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Abstract

This work presents the application of Signal Theoretical Methods
to Side Channel leakage of Cryptographic Devices, particularly with
regard to power consumption and electromagnetic radiation. We pro-
foundly analyse the Template Attack and the Stochastic Model and
compare their efficiencies in various parameter settings. Finally, we
suggest and verify improvements of both attacks which yield success

probabilities increased by a factor of up to 5.
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1 INTRODUCTION, OVERVIEW

1 Introduction, Overview

“Cryptanalysis is the study of mathematical techniques for attempting to
defeat cryptographic techniques, and, more generally, information security
services” (8, p.15].

“Cryptography is the study of mathematical techniques related to aspects of

information security such as confidentiality, data integrity, |...]” [8, p.4].

Together, Cryptography and Cryptanalysis comprise the science Cryp-
tology wherein they can be illustrated as oppositions. Cryptanalysis has
a strong impact on Cryptography as it poses as evaluation. Continuous at-
tempts to thwart protection of information provided by cryptographic means
expose their weaknesses and enhance knowledge about them. This leads to
the development of improved cryptographic tools whose security, in turn,
will be questioned. Simultaneously, knowledge gained from cryptanalytic ap-
proaches leads to enhanced analytical methods. This phenomenon is known
as the continuous competition between designers and analysts, or more fa-
miliar, the cat-and-mouse-game. It motivates progress on both sides and so
far, none of the opponents has been able to do the ultimate move that ends
“the game”.

In (classical) Cryptanalysis, the security level of a cryptographic technique is
determined purely theoretically. Therefore, an algorithm that describes the
operation of the technique is considered. Basically, the complexity of an at-
tack against an algorithm is determined from only looking at the underlying
logical structures and is given by a workload estimation. The complexity of
the most efficient attack against an algorithm defines its security level.

But in the last decade, the field of Cryptanalysis has experienced major
changes. Cryptanalysts do not only look at abstract algorithms anymore but
consider their concrete implementations in electronic devices, too. Since the
discovery of implementation attacks, cryptographers have to watch cryptan-
alysts coming up with attacks which easily defeat cryptographic protections
of implemented algorithms which are regarded as secure from a classic point

of view. The difference is crucial: an effective implementation attack does
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not affect the security level of the cryptographic algorithm but the security
provided by its implementation. Hence, there are many algorithms that are
still considered as secure, although there exist effective attacks against non-
protected implementations.

Implementation attacks expand cryptanalysis into the world of physics. Real
devices that execute cryptographic operations deliver much more informa-
tion than only the intended output of the algorithm. The term Side Channel
abstracts all unintended information leakage, e.g. power consumption of the
device. Attacks based on this information are Side Channel Attacks. Side
Channel Attacks have also raised new problems within Cryptanalysis, inac-
curacy has entered the field. While the efficiency of a classic attack is mostly
expressed by computational complexity and therefore comparable to that of
other attacks against the same algorithm, the situation is somewhat different
for Side Channel Attacks. They process measured data of physical observ-
ables to achieve their goal and physics does not only know 0 and 1 but often
prefers numbers like 68,17469. Amongst other factors, the efficiency (or
complexity) of a Side Channel Attack significantly depends on the quality of
the side channel information which in turn is influenced by numerous sources.
These coherences let strong statements on efficiency appear a quite daunt-
ing task and in fact, many publications in this area evade precision when
an attack’s efficiency is  estimated (cp. [16, 14]). So far there exists no
measure for side channel quality (or the resulting complexity) which for the
moment abstracts environmental, device specific, implementation specific,
and measurement specific influences on an attack’s efficiency. A compari-
son of two Side Channel Attacks which obviously requires not only that the
same cryptographic algorithm is attacked, but as well that the underlying
side channel complexity is considered, practically means a comparison under
identical physical conditions.

In this context, we' regard further investigation of known side channel at-
tacks as valuable. We think that understanding more detailed how, why,
and under which circumstances a certain attack works (better than another

one) will lead to more precise conclusions and to progress in Side Channel

! Although I prefer to write “we” than “T”, this thesis presents my personal work.
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Cryptanalysis.

Therefore, the primary goal of this diploma thesis is a profound analysis
and comparison of Template Attacks and the Stochastic Model. In addition
to a comparison of key disclosure success rates, we aim at understanding the
results in order to learn more about each attack’s nature.

Finally, it turned out that we learned enough about the attacks to suggest

and verify improvements for both of them.

This document is structured as follows. Section 2 briefly introduces
Cryptanalysis and Side Channel Cryptanalysis. Section 3 provides the theo-
retical fundamentals used in this thesis, while Sections 4 and 5 give insights
into the practical work which was performed and present the obtained re-
sults. Section 6 comprises the analysis of the results and our suggestion of
improvements, whose revised results are given in Section 7. Section 8 cov-
ers our work on EM and Multichannel attacks. Our conclusion and further

research topics are given in Section 9.
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2 Classical and Side Channel Cryptanalysis

In this section, a transition from classical cryptanalytic to recent side channel
techniques is given. After an introduction to classical Cryptanalysis and the
general idea of side channel attacks, the latter ones will be explored more

detailed. The state of the art is presented and recent problems are outlined.

2.1 Classical Cryptanalysis

From a historical point of view, Cryptanalysis is related to the analysis of
employed cryptographic algorithms in order to find and exploit weaknesses
within their logical structure. Concrete attacks which apply such knowledge
are referred to as Logical Attacks or Cryptanalytic Attacks in literature.

Cryptanalytic approaches are always embedded into a model, often referred
to as attack scenario, that defines a framework, in particular the attackers
abilities and goals. The general approach of classical Cryptanalysis is de-

picted in Figure 1. In this setting, the attacker of a cryptographic primitive,

Cryptographic

Input Algorithm

Output
—_—

Figure 1: Model for classical Cryptanalysis

e.g. encryption, has the following abilities: he knows the cryptographic algo-
rithm, he can choose inputs to the algorithm at his will, and he can observe
its output. For example, in the case of encryption (resp. decryption) an
adversary can observe the output that was computed from chosen input by a
known algorithm using unknown key data. His task is to deduce the unknown
key with the help of all available information. There are many variations of
this attack scenario, which constrict the amount or the nature of usable data.
With the attack framework being defined, the security provided by the cryp-
tographic primitive can be evaluated under several security models. In the
style of varying attack scenarios, security models (un-)limit the attackers

computational resources. A cryptographic primitive is said to be secure un-
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der a certain model, if it resists an adversary with the appropriate powers.
We refer the interested reader to [8, pp.41], which is a rich source for further

details.

For the reason of this introduction, the attention is restricted to the main
characteristic of classical Cryptanalysis: The actual device performing the
cryptographic operation is regarded as a black box. It generates output (e.g.
ciphertext) from the corresponding given input (e.g. plaintext) using the
known employed algorithm and (secret) key data. No further properties of
the black box, in particular its internal operating mode, are known or con-

sidered?.

A classical example for Cryptanalysis of a message that has been en-
crypted with a monoalphabetical substitution cipher (e.g. the Caesar Cipher
[8, p.239]) is the observation of the frequency of letters’ occurrence. Since
the substitution is monoalphabetic, the plaintext’s characteristic in terms
of frequency distribution of the alphabet, which is characterisitic for many
languages, remains intact. Hence it is a reasonable approach to assume that,
for a text of reasonable size, the most common letter in the ciphertext cor-
responds to the most common letter in the plaintext. Then, the key can be
concluded by determining the offset by which a letter gets displaced in the
alphabet.

Two other well-known and more recent examples for (classical) Crypt-
analysis of an employed algorithm are Linear Cryptanalysis and Differential
Cryptanalysis. Both of them arose in the context of the Data Encryption
Standard (DES) [3].

Linear Cryptanalysis was discovered by Mitsuru Matsui in 1992, although
the premisies of its principle were initiated by Henri Gilbert. One year later

he published “Linear cryptanalysis method for the DES cipher” [1], which was

2Note that for reduced versions of algorithms, which in a way make use of intermediate
states, we might create a “smaller” black-box performing only the reduced algorithm such
that the image holds.
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the first successful Cryptanalysis of the cipher reported in the open commu-
nity. In the broadest sense, it analyses the non-linearity of a given algorithm
and comes up with a linear approximation. Matsui discovered that one of
the eight Sboxes used in DES was less balanced than the others which made
it possible for him to mount his attack.

The discovery of Differential Cryptanalysis in the late 1980s is attributed
to Eli Biham and Adi Shamir. In 1991 they published the results of their
analysis of DES in “Differential Cryptanalysis of the full 16-Round DES”
[2]. Simplified, an adversary creates pairs of plaintexts comprising a certain
difference and observes the difference in the corresponding ciphertexts after
encryption. Statistical means are then used to detect patterns in the distri-
bution of the differences.

Since their discovery, both attacks are a basic concern for cryptographers and
newly designed ciphers are practically required to be provably resistant to
them, as is for example DES’ successor, the Advanced Encryption Standard
(see Section 3.1).

2.2 Side Channel Cryptanalysis

Side Channel Cryptanalysis is another step in the continuous competition
between designers and analysts. But it is not only an attack that success-
fully operates where prior attacks are ineffective. Side Channel Cryptanalysis
(abbr.: SCC) is an entire new field within cryptanalytic research which has

potential for various attacks and even attack styles.

SCC is based on side channel information which abstracts all information
preservable from the cryptographic device that is not covered in the attack
scenarios of (classical) Cryptanalysis. In other words, it is information which
is observable additionally to the intended output of the cryptographic algo-
rithm. These leakages carry valuable information about the device’s internal
state. Furthermore it is known that every electronic device® is not only in-

fluenced by an intended input but as well by other factors as for example

3which is not especially protected
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external environmental conditions or physical phenomenons in the device.
Figure 2 shows a model that gives consideration to these facts by newly in-

troduced dimensions. In this model, the device carrying out a cryptographic

l Environmental

Influences
Cryptographic
ﬂ, Algorithm M
Physical
Observables

Figure 2: Model for Side Channel Cryptanalysis

operation is no longer a disregarded black-box. An algorithm’s tangible im-
plementation on the physical device is the central point. The common basis
of all Side Channel Attacks (abbr.: SCAs) is to determine the device’s inter-
nal state from measurements of physical observables in order to deduce the

data which is processed by the device.

The first attack based on side channel information was published in 1995
by Paul Kocher. He showed, how timing information of cryptographic oper-
ations can be used to break implementations of several cryptosystems [13].
In 1998, Kocher et al. published “Simple and Differential Power Analysis”
[14], two attacks that use measurements of the cryptographic device’s power
consumption to disclose secret key material. Electromagnetic emanation was
introduced as a side channel in 2001. Quisquater and Samyde as well as
Gandolfi, Mourtel and Olivier published fundamental works [15, 16].

The following paragraph exemplary shows why the power consumption
of a standard digital circuit 4 carries valuable side channel information.
Almost all digital circuits are build in Complementary Metal Ozide Semicon-

ductor (CMOS) technology, because it is cheap and efficient. But circuits

4and hence of non-protected devices
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Source Source

l-)—
In Out
0 | Source
1 | Ground
K_

Ground Ground

Figure 3: Logic inverter in CMOS technology and truth table

build from CMOS gates also have properties, that can be regarded as disad-
vantageous. The power consumption of logical gates in CMOS technology is
directly correlated to their state. More precisely, the power consumption of
a CMOS gate is directly correlated to its state change. Figure 3 depicts the
simplest logical gate in CMOS technology: a logic inverter. For a constant
input, one of the transistors is insulating and the other is conductive. In this
state, the power consumption of the inverter is negligible as current cannot
flow from source to ground. If the input changes, the conductivity of both
transistors is inverted and there is a small time frame where both of them are
conductive. During this short period of time, current can flow from source
to ground which results in power consumption that is obviously correlated

to the input value’s alteration.

SCAs do not attack cryptographic algorithms but “only” their implemen-
tations. One must not conclude any relation between the security of an
algorithm and a success probability of a SCA against one of its implementa-
tions, or vice versa. Hence, in general all implementations of cryptographic
algorithms are considered to be vulnerable to SCAs, if they are not expressly
protected.

For completeness it shall be mentioned that SCAs are only a subset of pas-
sive attacks against implementations of cryptographic algorithms. Note in
particular that no intentional influence is exerted on the device. [12] provides

detailed information on implementation attacks.
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In the following it is important to distinguish two styles of SCAs because
their approaches fundamentally differ and hence have different requirements.
Sections 2.3 and 2.4 therefore introduce One- and Two-Step Side Channel
Attacks. Section 2.5 compares representatives of both classes with respect

to requirements and applicability.

2.3 One-Step Side Channel Attacks

One-Step SCAs are directly mounted against the device under attack. All
side channel information or meta-information that is used by the attack is

obtained from exactly the one device under attack and during this one attack.

Simple { Power | ElectroMagnetic } Analysis Simple Power Analy-
sis (SPA) and Simple ElectroMagnetic Analysis (SEMA) are known plain-
text attacks. The adversary needs passive physical access to the device to
obtain instantaneous measurement data. He deduces information about the
processed data by e.g. the Hamming Weight leakage model which consid-
erably reduces the brute force search space. SPA/SEMA is particularly of
interest if key bits are processed sequentially by the implemented algorithm,
as for example in modular exponentiation with secret exponents. However,
a disadvantage of this approach is that it requires detailed knowledge about

the implementation.

Differential { Power || ElectroMagnetic } Analysis Differential Power
Analysis (DPA) and Differential ElectroMagnetic Analysis (DEMA) require
samples that represent well-spread® plaintexts and a fixed key k. Hence, they
are known-plaintext attacks if this distribution may be assumed and chosen-
plaintext attacks if not. The adversary needs passive physical access to the
device under attack to obtain many® samples. Based on a sub-key hypothesis
k' € {0,1}", the adversary computes the value of a chosen key-dependent

intermediate result r € {0,1}" for each sample and sorts the samples to

Sapproximately equally likely distributed
6the exact number of required samples, usually 1000 samples should suffice, heavily
depends on several factors which we summarize to side channel information quality
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2™ piles with respect to r. Next, the adversary computes the average avg,
of each pile and then the sum of pairwise differences between all averages,
that is >

quantifies the correlation between the key hypothesis and the correct key,

::OJ.M. avg; —avg;. The height of the peaks in the differential trace
hence the adversary decides for the hypothesis with maximum correlation.
The higher complexity of these attacks compared to SPA/SEMA faces the
advantages that superposed noise is eliminated due to the averaging process
and no knowledge about the implementation is required. It is common sense
that DPA/DEMA are more powerful than SPA/SEMA in the context of
block ciphers, while the relation is rather inverse in the context of Public-

Key techniques.

2.4 Two-Step Side Channel Attacks

Two-Step SCAs consist of two constitutive steps. The first step which will be
referred to as the profiling step requires access to a training device A, which
is programmable to the adversary’s will and identical to the device under
attack B. Note that “identical” should not be interpreted too strictly. It is
common sense that a device A which fulfills the same specifications, e.g. that
comes from the same production as B, suffices. At least for the case of at-
tacks against several block-ciphers, long-term access to a non-programmable
device A, this could even be device B for instance, substitutes the need of a
programmable device A, see Remark 1 in Section 5.1.1.

The second step which will be referred to as the classification step involves
device B in either case. Two-Step SCAs require well-spread inputs to the

cryptographic algorithm in the profiling step.

Profiling Step During the profiling step, an adversary applies differential
and statistical techniques to a large number of side channel samples from de-
vice A to determine the characteristics of the algorithm’s implementation. In
other words: he generates key-dependent profiles of the device’s side channel

leakage.

10
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Classification Step During the classification step, a single or a few side
channel samples” from device B are used to compute, for each profile, the
probability that the samples resemble this profile. The profile, respectively
the key hypothesis, which yields the maximum probability is the best candi-

date and selected.

Inferential Power Analysis Attack |9], published by P.N. Fahn and P.K.
Pearson at CHES 1999, is, to the best of our knowledge, the first attack
complying to our definition of Two-Step SCAs reported in the open commu-
nity. Two more recent representatives of this class of SCAs are introduced in

Section 3 and investigated in this thesis.

2.5 Omne-Step vs. Two-Step attacks

In this section, the requirements and the applicability of One- and Two-Step

SCAs are confronted. Table 1 illustrates a general overview. If a training

Training device | Training device Implementation
not available available known
many measurements (Amplified)
from device B DPA/DEMA | Two-Step Attacks unimportant
one measurement SPA/SEMA | Two-Step Attacks yes
from device B Two-Step Attacks no

Table 1: Requirements and applicability of One- and Two-Step SCAs

device is not available, the choice of a Single-Step SCA depends only on the
number of available curves. Under the reasonable assumption, that a train-

ing device is available, the range of selectable attacks is wider.

Two-Step SCAs gain relevance in consequence of successfully performing
under circumstances that render most One-Step SCAs inoperative.
Consider the following reasonable assumptions for an attack scenario: an at-

tacker might be limited in the number of samples which he can obtain from

"This depends on the attack’s nature.
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2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSIS

device B. Reasons for this include but are not limited to: limited access to
the device or implemented techniques within the device such as non-linear
key updates. In the worst case scenario, this turns into access to only a single
sample. Under this assumption, DPA/DEMA style attacks obviously turn
out to be unmountable.

Furthermore, the implementation of the cryptographic algorithm on the de-
vice might be unknown. One obvious reason for this circumstance is a ven-
dor’s concern in his Intellectual Property. This assumption at least consider-
ably complicates SPA /SEMA style attacks and, in practice, takes them from
the range of choice.

Two-Step SCAs perform well, even if both is assumed simultaneously.

12
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3 Theory

This chapter provides the theoretical basis that later chapters will rely on. In
Section 3.1 we introduce the Advanced Encryption Standard since knowledge
of certain properties of the algorithm is required for this thesis. Section 3.2
gives a short review of all relevant statistical measures and in Section 3.3 and
3.4 the Template Attack and the Stochastic Model are introduced.

3.1 Advanced Encryption Standard

In 1997 the National Institute of Standards and Technology (NIST) invited
the cryptographic community to submit proposals for a new encryption stan-
dard [4]. The new standard would be the successor of the Data Encryption
Standard (DES) which was in place since 1977 and outdated in terms of the
provided security level. At the end of the selection process, during that pro-
posed ciphers were judged not only by their security and efficiency properties
[4], the Rijndael algorithm [5] was chosen and standardized as the Advanced
Encryption Standard (AES) [6] in November 2001. In fact, the AES only
provides a subset of Rijndael’s options. This is due to the fact that NIST
changed the requirements for proposed ciphers during the selection process
when Rijndael’s basics had already been designed. [7| contains the final sub-
mission paper of Rijndael while [5] is a rich source for design strategies and

detailed insights.

Because the AES resists all known forms of classical cryptanalysis and is
considered secure, its implementations are widespread and a basic module in
almost every application that deals with information security. This makes it
an interesting object of studies for SCC but as well a good “tester” for the

efficiency (or complexity) of SCAs.

The following description strictly follows [6] and provides additional infor-
mation where necessary. The AES is a symmetric block cipher that processes
data blocks of 128 bits. Cryptographic keys of 128, 192, and 256 bits in length

can be used, where each key length leads to a specific number of rounds (10,

13
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12, 14) and may be indicated by naming the algorithm AES-128, AES-192,
or AES-256, respectively. During our experiments we only used AES in en-
cryption mode and with a key length of 128 bits (10 rounds). Therefore the

remainder of this document will focus on this variant.

3.1.1 Mathematical preliminaries

AES operates on bytes as its basic unit. Within a byte, single bits are iden-
tified by their index value in the following order: b7, bg, bs, by, b3, ba, by, by.
Hence by stands for the least significant bit, for example. Bytes are inter-

preted as finite field elements using a polynomial representation in GF(28):
7

bz + b + by + baxt + bya® + box® + bix + by = Z b;x" (1)
i=0

In case of the AES, operations over a GF(2%) are defined by the irreducible
polynomial

m(z) =28 +2* + 23 + 2+ 1. (2)

Addition of two field elements can be achieved by consecutively adding
coefficients of corresponding powers in the two polynomials modulo 2, since
they are elements of the prime field, thus € {0,1}. Addition modulo 2 is
equivalent to the XOR operation, denoted by . Furthermore, addition
modulo 2 is equivalent to subtraction modulo 2, which implies that the same

relation is true for the polynomials € GF(2%).

Multiplication of two field elements in polynomial representation corre-
sponds to multiplication of two polynomials modulo the irreducible polyno-
mial m(z). The modular reduction ensures that the result will be a polyno-
mial of degree less than 8, hence an element of GF(2%) and representable by

a byte.

The multiplicative inverse element a(z) of any non-zero element b(z) is

14
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defined by
a(r) -b(r) =1 mod m(r) = a '(z) =b(z) mod m(z). (3)

Further mathematical preliminaries with reference to the AES can be found
in [6], for a wider overview we refer to [8].
We will mostly use hexadecimal notation to present byte values, e.g. {1A}

= 26, but might change to other notations where necessary.

3.1.2 The State Array

AES’ operations are performed on a two-dimensional array of 16 bytes,
arranged in four rows and four columns, called State and denoted by s.
In the beginning of the algorithm, the input data bytes are copied into the
State. After all operations have been performed, the State is copied into
the output, see figure 4 for details. Note that this notation is used both for

encryption and decryption.

input bytes State output bytes
ing ing ing inig 50,0 50,1 50.2 50,3 outg outy outg outyg
iny ins ing imn13 _ 51.0 51,1 51.2 51,3 _ outy outs outg outy3
ing ing inio iniq s2.0 521 S22 s2.3 outo outg outig outiqg
in3 iny inil inis s$3.0 S3.1 $3.2 s3.3 outs outry outyy outys

Figure 4: AES: Input, State, and Output

3.1.3 Cipher

As mentioned above, all transformations are performed on the State. The
cipher begins with an initial Round Key addition, after which the State
is transformed by 9 iterations of a round function. In the end, a slightly
modified final round is applied once.

The round function of the AES algorithm is composed of four byte-wise
transformations. In encryption mode, their order is: SubBytes, ShiftRows,
MixColumns, and AddRoundKey. The final round is identical besides the
missing MixColumns transformation. Figure 5 shows the overall processing

order of an AES encryption.
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Initial Round Normal Round Final Round

—=| SubBytes | —>{ SubBytes |

v \ 4

| ShiftRows | | ShiftRows |

9%

v

MixColumns

Y

A\
AddRoundKeyH L{AddRoundKey|—  [AddRoundKey

Figure 5: Overall processing order of an AES encryption

SubBytes This is a non-linear, invertible byte substitution using a substi-
tution table (S-box). For each byte of the State, the following two transfor-

mations are performed:
1. The byte is substituted by its multiplicative inverse element® in G F'(28).

2. The affine transformation:

b = bi @ b(itaymods D b(it+5)mods D D(i+6)mods ® D(i+7ymods D ¢ (4)

is applied over GF(2) for 0 < i < 8, where b; and ¢; are the i*! bits of
the byte b and ¢, respectively, and ¢ = {63} = 011000115.

The affine transformation can be written in matrix form as shown in Figure
6. The byte-wise effect of SubBytes is illustrated in Figure 7, see [6] for the

complete S-box substitution table.

ShiftRows The ShiftRows transformation cyclically left-shifts each row of
bytes within the State by a certain offset. The offset for each row is given
by its index, e.g. row is not shifted since the offset is 0. Figure 8 shows this

procedure.

8The zero element is mapped to itself
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[ 6 ] 1 00 01 1 1 17 [ bo i [ 1]
b} 11000111 by 1
b/2 1 1100011 ba 0
bl |11110001 by |, |0
vl T lt1111000 by 0
bg 01 111100 bs 1
b, 001111710 be 1

| by | | 0001 111 1] [br] | 0 |

Figure 6: Affine transformation in SubBytes
S-Box
So.0 | So1 | So.2 y——-“ ~ So.0 | So1 | So2 | o3
/I
Sio R S10 v bz | Sus
S’ ¢ S'J‘.c
a0 S21 (S22 S23 Sr0 | S21 | S22 | S23
S30 | S31 | 532 | 533 S3.0 5‘;.1 S:%.z Sl3_3

\) s’
So0.0 | So1 | S0z | Sos S0.0 | Soa | S0z | Sos
So | S [ Stz | Ss @I S| Sz | Ss | S
S20 [ S21 | S22 | 523 @ S22 | S23 | S20 | S22
S3.0 [ 931|532 [ 533 @ S35 | S50 | San | Sa2

Figure 8: ShiftRows, a cyclic left-shift [6]
MixColumns MixColumns operates on the four columns of the State, one

at a time, as can be seen in Figure 10. The four bytes of one column are

treated as coefficients of a four-term polynomial over GF(256%). This poly-
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nomial is multiplied modulo z* + 1 (denoted by ®) with a fixed polynomial
a(z) = {03}z® + {01}2? + {01}x + {02}. Again, the transformation can be

written in matrix notation, see Figure 9. Let §'(z) = a(z) ® s(x):

She 02 03 01 01 S0

) 01 02 03 01 S1e

sC — ’ <

s, 01 01 02 03 5, | fTOse<3
S3. 03 01 01 02 S3.c

Figure 9: MixColumns in matrix notation

MixColumns ()

s Yo 5., | s o Soc S0, | s
0.0 0.2 | Y03 0.0 0.2 | So3
S10 S S12 | 513 Si‘o S S1.2 S;,a
S2.0 S2c S22 523 S2.0 S2¢ S‘lz,z §2.3
Ssof S3c P52 | 555 S50 S.I?.,c 15 | 533

Figure 10: MixColumns processes State columns one-by-one 6|

AddRoundKey This operation adds a 128-bit RoundKey, that is gener-
ated by the key schedule (see next paragraph), to the State. As addition here
means XOR, AddRoundKey can be denoted as State = State @& RoundKey.
Note that during the initial Round Key addition, the originally supplied key
data is used. In the subsequent 9 + 1 rounds, AddRoundKey adds derived

round keys.

KeyExpansion This routine generates 11 RoundKeys that are necessary
for a complete AES encryption or decryption operation. The RoundKeys are
iteratively derived from the supplied key data according to the pseudo code
in Figure 11. Note that in encryption mode, the derived RoundKey for the
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initial Round Key addition is the supplied key.

SubWord() operates on a four-byte word and applies the SubBytes() trans-
formation to each of the four bytes. RotWord() transforms a four-byte array
(ag, a1, ag, az) into (a1, as, as, ag), thus it is a cyclic left shift. The round
constant, Rconl[i] contains the following four bytes (=1, {00}, {00}, {00}),
that include powers of z = {02}.

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)]|, Nk)
begin

word temp

i=20

while (i < Nk)

wli] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])

i=1i+1
end while
i = Nk

while (i < Nb * (Nr+1)]

temp = wli-1]

if (i mod Nk — 0)

temp = SubWord(RotWord(temp)) @& Rcon|i/Nk|
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)

end if

wli] = wli-Nk] xor temp

i=1+1

end while

end

Figure 11: Pseudo code for key scheduling algorithm

3.2 Statistics

All statistical measures we use in the course of this thesis are standard and
well described in virtually every introduction to statistics or complete math
reference book, e.g. |30, 31, 32]. Nevertheless, we give a short review of the
measures, for completeness.

Let n denote the number of realisations x; (i = 1,...,n) of a random variable
X.
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3.2.1 Measures of central tendency

T1+T2+...+Tn

Arithmetic mean (Average) 7=1Y" ;= £

Note that the arithmetic mean converges to the expectation value £(X) (law

of large numbers).

Median If n is odd and n = 2k 4+ 1, then M = x4, thus the middle
element that appears in a sorted list of all x;.
If n is even and n = 2k, then M = %, thus the arithmetic mean of the

two middle elements of a sorted list of all x;.

3.2.2 Measures of dispersion

Variance o%= E(X —7T)?
is a measure of the dispersion of X from its mean Z. If the probability
1

distribution of X is unknown, the sample variance — >_"" (x; —Z)? can be
n—1 =1

computed from realisations z; to estimate o2.

Covariance cov,, = E (X —7)(Y — 7))

is a measure for the linear dependency between X and Y. A positive (resp.
negative) covariance indicates that if X increases Y tends to increase (resp.
decrease). If the probability distributions of X and Y are unknown, the
sample covariance —= 3" (2;—7)(y;—¥) can be computed from realisations

x; and y; to estimate covy,.

Correlation p(X,Y) = <)

oxOoy
is the covariance normalized to be in the range [—1,1]. One advantage of
the correlation measure is that it allows an interpretation of the “strength”

of the linear dependecy. One has p(X, X) = 1.
Covariance matrix Let X = (X3, X5,...,X,,) be a random vector.

cov(X) = (cov(X;, X;)) €R™™ withi,j=1,....,m

The covariance matrix comprises all pairwise covariances of the random vec-
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tor’s elements. For example: let A = (XY, Z), then

o3 cov(X,Y) cov(X,Z)
cov(A) = | cov(Y, X) 0% cov(Y, Z)
cov(Z,X) cov(Z,Y) o2

3.2.3 Measures for the difference of two sets

T-Test The T-Test is a measure for the statistical difference of means of
two random variables. It is an advanced tool to compare two random vari-
ables as it does not only consider the distance of their averages but as well
their dispersion. Let X,Y be two random variables with n, and n, known

realizations, then

-y

t =
0% 9%
Ny Ty

3.2.4 Selected distributions

Gaussian distribution Let 0 > 0. X has a Gaussian (normal) distribu-

tion with parameters T and o? if X has density f(x) = U\}Q? exp <— (I;;)Q).

Figure 12 shows Gaussian distributions for = 0 and several choices of o>
(1; 1,5; 2; 3).

1
-4 -2 0 2 4

Figure 12: Selected Gaussian distributions
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Multivariate Gaussian distribution Let X = (X, Xs,...,X,,) be a
vector of m jointly normally distributed random variables with the vector
of means X and covariance matrix >_. | Y| denotes the determinant of }_.

The joint probability density of X’s elements is given by

1 1 — -1 —

1) = e (500 - 07 - )
(2m)™] 32| 2 2

Figure 13 shows the probability densities of two jointly normally distributed

random variables. In a) they are not correlated at all and in b) they are

correlated with p = —1.

522

SR 775
SRR
LR

LK

Figure 13: a) uncorrelated and b) correlated Multivariate Gaussian densities

3.3 Template Attacks

Template Attacks [10] were introduced by S. Chari, J.R. Rao, and P. Rohatgi
at CHES 2002. Clearly, the Template Attack complies with our definition of
Two-Step SCAs.

In this chapter we describe Template Attacks closely to the original pa-
per. Commencing with the attack’s elementary idea, we give a rough review
of its procedure in Section 3.3.1, underlying assumptions on the side channel
in Section 3.3.2 and a step-by-step explanation with detailed information in
Sections 3.3.3 and 3.3.4.
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Note that we omit the expand and prune strategy that is part of the orig-
inal publication as it is more related to the field of stream ciphers. It was
not required for the side channel cryptanalysis of the AES. Furthermore, a
unique key-dependent computation of a cryptographic device will be referred
to as an operation in the remainder of this chapter in order to be consistent
with [10]. In the context of stream ciphers where the Template Attack was
originally motivated, the authors gave the example of executing the same
code for different values of key bits to elucidate the word operation. For our
experiments in the context of the AES block cipher, we identify an operation
by the value of the AES State array after the initial Round Key addition,
that is x @ k. The motivation of this decision is provided on page 31, see

“Equal Images under different Subkeys”.

Unlike One-Step SCAs that use some hundred side channel samples to
eliminate the noise contained in each sample by computing averages (DPA,
DEMA), the Template Attack extracts and (exclusively) uses the noise to
learn about the implementations characteristics. More precisely: the tem-
plate attack uses precise multivariate characterizations of the (deterministic
component of the) noise and precise estimations of the intrinsic signal within
side channel samples from device A to classify given samples from device B.
The authors argue that especially for CMOS devices these characterizations

are an extremely powerful tool (cf. [10]).

3.3.1 Template Attacks in a nutshell

In the profiling step, a training device A is used to generate representations
of the signal and multivariate characterizations of the occurring noise in side
channel measurements for all possible operations of the device. A pair of
models for signal and noise is referred to as the template of the operation. In
the classification step, the maximum-likelihood approach is used to compare
the noise within one sample from device B to these templates in order to
deduce the performed operation. To successfully determine the underlying

operation is equivalent to key disclosure, because the operation is x & k and
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x is known.

3.3.2 Model for side channel observables

The observable, i.e. side channel information, is modeled as a combination
of an intrinsic signal, intrinsically generated noise and ambient noise. When
side channel samples of several invocations of the same operation are con-
sidered, their signal component is the same whereas the noise component is
best modeled as a random sample from a noise probability distribution that
depends on the environment and operational conditions.

Obviously, an attack’s success rate is limited to some bounds by the imple-
mentation of an algorithm on a particular device. A perfect model of the
noise probability distribution would lead to a success rate of the Template
Attack that meets these bounds in theory. Nevertheless, approximations such

as the multivariate Gaussian model are ought to perform well in practice (cf.

[10]).

3.3.3 The profiling step

For each of the K possible operations? of the device a large number L (e.g.
one thousand) of side channel samples has to be obtained using device A.
The subsequent steps determine the K templates from these samples, one

for each operation.

Intrinsic signal The first part of each template is a precise representa-
tion of the intrinsic signal that can be observed during an invocation of
the corresponding operation. The Template Attack’s empiric approach to
generate this representation is to suppress the noise within the appropriate
samples and use the remaining signals to determine the typical signal. Both
is achieved at the same time by computing the average M; from the L sam-
ples that correspond to operation O; for all = 1, ..., K operations. In ideal
case, M; contains in fact a very precise estimation of the intrinsic signal as

the noise components average out at 0 and the remaining average signal is a

9recall that an operation is defined by x @ k in the AES context
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very good estimator in the absence of outliers'®.

The next step is optional but highly advisable in practice because it sig-
nificantly reduces the attack’s costs (processing time, storage) with only a
small loss of accuracy. It is almost sure that not all moments covered by the
side channel samples are of interest to an attacker, thus this step deals with
identification and selection of interesting points in time.

Computing pairwise differences between the average signals M; yields a curve
that shows large spikes at points where the underlying signals (and thus oper-
ations) differ. Only these points are of interest to an attacker. The Gaussian
model applies to W points (Py, ... ,Py) that were chosen along the spikes.

The original publication does not declare how exactly these points should be

chosen. Our insights on this issue are given in Section 5.1.2, Step 4.

Multivariate noise model The second part of each template is a precise
characterization of the noise that can be observed during an invocation of
the corresponding operation. The Template Attack assumes that the noise
approximately has a multivariate Gaussian distribution, hence the covari-
ance matrix ZNZ, describing the probability density of the noise is computed
consecutively for all operations in this step.

First of all, the noise within the samples has to be extracted. For each op-
eration O; all L noise vectors N;(-) of the samples need to be computed.
Thereby one W-dimensional noise vector N;(T') of sample T is the difference
of the sample T" and the average signal M; at the chosen W instants. More

formally:
Ni(T) = (T(P1) — Mi(P1), ..., T(Pw) — M;(Pw)) ()

Then the noise covariance matrix ), can be computed using the L noise
1

vectors N;(T) for each operation O; ''. The elements of the covariance matrix

19The Median might be used to gain better results while its computation is more costly.
Recall from 3.2.2 that a covariance matrix consists of the pairwise covariances of a
random vector’s elements.
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>, are defined as:

ZN. [u,v] = cov(N;(P,), N;y(P,)), (6)

7

where v and v denominate two of the W chosen points in time, e.g. the pair
{P., P,}. Note that computation of ) [u, v] for u < v suffices because )
is a symmetric matrix.

After this step all K templates (M, ), ) are computed. The expected signal
for operation O; is M; and the noise probability distribution is given by the
W-dimensional multivariate Gaussian distribution py;,(-). The probability of

observing a noise vector n is:

1 1
N (n) = exp [ —=nT X,ln ., neRY 7
P e (i) ne "

where | ), | denotes the determinant of ), and z]_vj its inverse.

3.3.4 The classification step

The situation of the classification step is as follows: an attacker obtains one
side channel sample S from the device under attack (B) and wants to find
out which of the K possible operations it descends from.

This step primarily comprises a maximum likelihood hypothesis test, hence it
is less costly in computational efforts. For each operation O; the probability
of observing S if indeed it originated from O; is computed. To do so, first the
W-dimensional noise vector n within S has to be extracted by subtracting M;
from S at the W selected instants (M, is part 1 of template;). Then equation
(7) can be evaluated for n using ), (part 2 of template;) to get the actual
probability. Finally, the operation O; that yields maximum probability is
selected.

As one is rather interested in a ranking of the candidates O; than in the

actual probabilities, the formula can be simplified by disregard of constant
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terms in (7). If so, the operation that minimises

(13, 1)+n"Y ‘n ner” (8)

is selected.

3.3.5 Use of Template Attacks against AES

In the original paper the authors describe an “expand and prune” strategy
that is particularly useful when analyzing side channel samples of stream
ciphers. If the attacker uses this strategy, profiling and classification build a
recurring cycle which means in particular that the vast effort of the profiling
step cannot be precomputed.

In contrast, if the attacked key is known to be sufficiently small or assail-
able in such blocks (e.g. this is true for all block ciphers with the property
that each block of the first roundkey only depends on one original key block)
the profiling can be done independently before or after obtaining S from the
device under attack. This might be of importance for such cases where the
period between obtaining the sample S and key recovery is a critical factor.
For example: to recover an 128-bit AES key in the way we present in this
thesis an attacker has to compute “only” 2% - 16 = 4096 instead of 2'?® tem-
plates, which would be clearly infeasible. The attacker can precompute all
these templates and - after obtaining S - immediately start the classification

step which takes only a few seconds, even on an ordinary home computer.

3.4 Stochastic Model

The Stochastic Model [11] was published by W. Schindler, K. Lemke, and
C. Paar at CHES 2005. It is the third attack in the class of Two-Step SCAs

since it definitely shows the necessary properties.
In this section we present the Stochastic Model close to the original con-

tribution. As in the previous section we begin with the attack’s fundamental

idea after what we give a short review of its overall procedure in Section 3.4.1
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and explain the mathematical model in Section 3.4.2. Detailed information

on the approach is then given in Sections 3.4.3 and 3.4.4.

The Stochastic Model, as the name leads one to assume, is a fairly so-
phisticated approach that uses several statistical methods and is based on a
well defined, elaborated mathematical model. However, for the sake of com-
prehensibleness we will skip all formal proofs and theoretic considerations
that we find unnecessary for the reader to understand the attacks’s concept.
Therefore we refer the interested reader to [11] for proofs, details and deeper
understanding.

Furthermore, several aspects that we bring forward might sound redundant,
like repetitions from Section 3.3. We do so anyway, rather than pointing to
the Template Attack, in order to give a complete review of the Stochastic
Model that can be read on its own. On the other hand we omit the minimum-
principle approach at key extraction because it was already expected and
experimentally proven to be less efficient in the original publication. The
Stochastic Model aims at block ciphers, its adaptability to stream ciphers is

unknown.

The Stochastic Model extracts and uses the noise contained within side
channel samples to disclose secret information. This stands in sharp contrast
to all known One-Step SCAs which see noise as a hindrance. More pre-
cisely: the Stochastic Model uses one precise multivariate characterization
of the (nondeterministic) noise in conjunction with an approximation of the
deterministic signal in a chosen vector subspace to classify given samples.
The authors argue that due to approximation of the deterministic signal the
Stochastic Model’s success rate is bounded upwards by the Template Attack
which estimates the signal as good as possible. On the other hand, far less'
measurements would be required in the profiling step. Our investigation of
efficiency differences and explanatory approaches are provided in Section 5

and thereafter.

25avings in the dimension of up to 100 are mentioned in the case of AES
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3.4.1 Stochastic Model in a nutshell

In the profiling step, a training device A is used to approximate its real
side channel leakage function in a chosen vector subspace and to generate
a multivariate characterization of the occurring noise. The training curves
are assumed to represent all key dependencies uniformly distributed, in the
concrete case of AES that is they are uniformly distributed for x ® k. In the
classification step, the maximum likelihood approach is used to compare the
sample(s) from device B to the approximated leakage function in order to

deduce its key dependency.

3.4.2 The mathematical model

The model’s underlying setting is as follows: an attacker has access to side
channel samples (e.g. of an encryption) and a part of the corresponding
plaintext'® z € {0,1}?. His task is to disclose a subkey &k € {0,1}*.

For any given instant ¢ (covered by the samples) the measurement is regarded

as a realization of the random variable
Ii(x, k) = h(z, k) + Ry 9)

that is composed of two parts. The first part hy(x, k) denotes the portion of
the sample that depends on x and k and will be referred to as the determin-
istic part. The second part R; denotes the portion that does not depend on x
and k and will be referred to as the random part. Since both portions (thus
the entire sample) additionally depend on the instant ¢ the random variable
could be expanded to the discrete function I(z,k,t) = h(x,k,t) + R(t) to
cover this fact. Nevertheless, to be consistent with [11] we will stick to the

notation in (9) and consider single instants where not indicated differently.

The deterministic part can be seen as an unknown mapping h; : {0, 1}? x
{0,1}* — R that assigns a real value, e.g. power consumption, to each com-
bination of plaintext and key bits. F := {h’: {0,1}? x {0,1}* — R} denotes

13 adaption to known-ciphertext scenarios is feasible
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the infinite set of such mappings. The most precise and costly approach to
attack an implementation clearly aims at finding A’ € F such that A’ = h;.
In other words, the adversary has to find all 2P assignments to uniquely
identify A’ = h;. In case of an attack against the AES targeting one Sbhox at a
time, which means x, k € {0, 1}%, this leads to 2'® mappings'® per Sbox. The
Stochastic Model significantly reduces this effort by approximating h(x, k)
in a vector subspace and by exploiting an elementary property of the phys-
ical observables, if applicable. A full description of these steps is beyond
the scope of this thesis, therefore we will skip their derivation and straight

provide the results (all details and proofs can be found in [11]).

The idea is as follows: an adversary determines a small u-dimensional
vector subspace F,; C F which contains a mapping h* that either is indeed
the searched mapping h; or at least sufficiently close to it. In this subspace,
he only has to find u assignments to uniquely identify h*.

Fu is regarded as the set of all mappings h' € F that can be expressed
in the u-dimensional vector subspace spanned by w known functions g;; :
{0,1}? x {0,1}* — R. In formal notation:

u—1
Fu = {h’ {0,1}P x {0,1}* =R | K = Zﬁj -gjt} with 8, € R
=0

(10)
The success rate of the attack is strongly coupled to the choice of F,; thus
the functions g;;. Once they are chosen, the coefficients (3, ..., 3,1 can be
estimated for each instant t. Apparently, the number of required samples
in the profiling step increases with the number of dimensions u, if the same
level of precision is aspired for the 3;;. One might see this as a trade off
problem for a fixed number of samples in the profiling step: a small num-
ber of dimensions u reduces the searchable space, which might exclude good
candidates h' € F but gives better estimators for the best A* still included

in F,.; a large number of dimensions u will more likely include a very good

14This is the approach of a naive Template Attack. However, our Template Attack
requires 2° assignments, see EIS on page 31.
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candidate A* but its estimators will be less precise.

On the choice of the functions g;: if the physical observables show a
certain property (cf. “Equal Images under different Subkeys (EIS)” in [11]),
an almost lossless reduction of F is possible. With [ossless we address the fact
that this reduction decreases the number of candidates h’ without “loosing” a
single one. This is possible because the nature of the candidates is changed.
Consider an arbitrary set V' and a (surjective) mapping ¢(z, k) — V for
which the images of ¢({0,1}* k) C V are equal for all subkeys k € {0,1}".
The deterministic portion of the samples h;(z, k) is said to have the property
EIS, if h, can be expressed as a function of ¢, i.e. h; = ¢oh, for an appropriate
mapping hy. If hy has (or is assumed to have) the invariance property EIS,
the authors suggest to select functions g;; that can be expressed as g;; =
¢ og; with g, : V — R. This leads to the following expression for the best

estimator hj:
u—1
hi=¢0Y Bii-Tuly) BupeRyeV. (11)
=0

The gain of exploiting the EIS property can be illustrated as in Figure 14.

EIS l
s =25y 2By

Figure 14: Reduction of the vector space exploiting the EIS property

The decision, whether this property should be assumed or not, can be made
considering only the abstract algorithm. Nevertheless, due to lack of a perfect
model of the physical device, a proof of the property can only be adduced

empirically by experiment.

3.4.3 The profiling step

The number of side channel samples that is necessary for the profiling step is
linked to the number of dimensions of the vector space in which the adversary

approximates the real leakage function (see above). However, the original
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contribution does not quote a specific number but compares several choices
in terms of their efficiency at key extraction. Our studies on this are given
in Section 6.4.2. Let us assume the adversary decides for a u-dimensional
vector space and obtains two sets of N; and N, side channel samples using
device A. The subsequent steps compute the approximators h;, in other
words a function h*(x, k,t), for the deterministic portion of the side channel

information and the multivariate characterization of the noise R;.

Approximation of h; Let z; € {0,1}? (j =1,..., N;) be the known parts
of the plaintext and 4;(x;, k) be the side channel measurement at instant ¢
that corresponds to x;.

The approach uses the Least Squares Method to find an optimal approximator
h* € Fu. of iy. For any approximator b’ € F,, the sum of squared deviations

from the real leakage function i; can be denoted by

Ny

> (ielay, k) = W (25, k)* = i — Ab])*. (12)

J=1

As iy resp. A and i; are taken for granted (see below) the optimal approxi-
mator h* that minimises the left hand side of (12) is uniquely identified by
any vector b that minimises the right hand side of (12). b can be found by
evaluating

ATAb = ATi, = b= (ATA) A7, (13)

if AT A is invertible.

The adversary begins with determining the (N; x u) - matrix A. Each
matrix element a;; (¢ = 1,..., Ny and j = 0,...,u — 1) is defined as a;; :=
gj(wi, k) resp. g;(o(x;, k)) exploiting EIS.

Hence the adversary traverses all N; plaintexts whereat he evaluates the
functions g each time. Then he computes the (u x u) - matrix AT A and (if it
is regular) the (ux Np) - system matrix S = (AT A)~1AT. The system matrix
is time invariant and needs to be computed only once wheres the vector i;

and hence the vector b have to be found separately for each instant ¢.
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91(¢(x1, k) ga(@(21, k) Gu(d(1, k)
Ao gi(o(z2, k) g2(d(z2, k) Gu(P(22, k))
96w 1) 0a(0lan k) o gu(dlen,, k)
Figure 15: Design Matrix A exploiting EIS property
The column vector i; is defined as (i;(z1, k), ..., % (zn,, k))T. For each in-

stant, ¢, the adversary extracts the measurement for ¢ from all N; samples
and computes b = S -i;. Every b has dimension v and contains the coeffi-

cients (0, ..., 0, ;) for the optimal approximator h} = Z;‘;& B; g;i(z, k).

The next step is optional but highly advisable in practice in order to
reduce the computational effort of the attack with only a small loss of accu-
racy. It is almost sure that only some instants covered by the side channel
samples actually carry valuable information, therefore this step deals with
the identification and selection of interesting points in time tq,...,t,,. The
authors do not make a statement on how these points can be found in the
theoretic part of the publication. Yet, the experimental analysis part shows
several approaches based on the euclidean vector norm ||(by ¢, . .., by—14)| and
compares them in terms of efficiency at key extraction. For the moment we
simply go on with the set ¢1,...,t, provided by an oracle. Our experiences

in this field are given in Section 5.1.2, Step 4.

Multivariate Characterization of R; In the Stochastic Model the noise
within the side channel is assumed to be independent of x,k, i.e. non-
deterministic, and to roughly show properties of a multivariate Gaussian
distribution. The subsequent steps compute the covariance matrix C' that
characterizes the noise probability density.

Let R; denote a random vector (Ry,,..., Ry, ) with t1,...,t, being the se-
lected instants. The adversary uses the approximators h; to extract the
noise within the j = 1,..., Ny side channel samples i;(x;, k) from the second

set. More precisely, he computes Ny noise vectors of dimension m whereas
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each noise vector is the difference between a sample and the corresponding

approximated deterministic part. More formally:
Ry = i, k) — i (a5, k) (14)

Then, the covariance matrix C is computed!'® using the N, noise vectors R,.

Each matrix element ¢;; (1 <i,7 <m) is defined as

cij = cov(Ry(i), Re(5)) (15)

with ¢ and j being two of the m chosen points in time. Note that the covari-
ance is symmetric and hence computation of all ¢;; for + < j suffices.

The computation of the matrix C completes the profiling step. The deter-
ministic part hy(x, k) of the side channel leakage is approximated by h}(x, k)
and the random noise R; is characterised by the m-dimensional probability

density fc.

. mo_, — 1 x _1 T ~—1 m
fo: R R fo(z) —(27r)m|0\ exp( 5 Cz), zeR (16)

where |C| denotes the determinant of C' and C~! its inverse.

3.4.4 The key extraction step

This step basically comprises a maximum likelihood test hence it is less costly
in computational efforts than the profiling step. The setting for the key ex-
traction step is as follows: the adversary had (limited access) to device B
and obtained N3 side channel samples s,(z;,k°) (j =1,..., N3) with known
plaintexts x;. Now he wants to disclose the secret key k° that was used by
device (B).

By assumption the noise in the side channel did not change, i.e. the

noise vector z;; = s¢(x;, k°) — hj(z;, k) has a multivariate Gaussian distrib-

5Recall from 3.2.2 that a covariance matrix consists of the pairwise covariances of a
random vector’s elements.
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ution with covariance matrix C. For each key hypothesis £ the probability
of observing z;; if k is indeed the right key can be evaluated with (16). The

adversary combines these probabilities for all N3 samples, i.e. he evaluates
N3 N3
L1 fo(zy) = T folsila, k) = (), k))) (17)
j=1 Jj=1

for all subkeys k € {0,1}*, and decides for the key k that maximises the
term.

As one is rather interested in a ranking of the key hypothesis than the actual
probabilities, the formula can be simplified by disregarding constant terms

in (16). If so, the adversary decides for the key k that minimises
N3

Zz;‘-rC’_lzj. (18)

J=1
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3.5 Compendium of differences

The following table shows the fundamental differences in the approaches of
both attacks. For correctness we denote, that (non)deterministic shall be

understood as (non) dependent on the relevant data, e.g. the key.

’ Sample portion H Template Attack ‘ Stochastic Model ‘
signal deterministic, estimated deterministic, approximated
— 256 average signals — 9 sub-signals
noise deterministic, characterised | non-deterministic, characterised
— 256 cov matrices — one cov matrix

Table 2: Fundamental differences between Template Attacks and the Sto-
chastic Model

Remarks of the original authors:

The Template Attack extracts all possible information available
in each sample and is hence the strongest form of side channel
attack possible in an information theoretic sense given the few

samples that are available. [10]

Though our efficiency at key extraction is limited by template
attacks profiling is much more efficient which is highly relevant
if the designer of a cryptosystem is bounded by the number of

measurements in the profiling step. [11]

Our insights on the efficiency of both attacks are given in Section 5 and

thereafter.
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4 Acquisition

This section deals with the acquisition of side channel samples. First, we
will give a general outline of the side channel measurement work flow. Then,
in the succeeding sub-sections, we will go over the different steps we had to

process and provide detailed information.

4.1 Side Channel measurement work flow

In general, Side Channel Cryptanalysis requires a large number of precise
measurements where each acquired sample needs to be stored for later analy-
sis and all measurements should ideally be done in the same fashion and in
a non-changing environment. Obviously, these requirements in terms of pre-
cision, constance, and speed can be faced by a high degree of automation.
Usually, a Personal Computer is a central point of a setup and used to oper-
ate and coordinate all other devices as well as to store obtained measurement
data. A digital oscilloscope (scope) is needed to perform the actual measure-
ments and the necessary A/D conversion. Depending on the type of attack,
one or several probes are required to link the scope to the device that is exam-
ined. For completeness we mention that further material might be necessary
in order to put the devices into operating state and link them to the PC
(power supplies, Smartcard reader, boards for I/O communication). Figure
60 shows the relations between the devices and the sequence of operations

(within one measurement cycle).

Step 1 Initially, the scope needs to be setup with several parameters, like
for example duration and resolution, and calibrated, such that the mea-
surement range is used to full capacity. Normally, both can be done
either manually or by software tools that communicate with an inter-

face of the scope.

Step 2 An instruction to carry out the operation once is sent to the crypto-
graphic device. Optionally, additional commands are sent to the device

in order to change parameters as for example the plaintext.
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2
I v
Personal 1 3 Crypto
Computer > Scope [+ Device
A A
4 3 |—3 .
Probe(s

Figure 16: Side Channel measurement setup

Step 3 During the execution of the operation, the side channel information
is acquired by the scope. It is highly advisable to synchronise the
scope’s and the device’s operation, e.g. by means of a trigger signal, in

order to limit storage efforts.

Step 4 Once the execution of the operation is finished by the device and
the sample is recallable from the scope’s memory, it is transferred to
the PC for storage.

For further measurements, Steps 2 to 4 can be repeated in a cyclic way.

4.2 Micro Controller, AES Implementation

We used a so called Funcard [17| for our side channel measurements. In op-
position to “normal” Smartcards, the microcontroller (uc) and the memory
module are not monolithicly integrated, but wired, and embedded into the
card body. Our Funcard contains an 8-bit RISC ATMega 163 puc [18] in Har-
vard architecture concept (separation of data and program memory). The
internal memory of the puc is limited to 16KB FlashROM program memory,
512 Bytes E2PROM (permanent) memory, and 1KB SRAM (non-permanent)

data memory.

To bypass the daunting task of low-level I/O-programming we availed us
of the Simple Operating System for Smartcard Education (SOSSE) [24], a

modular open source operating system. It abstracts from the hardware layer
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and provides the ISO standardized T=0 protocol (ISO 7816 [25]) for byte
wise half duplex transmission of Application Protocol Data Units (APDUs).

The AES encryption algorithm was implemented straight forward accord-

ing to [6] in Assembly language using the Atmel AVR Studio 4 IDE [26] with
only one modification. We combined the SubBytes and ShiftRows transfor-
mation so that the result of SubBytes would be directly inserted into the
State array at the right position. Furthermore, we added some lines of code
that generate a trigger signal on the Smarctcard’s I/O pin just before the
initial Round Key addition begins, to synchronise the scope.
After we verified that the code works correctly, we integrated the AES en-
cryption into SOSSE so that it could be invoked by an APDU command.
Furthermore we added an APDU command to load a 128-bit key into the
E?PROM. Then, SOSSE was compiled with the avr-gce [27] open source
cross compiler and the hex-files programmed onto the card (FlashROM and
E?2PROM) with the MasterCrd and MasterBurner software |28|.

4.3 Acquisition setup, Parameters for measurements

In this section, we provide details about our acquisition setup and the para-

meters we used.

Digital Oscilloscope Agilent Infinium 54832D Mixed Signal Oscilloscope;
key data: Bandwidth 1 GHz, Channels 4+16, max. sample rate 4GSa/s,
Acquisition memory 2Mpts/channel [19]

Probe Agilent 1165A Miniature passive probe; key data: Division ratio 10:1,
Input resistance 10M€ [20]

EM Probe Langer EMV Technik near field probe RFU 5-2; key data: ac-
quires surface and circular magnetic fields (see Figure 58 in appendix
A), Resolution ~ bmm [21]

Preamplifier Langer EMV Technik preamplifier PA 303 connected to the
EM probe; key data: Amplifying 30dB, Noise figure 4,5dB [22]
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Card Reader CHIPDRIVE micro card reader, dismantled to ease access
(see Figure 59 in appendix A) and to connect external, low-noise power

supply (see below); key data: ISO 7816-3 conform, clock frequency 3.57
MHz [23|

DC Power Supply Statron direct current power supply

To dismantle the Smartcard reader eased access to its internal wiring. We
soldered a 47(2 resistor into the ground of the card’s power feed and used an
Agilent Probe (channel A) to measure the potential drop over the resistor.
The usual Smartcard power supply, which is done by connecting the reader
to a PC’s serial port, was disconnected and replaced with the Statron DC
power supply. According to [29], the card’s supply voltage is 5V + 10% and
the maximal current consumption is 10mA. Hence, the voltage drop over
the resistor would not excess 10mA - 47€) = 470mV. Accordingly, we set the
Statron device to supply 5.5V.

We connected an additional wire to the 1/O pin of the card reader and di-
rected its other end to the outside so that the second Agilent probe (channel
B) can detect the trigger signal.

The card holding socket was attached headfirst, so that the contact area of
the Smartcard pointed down. Preliminary tests showed that the contact area
partly shields EM emanation. Furthermore, we unsealed the card reader’s
backside in the chip area to bring the EM probe as close to the chip as pos-
sible. The EM probe was connected to the scope (channel C) through the

preamplifier. Figure 60 in appendix A shows our overall setup.

The scope was set to obtain samples of 20000 points at a rate of 200MS /s
from channels A and C after detecting the trigger signal on channel B. Each
point was sampled in 8-bit resolution. The 20000 points cover 100us which
matches the time that the card needs to compute the initial Round Key
addition and the first normal round of an AES encryption. With the cards
clock frequency being 3.68MHz, one clock cycle takes ~0.27us and for each

of the ~360 covered clock cycles ~55 points are sampled.
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4.4 Fixed key, Variable key

Altogether, we carried out three sets of measurements for our experiments.
As our main focus is Two-Step Side Channel Cryptanalysis, we obtained at
first a pair of sets of measurements. One large set for the profiling step and

one smaller set for the classification step.

Fixed key We began with carrying out a pair of sets of measurements
using a fized key. Our approach aims at recovering the 128bit AES key k
in portions of 8 bits, thus we represent the full key as a concatenation of
16 subkeys k; (j = 0,...,15). The plaintext z is represented in the same
manner, i.e. = (x1,...,r15). The first set of measurements is supposed to
serve the profiling step. We used a fixed key k£ and plaintexts z, randomly
chosen from a uniform distribution, to obtain (following the recommendations
in [10]) ~1000 samples per operation (z;@®k;), a total of 231448 samples. For
the second set, we loaded a different key k* onto the Smartcard and again
used random plaintexts x to obtain 3000 samples. This set is supposed to
serve the classification step.

Figure 17 shows the distribution of the samples within the first profiling set
with respect to zg, i.e. the first plaintext byte. Since this set was obtained
using a fixed key, the distribution could be permuted by &kq to then illustrate
the distribution of zq & k.

Variable key Because of several observations that we made while working
on the samples of the first pair of sets of measurements (see Section 5, step 4,
observation 1), we decided to carry out a third measurement set. This time
the plaintext x and the key k were chosen randomly before each invocation of
the encryption operation. As before, we obtained a set of ~256000 samples
for the profiling step. Figure 18 depicts the distribution of the samples within

the second profiling set with respect to xq ® ko.
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Figure 18: Distribution of second profiling set with respect to xo & kg
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5 Experimental Results - fixed key

In this section we outline our implementations of both attacks, provide con-
crete results, and report in detail on the experience we gained working on
the samples of the first pair of sets of measurements.

All programs were implemented in C-language and all computations on side
channel samples were carried out in 64-bit floating point precision'®.
Section 5.1 deals with the Template Attack and Section 5.2 with the Sto-

chastic Model. In Section 5.3, we compare both attacks.

5.1 Template Attack

The authors of [10] claim, that the Template Attack is the “strongest form of
side channel attack possible in an information theoretic sense”. The results
we present later on will, depending on various circumstances, support and
disprove this statement. Furthermore, the authors argue that within their
assumptions (see later on) Template Attacks are superior to SPA- and DPA-
style attacks, as in the former case all available information in each side
channel is used. We agree on the superiority of Template Attacks, see Section
3.5.

5.1.1 Remarks and Improvements (1)

REMARK 1 (concerning the profiling step): We point out that if the samples
were obtained in a way as described in Section 4 (fixed key), device A does
not need to be programmable and even knowledge of the employed key is
unessential. The amount of samples an adversary possesses after the profiling
step is far more than enough to disclose the employed key in a DPA attack.
In fact, we were able to extract the full 128-bit key k£ both using one thousand
samples from the power channel and using one thousand samples from the EM
channel. Figure 19 exemplarily shows the resulting peaks in the correlation

curves for the correct subkey k.

16data type double on a 32-bit Intel Processor with a ported GCC
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Figure 19: Correlation curves for the correct subkey ky = 0x3C on the power
channel (left) and the EM channel (right)

This observation weakens the assumptions about an attacker’s minimal
powers in order to successfully mount a Side Channel Attack against the

AES. The remaining minimum requirements are:

e availability of a device A that is identical to device B so that an adver-
sary can attach the necessary probes and carry out the required amount

of measurements

e either knowledge of the plaintexts if their distribution may be assumed

to be approximately uniform

e or ability to chose plaintexts so that they are approximately uniformly
distributed.

IMPROVEMENT 1 (concerning the choice of interesting points in time):
Carrying out preliminary tests we quickly discovered that the sum of pair-
wise differences of the average signals, i.e. ijzo m; —m; for 7 > 1, is not
an optimal basis for choosing the interesting points in time. This is due to
the fact, that positive and negative differences add up to 0. While this effect
is desirable to filter eventually present noise, it hides as well valuable peaks
that derive from significant signal differences with alternating algebraic sign.
Therefore we implemented two more measures that served as the basis for

this choice.
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The first one computes the sum of absolute pairwise differences of the
average signals ij:o |m; —mj| for j > i so that the hiding effect does not
emerge anymore for the cost of a noise floor % 0.

The second one computes the sum of squared pairwise differences of the av-
erage signals ijzo(mi —m;)? for j > i so that large differences become
magnified while very small differences become reduced. Again, a noise floor
% 0 is the price.

Figures 20 and 21 (see pp. 49) depict the three measures for the cases that

the average signals m; were computed from 231448 power channel samples.

IMPROVEMENT 2 (concerning the classification step): The original Tem-
plate Attack only provides a sample classification strategy based on a single
available sample. While this seems to be a realistic scenario in the context
of stream ciphers'?, the situation might be less tight in the context of block
ciphers. To pay tribute to the eventuality that several samples are available
in the classification step, we developed a differential strategy that processes
several samples.

For every available sample, we compute the probabilities that the sample
represents this or the other operation O;, e.g. xy ® ko, in the “traditional”
way. Then, we purge the offsets between these probability distributions that
are caused by the different plaintexts so that the probabilities are now as-
signed to key hypothesis and “in line”. Finally, we add up the probability
distributions and select the key hypothesis that yields maximum probability.
More formally: Let S, and z,, (n = 1,...,m) denote the available samples
resp. the corresponding known plaintexts and O; (i = 0,...,255) denote the

operations x, @ k° where k° is the unknown key. First, we compute:

prob(S; — Oyp), prob(S; — O1), ..., prob(S; — Ogss)
prob(Sy — Op), prob(Sy — O1), ..., prob(Sy — Oass)
prob(S, — Oq), prob(S,, — O1), ..., prob(S,, — Oass)

17135] presents an amplified attack for the case of several available samples
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Then, each line n of the array is permuted by @x,, so that it represents key
hypothesis k; instead of operation hypothesis x, @& k°. Note that each line n
of the array is permuted by its corresponding z,, (which probably differ from
line to line) so that the columns in the array below do not match the columns
in the array above. One column represents the correct key hypothesis k£ = k°,

but its position in the array is unknown so far.

prob(Sy — ko), ..., prob(Sy — k°), ..., prob(S; — koss)
prob(Sy — ko), ..., prob(Sy — k°), ..., prob(Sy — koss)
prob(Sy, — ko), ..., prob(S, — k°), ..., prob(S, — kass)

Finally, all probabilities pointing to a unique key hypothesis are added up

Yo prob(S, — ko), ..., > prob(S, —k°), ..., Y. prob(S, — koss)

and the hypothesis yielding maximal probability is selected.

max (Zprob(sn — /{:,)) — k= k°

n=1

This strategy has the advantage that the presence of difficult samples can
be compensated. Even if the correct key is not the best candidate for any
single sample, chances are good that their combined probability distributions
guide to the right decision.

We give a simplified example: Let the correct subkey k£° = 01, and

xr D k° — 002 0].2 102 1].2
Sh 0,1 1{0,08|0,02| 0,03
S 0,110,021 0,01 0,08

be the individual probability distributions derived from two samples S; and
S5 with corresponding plaintexts x = 00, and x = 105. S selects B k° = 00,
which leads to the guess that x & k° & x = k° = 005, which is wrong. In
the same manner, Sy selects x @& k° = 00, which leads to the guess that

@ k° @ x = k° = 105, which is again wrong. Purging the offsets and adding
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the probability distributions yields

k° — | 005 | 01y | 105 | 11o
S, | 0,1 |0,08]|0,02]0,03
S, 10,01]008] 0,1 |0,02
S 0,110,716 ]0,12 0,05

which leads to the correct guess k° = 015.

5.1.2 Implementation

The Template Attack was implemented closely to the description in 3.3.
After some preliminary tests, the implementation was modified according to
improvements 1 and 2. In the following we describe our implementation step-
by-step and provide data examples to illustrate the procedure. Additionally,

we introduce several abbreviations which will be used throughout the sequel.

Profiling step The Template Attack aims at generating a template, i.e.
an estimation of the signal and a characterisation of the noise, for each key
dependent operation. As mentioned before, we define a unique operation by
the value of one selected byte in the AES state array s after the initial Round
Key addition, e.g. so0 = 2o @ ko € {0,1}® and hence we generate 256 tem-
plates. The implementation of this byte-wise attack can attack any byte in

s but for the sake of clarity we restrict our attention to sg .

The first step aims at generating indexes of the N; available samples. For
each value of zy we create an index file that points to all samples that corre-
spond to it. Note that indexing in this manner leads to the same partitioning
as indexing for zo @ ko or even S-box(xg @ ko) because kq is fixed. Hence the
index names could be permuted to represent the other arrangements. For
example: indexgss corresponds to zp = 255 but as well to operationassep,
and to S-box(255 @ ko). Furthermore, an additional file distribution is cre-
ated that contains the length of each index file, i.e. the amount of curves
that correspond to each plaintext zy. Figure 17 in Section 4.4 illustrates

the content of such a distribution file. The implemented function is named

47



5 EXPERIMENTAL RESULTS - FIXED KEY

assign_directory_contents(char *byte). It creates all the files men-
tioned above for the selected byte € (0,...,15). We focused on byte — 0

and will from now on omit this parameter.

Step 2 computes the average signal for each operation (part 1 of 