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Introduction
The hydrological design of dams and 
flood retention reservoirs requires de-
sign floods of an a priori defined prob-
ability which can be estimated with 
statistical and deterministic methods. In-
ternational dam standards recommend 
return periods of up to 10000 years to 
ascertain dam structure security. Un-
der consideration of retention and free 
storage capacities, critical flood loads 
for reservoirs result from flood waves 
with multiple peaks. 

Extreme flood events in Germany dur-
ing the last years, especially the big 
flood at the river Elbe in Saxony in 2002 
(see subcatchment in Fig. 1), showed 
the importance of considering flood 
events with multiple peaks in the flood 
design of dams. In 2002 long-lasting advective precipitation was further aggravated by 
precipitation caused by local storm events and orographic effects. These meteorological 
effects led to flood hydrographs with multiple peaks shown at the example of the Dam 
Gottleuba in Figure 2. The multi-peak shape of the hydrographs leads to a reduced flood 
security of dams as the first wave fills the flood storage and the second wave  causes 
critical flood load because of the filled flood storage.

Estimating design flood hy-
drographs with determinis-
tic methods is problematic 
due to the required extrap-
olation of the model as-
sumptions to forecast large 
floods. Though the model 
assumptions could be ad-
equate for small and me-
dium size floods, for which 
the model is calibrated, but 
may possibly not be ap-
plicable in the case of ex-
treme floods.

Here design floods are de-
termined by simulating the flood characteristics by means of Monte-Carlo Simulation to 
circumvent these uncertainties related to precipitation-runoff modeling [1].

Hydrograph Function
Many functions can be found in the 
literature to describe the hydro-
graph analytically [2,3,4,5,6,7,8]. In 
most cases probability density func-
tions like the Gamma-Distribution 
[2], Beta-Distribution [2,3], Pearson 
III-Distribution [4] or Frechet-Distri-
bution [5] are used to represent the 
properties of the flood hydrograph. 
In this application a Gamma-Distri-
bution is used as hydrograph func-
tion: 

where k is a time scaling factor, n the shape factor and V the volume of the hydrograph. 

Figure 2: Flood 2002, Dam Gottleuba

The Gamma-Distribution obtains its maximum value at the time tA = k(n-1) with a peak discharge of:

After the substitution of (n-1) with the shape factor m the discharge can be calculated [8]:

The influence of the shape parameter m is demonstrated in Fig. 3. With increasing m the shape of the 
hydrograph becomes steeper.

Multi-Peak Hydrographs
By superposition of several Gam-
ma-Distributions, complex multi-
peak hydrographs can be gen-
erated. To reduce the number of 
parameter in this application, only 
the generation of two-peak hydro-
graphs is presented. The method 
is also adequate for hydrographs 
with more than two peaks. In Fig. 
4 the superposition of two Gam-
ma-Distributions is demonstrated. 
The flood hydrograph results from 
the sum of the direct runoff of 
the two single-peak waves QI

d(t) 
and QII

d(t) and the baseflow QB(t), 
which is assumed as constant:

Design Storms
In Germany regionalized design storms are available 
in the KOSTRA-map [9] for the entire country. Design 
storms with a duration of up to 72 h and a return period 
of up to 100 years are provided in a grid which has a cell 
area of 71.5 km². Return periods over 100 years can be 
extrapolated. In Fig. 5 the extrapolation of the design 
storms is dem-
onstrated for the 
grid cell of the 
Dam Gottleuba.

Generation of Flood Hydrographs
To simulate these superposed hydrographs it is important to con-
sider the flood synthesis in the generation of the parameters. 
The parameters are simulated dependent on design storms. A 
design storm of defined duration and return period and hydro-
graph parameters are linked via the flood volume according to 
Eq. 5 with the assumption of a runoff coefficient. 

This total precipitation amount is divided in two precipitation-parts 
which led to the two superposed single-peak hydrographs. The 
two single events are dependent and so the product of the two 
return periods should be smaller than or equal the return period 
of the total precipitation event: 

Figure 1: Location of the Dam Gottleuba

The sum of the precipitation amount of the two single events should also be smaller than or equal the 
total precipitation amount:

Dependent on these two precipitation events, the parameters of the two superposed flood hydrographs 
are generated. The generation scheme is illustrated in detail in Fig. 6.

Application at the Dam Gottleuba
The Dam Gottleuba is situated in the Eastern Erzgebirge in Saxony, Germany (see Fig. 1). The catch-
ment area is 35.25 km² and the mean annual discharge is 0.5 m³/s. After studies of the flood in 2002 
the runoff coefficient for the flood volume calculation after Eq. 5 is assumed as 0.8. 

In Fig. 7 the results of the hydro-
graph generation with a synthetic 
precipitation of 24 h and a return 
period of 1000 years is shown. It 
is obvious that the two-peak hydro-
graph (Fig. 7 (a)) and not the hy-
drograph with the highest peak (Fig. 
7 (b)) led to the maximum storage 
level. This is also proved by the 
generation with precipitation dura-
tion from 3 h to 24 h (Return period 
1000 years) in Fig. 8. The results 
shows that it is important to consid-
er the shape  of the hydrographs in 
the flood design of dams.
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Figure 4: Description of a two-peak event with two Gamma-		
	 Distributions
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Figure 8: Monte-Carlo-Simulation of the hydrographs
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Stochastic Generation of Hydrographs for the Flood Design of Dams

Figure 5: KOSTRA-Precipitation extrapo-		
	 lation (Dam Gottleuba)
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Figure 3: Change of the hydrograph shape 			 
with increasing parameter m

( ) ( )

1n t
k

d
V tQ t e

k n k

−
− = ⋅ ⋅Γ  

(1)

Figure 6: Generation scheme
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Figure 7: Monte-Carlo-Simulation of the hydrographs (Precipitation Duration = 24 h; 
	 Precipitation Return Period = 1000a) 
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