63,3 95,7
N1 + N2 = 40000 p = 10 
hannel = powerpoi[℄ 3774, 9496, 9607, 3829, 8551, 9552, 9441, 8218, 3884, 9385SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 7,6 24,3 77,2 97,5 10,0 32,3 91,6 99,69 6,6 23,2 72,6 97,6 9,5 36,1 88,1 99,86 6,7 18,6 69,7 96,9 6,7 25,2 83,3 98,83 3,4 12,1 49,9 89,8 4,0 16,4 66,3 96,0
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E RESULT TABLES - HIGH-ORDER STOCHASTIC MODEL
N1 + N2 = 30000 p = 10 
hannel = powerpoi[℄ 3774, 9496, 9607, 3829, 9552, 8551, 9441, 8218, 3884, 9385SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 9,3 25,1 73,7 97,7 10,2 33,4 90,2 99,89 8,4 22,5 74,0 98,1 10,1 33,1 90,2 99,96 5,1 22,4 68,3 95,6 6,3 23,0 82,4 99,93 4,2 10,2 52,0 88,1 4,8 16,5 65,6 96,4
N1 + N2 = 20000 p = 10 
hannel = powerpoi[℄ 3774, 9496, 9608, 3829, 9441, 9552, 8551, 8218, 3884, 9385SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 6,6 20,0 65,0 95,49 6,9 18,4 65,1 94,8 10,2 33,4 89,2 99,56 3,3 10,1 41,3 75,7 5,6 21,8 80,3 98,13 2,5 8,2 33,5 73,6 4,1 17,0 64,8 96,7
N1 + N2 = 10000 p = 10 
hannel = powerpoi[℄ 3774, 9496, 3829, 9605, 8551, 9441, 8218, 17679, 18346, 19791SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 5,2 14,6 54,5 88,3 7,9 29,7 89,1 99,89 3,3 12,0 56,8 89,1 8,3 28,1 86,1 99,66 2,6 8,2 38,7 76,4 6,2 23,3 82,1 99,13 4,3 11,1 35,4 71,3 3,4 10,6 40,5 73,2
N1 + N2 = 2000 p = 10 
hannel = powerpoi[℄ 9453, 3784, 3840, 9564, 8564, 6841, 3562, 5396, 5118, 4729SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1010 1,0 0,2 0,2 0,6 1,3 2,1 7,4 9,59 2,1 0,8 0,5 0,8 1,9 2,2 5,1 9,36 0,3 0,7 0,4 0,8 1,0 1,9 3,9 7,63 0,8 0,7 0,9 1,3 0,7 1,3 1,8 3,5135



F RESULT TABLES - T-TEST TEMPLATE ATTACK, EMF Result tables - T-Test Template Atta
k, EM
N1 = 231448 p = 34 
hannel = EMpoi[℄ 3819, 3874, 3764, 9489, 8208, 3486, 3706, 8544,9375, 9545,9600, 9434, 3986, 5931, 8321, 4484, 8043, 8432, 10043, 7374, 6429,5429, 7985, 8376, 9988, 4539, 5484, 8487, 5987, 6487, 7429, 9822,3319, 9266SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1034 3,2 8,1 25,9 51,2 8,1 23,4 67,3 96,124 3,4 8,4 23,3 46,4 6,0 16,2 54,2 89,314 1,9 5,7 17,2 37,4 3,0 9,9 34,0 68,9
N1 = 50000 p = 34 
hannel = EMpoi[℄ 3819, 3874, 3764, 3486, 9489, 9434, 8208, 8545, 9601, 9545,3985, 10043, 9377, 8043, 3706, 8377, 5986, 8432, 7431, 6486, 8487,4541, 5931, 7932, 8322, 9988, 4486, 5429, 7988, 7375, 5484, 6429,9822, 9266SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1034 1,1 2,5 4,0 7,6 35,0 73,0 99,7 100,024 1,8 2,7 5,8 8,6 17,5 47,8 93,1 100,014 1,4 1,4 5,2 9,4 9,4 22,0 71,5 96,8
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G RESULT TABLES - T-TEST TEMPLATE ATTACK,MULTI-CHANNELG Result tables - T-Test Template Atta
k, Multi-
hannel
N1 = 231448 p = 47 
hannel = Multipoi[℄ 3771, 8551, 9607, 3832, 3894, 9545, 9434, 9490, 3494, 3716,8218, 23819, 9379, 23874, 23764, 9829, 29489, 28208, 23486, 7606,23706, 28544, 29375, 29545, 29600, 29434, 10045, 23986, 25931, 834028321, 24484, 28043, 9773, 28432, 30043, 8410, 9885, 27374, 26429,25429, 7951, 27985, 28376, 8006, 29988, 24539SR of real 
lassi�
ation SR of trial 
lassi�
ationP \ N3 1 2 5 10 1 2 5 1047 26,6 68,5 96,2 99,9 48,5 88,7 100,0 100,040 26,9 69,2 98,4 99,8 41,3 84,3 99,9 100,037 24,7 67,6 98,1 100,0 40,6 84,6 100,0 100,030 26,6 69,5 98,3 100,0 36,6 81,2 99,9 100,016 25,1 66,0 99,5 100,0 29,9 69,9 99,8 100,0
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